hailo-inference/cpp_inference/switch_hefs_example.cpp

616 lines
28 KiB
C++
Raw Permalink Normal View History

2022-03-31 11:10:10 +02:00
/**
* Copyright 2020 (C) Hailo Technologies Ltd.
* All rights reserved.
*
* Hailo Technologies Ltd. ("Hailo") disclaims any warranties, including, but not limited to,
* the implied warranties of merchantability and fitness for a particular purpose.
* This software is provided on an "AS IS" basis, and Hailo has no obligation to provide maintenance,
* support, updates, enhancements, or modifications.
*
* You may use this software in the development of any project.
* You shall not reproduce, modify or distribute this software without prior written permission.
**/
/**
* @ file switch_hefs_example.cpp
* This example demonstrates basic usage of HailoRT streaming api over multiple networks, using vstreams.
* It loads a folder of images and tries to detect faces in them. Once it found a face it will switch to a different
* model that will do age and gender recognition.
**/
#include "c_common.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#include "hailo/hailort.h"
#pragma GCC diagnostic pop
#include "yolov5.hpp"
#include <pthread.h>
#include <time.h>
#include <vector>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
#define MAX_HEF_PATH_LEN (255)
#define MAX_EDGE_LAYERS (15)
#define HEF_COUNT (2)
#define MAX_FACES (15)
#define MAX_BATCH (MAX_FACES)
cv::Mat g_frame[1300];
uint32_t i = 0;
enum hse_output_index
{
HSE_OUTPUT_AGE_VECTOR = 0,
HSE_OUTPUT_GENDER
};
typedef struct write_thread_args_t
{
hailo_input_vstream input_vstream;
uint8_t *src_data[MAX_BATCH];
size_t src_frame_size;
uint16_t frames_count;
hailo_status status;
} write_thread_args_t;
typedef struct read_thread_args_t
{
hailo_output_vstream output_vstream;
uint8_t *dst_data[MAX_BATCH];
size_t dst_frame_size;
uint16_t frames_count;
hailo_status status;
} read_thread_args_t;
/**********************************************************************************/
/* WRITE_TO_DEVICE function */
/* input: args - */
/* * - the virtual stream to send the data */
/* * - a ptr to the data to write */
/* * - the data length and the */
/* */
/* output: status */
/* * - Success or error code */
/**********************************************************************************/
void* write_to_device(void *args)
{
hailo_status status = HAILO_UNINITIALIZED;
write_thread_args_t *write_args = (write_thread_args_t*)args;
// looping over all frames that we sent to the device and calling the write api - hailo_vstream_write_raw_buffer
for (uint32_t frame = 0; frame < write_args->frames_count; frame++)
{
// Write data
status = hailo_vstream_write_raw_buffer(write_args->input_vstream, write_args->src_data[frame], write_args->src_frame_size);
REQUIRE_SUCCESS(status, l_exit, "Failed writing input frame to device");
}
status = HAILO_SUCCESS;
l_exit:
write_args->status = status;
return NULL;
}
/**********************************************************************************/
/* READ_FROM_DEVICE function */
/* input: args - */
/* * - the virtual stream to receive the data */
/* * - a ptr to the data to read */
/* * - the data length and the */
/* */
/* output: status */
/* * - Success or error code */
/**********************************************************************************/
void* read_from_device(void *args)
{
hailo_status status = HAILO_UNINITIALIZED;
read_thread_args_t *read_args = (read_thread_args_t*)args;
for (uint32_t i = 0; i < read_args->frames_count; i++)
{
// Read data
status = hailo_vstream_read_raw_buffer(read_args->output_vstream, read_args->dst_data[i], read_args->dst_frame_size);
REQUIRE_SUCCESS(status, l_exit, "Failed reading output frame from device");
// Process data here
}
status = HAILO_SUCCESS;
l_exit:
read_args->status = status;
return NULL;
}
/**********************************************************************************/
/* CREATE_INPUT_VSTREAM_THREAD function */
/* input: args - */
/* * - the input virtual stream */
/* * - a ptr to the source data location */
/* * - number of frames */
/* */
/* output: status */
/* * - Success or error code */
/* */
/* the function initializes the values for the write arguments and creates the */
/* input thread which writes(sends the inference data) to the device */
/**********************************************************************************/
hailo_status create_input_vstream_thread(hailo_input_vstream input_vstream, uint8_t **src_data, size_t src_frame_size, uint16_t frames_count,
pthread_t *input_thread, write_thread_args_t *write_args)
{
hailo_status status = HAILO_SUCCESS; // Success oriented
int pthread_create_res = 0;
for (uint8_t i = 0; i < frames_count; i++)
{
write_args->src_data[i] = src_data[i];
}
write_args->src_frame_size = src_frame_size;
write_args->input_vstream = input_vstream;
write_args->frames_count = frames_count;
write_args->status = HAILO_UNINITIALIZED;
// Run write
pthread_create_res = pthread_create(input_thread, NULL, write_to_device, write_args);
REQUIRE_ACTION(0 == pthread_create_res, status = HAILO_INTERNAL_FAILURE, l_exit, "Failed creating thread");
l_exit:
return status;
}
/**********************************************************************************/
/* CREATE_OUTPUT_VSTREAM_THREAD function */
/* input: args - */
/* * - the output virtual stream */
/* * - a ptr to the dst data location */
/* * - dst frame size */
/* */
/* output: status */
/* * - Success or error code */
/* */
/* the function initializes the values for the read arguments and creates the */
/* output thread which reads(receives the processed data) from the Hailo device */
/**********************************************************************************/
hailo_status create_output_vstream_thread(hailo_output_vstream output_vstream, uint8_t **dst_data, size_t dst_frame_size,
uint16_t frames_count, pthread_t *output_thread, read_thread_args_t *read_args)
{
hailo_status status = HAILO_SUCCESS; // Success oriented
int pthread_create_res = 0;
for (uint8_t i = 0; i < frames_count; i++)
{
read_args->dst_data[i] = dst_data[i];
}
read_args->dst_frame_size = dst_frame_size;
read_args->output_vstream = output_vstream;
read_args->frames_count = frames_count;
read_args->status = HAILO_UNINITIALIZED;
// Run read
pthread_create_res = pthread_create(output_thread, NULL, read_from_device, read_args);
REQUIRE_ACTION(0 == pthread_create_res, status = HAILO_INTERNAL_FAILURE, l_exit, "Failed creating thread");
l_exit:
return status;
}
/**********************************************************************************/
/* BUILD_STREAMS function */
/* input: args - */
/* * - network group - all hefs defined in a group */
/* * - input vstreams and frame sizes */
/* * - output vstreams and frame sizes */
/* * - destination data */
/* * - frame count */
/* */
/* output: status */
/* * - Success or error code */
/* */
/* the function initializes the values for the read arguments and creates the */
/* output thread which reads(receives the processed data) from the Hailo device */
/**********************************************************************************/
hailo_status build_streams(hailo_configured_network_group network_group,
hailo_input_vstream *input_vstreams, size_t *input_frame_sizes,
hailo_output_vstream *output_vstreams, size_t *output_frame_sizes, uint8_t *(*dst_data)[MAX_BATCH],
size_t *num_output_streams, uint8_t frames_count)
{
hailo_status status = HAILO_UNINITIALIZED;
hailo_input_vstream_params_by_name_t input_vstream_params[MAX_EDGE_LAYERS];
hailo_output_vstream_params_by_name_t output_vstream_params[MAX_EDGE_LAYERS];
size_t input_vstream_size = 1;
// Make sure it can hold amount of vstreams for hailo_make_input/output_vstream_params
size_t output_vstream_size = MAX_EDGE_LAYERS;
// prepare all input vstreams param data in advance
status = hailo_make_input_vstream_params(network_group, true, HAILO_FORMAT_TYPE_AUTO,
input_vstream_params, &input_vstream_size);
REQUIRE_SUCCESS(status, l_exit, "Failed making input virtual stream params");
// prepare all output vstreams param data in advance
status = hailo_make_output_vstream_params(network_group, true, HAILO_FORMAT_TYPE_AUTO,
output_vstream_params, &output_vstream_size);
REQUIRE_SUCCESS(status, l_exit, "Failed making output virtual stream params");
*num_output_streams = output_vstream_size;
// create all input vstreams data in advance
status = hailo_create_input_vstreams(network_group, input_vstream_params, input_vstream_size, input_vstreams);
REQUIRE_SUCCESS(status, l_exit, "Failed creating virtual stream");
// create all output vstreams data in advance
status = hailo_create_output_vstreams(network_group, output_vstream_params, output_vstream_size, output_vstreams);
REQUIRE_SUCCESS(status, l_release_input_vstream, "Failed creating virtual stream");
for (size_t i = 0; i < input_vstream_size; i++)
{
status = hailo_get_input_vstream_frame_size(input_vstreams[i], &input_frame_sizes[i]);
REQUIRE_SUCCESS(status, l_clear_buffers, "Failed getting input virtual stream frame size");
}
for (size_t i = 0; i < output_vstream_size; i++)
{
status = hailo_get_output_vstream_frame_size(output_vstreams[i], &output_frame_sizes[i]);
REQUIRE_SUCCESS(status, l_clear_buffers, "Failed getting input virtual stream frame size");
for (uint8_t j = 0; j < frames_count; j++)
{
dst_data[i][j] = (uint8_t*)malloc(output_frame_sizes[i]);
REQUIRE_ACTION(NULL != dst_data[i], status = HAILO_OUT_OF_HOST_MEMORY, l_clear_buffers, "Out of memory");
}
}
status = HAILO_SUCCESS;
goto l_exit;
l_clear_buffers:
for (size_t i = 0; i < output_vstream_size; i++)
{
for (uint8_t j = 0; j < frames_count; j++)
{
FREE(dst_data[i][j]);
}
}
(void)hailo_release_output_vstreams(output_vstreams, output_vstream_size);
l_release_input_vstream:
(void)hailo_release_input_vstreams(input_vstreams, input_vstream_size);
l_exit:
return status;
}
/**********************************************************************************/
/* RUN_NETWORK function */
/* input: args - */
/* * - network group - specific model to run */
/* * - input vstreams and frame sizes */
/* * - output vstreams and frame sizes */
/* * - destination data */
/* * - frame count */
/* */
/* output: status */
/* * - Success or error code */
/* */
/* the function loads a specific model into the Hailo8 device and runs inference */
/* it uses all the pre-prepared data in order to switch between models very fast */
/**********************************************************************************/
hailo_status run_network(hailo_configured_network_group network_group, hailo_input_vstream input_vstream, uint8_t **input_data, uint16_t frames_count, size_t input_frame_size, hailo_output_vstream *output_vstreams, size_t num_output_vstreams, uint8_t *(*dst_data)[MAX_BATCH], size_t *output_frame_size)
{
hailo_status status = HAILO_UNINITIALIZED;
write_thread_args_t write_args;
read_thread_args_t read_args[MAX_EDGE_LAYERS];
hailo_activated_network_group activated_network_group = NULL;
pthread_t input_vstream_thread;
pthread_t output_vstream_threads[MAX_EDGE_LAYERS];
printf("-I- Running network. Input frame size: %lu\n", input_frame_size);
// Activating the specific model we would like to run within the network group
status = hailo_activate_network_group(network_group, NULL, &activated_network_group);
REQUIRE_SUCCESS(status, l_exit, "Failed activate network group");
// create a thread for the input vstream
status = create_input_vstream_thread(input_vstream, input_data,
input_frame_size, frames_count, &input_vstream_thread, &write_args);
// create threads for the output vstreams
for (size_t i = 0; i < num_output_vstreams; i++)
{
status = create_output_vstream_thread(output_vstreams[i], dst_data[i], output_frame_size[i], frames_count, &output_vstream_threads[i], &read_args[i]);
}
pthread_join(input_vstream_thread, NULL);
for (size_t i = 0; i < num_output_vstreams; i++)
{
pthread_join(output_vstream_threads[i], NULL);
}
status = hailo_deactivate_network_group(activated_network_group);
REQUIRE_SUCCESS(status, l_exit, "Failed activate network group");
status = HAILO_SUCCESS;
l_exit:
return status;
}
/**********************************************************************************/
/* GET_AGE function */
/* input: args - */
/* * - age probability vector */
/* * - vecor length */
/* */
/* output: status */
/* * - estimated age */
/* */
/* the function is a post processing function of the age gender model. */
/* it gets the top two ages and calculate weighted average on their age based on */
/* their probabilities. */
/**********************************************************************************/
uint8_t get_age(uint8_t *age_probability_vector, uint8_t vector_length)
{
uint8_t max_index = 0;
uint8_t second_max_index = 0;
uint32_t max_index_probabilty = 0;
uint32_t second_max_index_probability = 0;
uint32_t sum_of_max_two = 0;
for (uint8_t i = 1; i < vector_length; i++)
{
if (age_probability_vector[max_index] < age_probability_vector[i])
{
second_max_index = max_index;
max_index = i;
}
}
// keep the #1 probability - multiplied by the age
max_index_probabilty = max_index*age_probability_vector[max_index];
// keep the #2 probability - multiplied by the age
second_max_index_probability = second_max_index*age_probability_vector[second_max_index];
// keep the sum of #1+#2 probability
sum_of_max_two = age_probability_vector[max_index]+age_probability_vector[second_max_index];
// return the average of these two top age weighted by their probabilities
return ( (max_index_probabilty + second_max_index_probability) / sum_of_max_two) + 1;
}
int main(int argc, char **argv)
{
hailo_status status = HAILO_UNINITIALIZED;
hailo_device device = NULL;
hailo_hef hef[HEF_COUNT] = {NULL};
hailo_configure_params_t configure_params = {};
hailo_configured_network_group network_groups[HEF_COUNT] = {NULL};
size_t network_groups_size = 1;
hailo_input_vstream input_vstreams[HEF_COUNT][MAX_EDGE_LAYERS];
hailo_output_vstream output_vstreams[HEF_COUNT][MAX_EDGE_LAYERS];
size_t input_frame_size[HEF_COUNT][MAX_EDGE_LAYERS];
size_t output_frame_size[HEF_COUNT][MAX_EDGE_LAYERS];
// Initialize 2d array to all NULL
uint8_t *dst_data[HEF_COUNT][MAX_EDGE_LAYERS][MAX_BATCH] = {NULL};
size_t num_output_vstreams[HEF_COUNT] = {0};
uint8_t hef_index = 0;
cv::Mat input_image;
cv::Mat resized_input;
cv::Mat input_image_rgb;
uint8_t *faces_input[MAX_FACES] = {NULL};
uint8_t faces_count = 0;
uint8_t file_counter = 0;
uint8_t anchor_index = 0;
hailo_vstream_info_t yolo_output_stream_info[ANCHORS_NUM] = {};
hailo_vstream_info_t age_stream_info = {};
float32_t bbox_array[MAX_BOXES][6] = {0.0f};
uint32_t box_index = 0;
uint32_t dets_count = 0;
uint32_t dets_count_after_nms = 0;
cv::Mat cropped_image;
cv::Mat resized_image[MAX_FACES];
char cropped_path[] = {'f','i','l','e','_','1','i','m','a','g','e','_','0','.','p','n','g','\0'};
std::vector <cv::String > file_names;
char HEF_FILES[HEF_COUNT][MAX_HEF_PATH_LEN] = {"yolov5m_vehicles_bicycles_faces_acc.hef", "hse_age_gender_mobilenet_v2.hef"};
uint8_t HEF_MAX_BATCH_COUNT[HEF_COUNT] = {1, MAX_FACES};
cv::Mat pp_frame(640, 640, CV_8UC3);
// define the input folder as images
std::string source ="images/";
printf("Usage: %s \n", source.c_str());
cv::glob(source.c_str(), file_names, false);
// Create the PCIE device - look for a device connected
status = hailo_create_pcie_device(NULL, &device);
REQUIRE_SUCCESS(status, l_release_image, "Failed to create pcie_device");
/*******************************/
/* MODEL PREPARATION PART */
/*******************************/
// For each one of the models we would like to run, init the config params and build the streams
for (hef_index = 0; hef_index < HEF_COUNT; hef_index++)
{
status = hailo_create_hef_file(&hef[hef_index], HEF_FILES[hef_index]);
REQUIRE_SUCCESS(status, l_release_hef, "Failed creating hef file %s", HEF_FILES[hef_index]);
status = hailo_init_configure_params(hef[hef_index], HAILO_STREAM_INTERFACE_PCIE, &configure_params);
REQUIRE_SUCCESS(status, l_release_hef, "Failed init configure params");
status = hailo_configure_device(device, hef[hef_index], &configure_params, &network_groups[hef_index], &network_groups_size);
REQUIRE_SUCCESS(status, l_release_hef, "Failed configuring devcie");
REQUIRE_ACTION(network_groups_size == 1, status = HAILO_INVALID_ARGUMENT, l_release_hef,
"Unexpected network group size");
status = build_streams(network_groups[hef_index],
input_vstreams[hef_index], input_frame_size[hef_index],
output_vstreams[hef_index], output_frame_size[hef_index],
dst_data[hef_index], &num_output_vstreams[hef_index], HEF_MAX_BATCH_COUNT[hef_index]);
REQUIRE_SUCCESS(status, l_release_vstreams, "Failed building streams");
}
// get the output streams info for all outputs for the detection model
for (anchor_index = 0; ANCHORS_NUM > anchor_index; anchor_index++)
{
status = hailo_get_output_vstream_info(output_vstreams[0][anchor_index], &(yolo_output_stream_info[anchor_index]));
REQUIRE_SUCCESS(status, l_release_vstreams, "Failed getting Yolo vstreams info");
}
// get the output streams info for the age and gender model
status = hailo_get_output_vstream_info(output_vstreams[1][HSE_OUTPUT_AGE_VECTOR], &age_stream_info);
REQUIRE_SUCCESS(status, l_release_vstreams, "Failed getting age vstream info");
/*******************************/
/* INFERENCE PART */
/*******************************/
// loop on all files in the file folder
for (std::string file : file_names)
{
file_counter++;
printf("\nFILE NUMBER: %d\n\n",file_counter);
// read the image from the file
input_image = cv::imread(file);
cv::resize(input_image, g_frame[i], cv::Size(640, 640), 1);
input_image_rgb = g_frame[i];
/******************************/
/* Run YoloV5 detection */
/******************************/
status = run_network(network_groups[0], input_vstreams[0][0], &(input_image_rgb.data), 1, input_frame_size[0][0], output_vstreams[0], num_output_vstreams[0], dst_data[0], output_frame_size[0]);
REQUIRE_SUCCESS(status, l_release_vstreams, "Failed to run YoloV5m");
printf("-I- YoloV5 ran successfully.\n");
// Process Yolo raw results into bounding boxes.
for (anchor_index = 0; ANCHORS_NUM > anchor_index ; anchor_index++)
{
extract_boxes(dst_data[0][anchor_index][0], yolo_output_stream_info[anchor_index].quant_info.qp_zp,
yolo_output_stream_info[anchor_index].quant_info.qp_scale, g_feature_map_size[anchor_index],
g_anchors[anchor_index], CONFIDENCE_THRESHOLD, &box_index, bbox_array);
}
dets_count = box_index;
dets_count_after_nms = dets_count;
printf("-I- Detections before NMS: %u.\n", dets_count);
for (uint32_t i = 0; i < box_index; ++i)
{
if (bbox_array[i][4] > CONFIDENCE_THRESHOLD)
{
for (uint32_t j = i + 1; j < box_index; ++j)
{
if ((bbox_array[i][5] == bbox_array[j][5]) && (bbox_array[j][4] > CONFIDENCE_THRESHOLD))
{
if (iou_calc_c(&bbox_array[i][0], &bbox_array[j][0]) >= IOU_THRESHOLD)
{
bbox_array[j][4] = 0;
dets_count_after_nms -= 1;
}
}
}
}
}
box_index = 0;
printf("-I- Detections after NMS: %u.\n", dets_count_after_nms);
faces_count = 0;
for(uint32_t j = 0; (j < dets_count) && (faces_count < MAX_FACES); j++)
{
// Validate detection is a face and that the entire box is inside the image borders.
if (0 == bbox_array[j][4])
{
continue;
}
printf("Class ID: %f)\n", bbox_array[j][CLASS_ID]);
if ((3 == bbox_array[j][CLASS_ID]) && (0 <= bbox_array[j][YMIN]) && (0 <= bbox_array[j][XMIN]) &&
(IMAGE_SIZE > bbox_array[j][YMAX]) && (IMAGE_SIZE > bbox_array[j][XMAX]))
{
printf("Face %u at (%f, %f), (%f, %f)\n", faces_count, bbox_array[j][XMIN], bbox_array[j][YMIN], bbox_array[j][XMAX], bbox_array[j][YMAX]);
cropped_image = input_image_rgb(cv::Range(bbox_array[j][YMIN], bbox_array[j][YMAX]), cv::Range(bbox_array[j][XMIN], bbox_array[j][XMAX]));
cropped_path[5] = '0' + file_counter;
cropped_path[12] = '0' + faces_count;
cv::imwrite(cropped_path, cropped_image);
cv::resize(cropped_image, resized_image[faces_count], cv::Size(224,224), cv::INTER_LINEAR);
faces_input[faces_count] = resized_image[faces_count].data;
faces_count++;
}
}
/******************************/
/* Run Age/Gender recognition */
/******************************/
// if any faces were found run the age/gender recognition otherwise go to the next file
if (0 < faces_count)
{
status = run_network(network_groups[1], input_vstreams[1][0], faces_input, faces_count, input_frame_size[1][0], output_vstreams[1], num_output_vstreams[1], dst_data[1], output_frame_size[1]);
REQUIRE_SUCCESS(status, l_release_vstreams, "Failed to run Age/Gender model");
printf("-I- HSE ran successfully.\n");
// for each face print the gender and age recognition
for (uint8_t face_index = 0; face_index < faces_count; face_index++)
{
printf("Face %u:\n", face_index);
if (0.6 <= fix_scale(dst_data[1][HSE_OUTPUT_GENDER][face_index][0], age_stream_info.quant_info.qp_scale, age_stream_info.quant_info.qp_zp))
{
printf("\tMale - ");
}
else
{
printf("\tFemale - ");
}
printf("%u\n", get_age(dst_data[1][HSE_OUTPUT_AGE_VECTOR][face_index], output_frame_size[1][HSE_OUTPUT_AGE_VECTOR]));
}
}
}
status = HAILO_SUCCESS;
goto l_release_vstreams;
l_release_vstreams:
for (hef_index = 0; hef_index < HEF_COUNT; hef_index++)
{
(void)hailo_release_output_vstreams(output_vstreams[hef_index], num_output_vstreams[hef_index]);
(void)hailo_release_input_vstreams(input_vstreams[hef_index], 1);
for (hef_index = 0; hef_index < HEF_COUNT; hef_index++)
{
// TODO: Add proper release of Mat inputs?
for (size_t i = 0; i < num_output_vstreams[hef_index]; i++)
{
if (NULL != dst_data[hef_index] && NULL != dst_data[hef_index][i])
{
for (uint8_t j; j < MAX_BATCH; j++)
{
FREE(dst_data[hef_index][i][j]);
}
}
}
}
}
l_release_hef:
for (hef_index = 0; hef_index < HEF_COUNT; hef_index++)
{
if (NULL != hef[hef_index])
{
(void)hailo_release_hef(hef[hef_index]);
}
}
(void)hailo_release_device(device);
l_release_image:
input_image.release();
//l_exit:
return status;
}