1493 lines
51 KiB
C++
1493 lines
51 KiB
C++
|
/*
|
||
|
* COPYRIGHT AND PERMISSION NOTICE
|
||
|
* Penn Software MSCKF_VIO
|
||
|
* Copyright (C) 2017 The Trustees of the University of Pennsylvania
|
||
|
* All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <iomanip>
|
||
|
#include <cmath>
|
||
|
#include <iterator>
|
||
|
#include <algorithm>
|
||
|
|
||
|
#include <Eigen/SVD>
|
||
|
#include <Eigen/QR>
|
||
|
#include <Eigen/SparseCore>
|
||
|
#include <Eigen/SPQRSupport>
|
||
|
#include <boost/math/distributions/chi_squared.hpp>
|
||
|
|
||
|
#include <eigen_conversions/eigen_msg.h>
|
||
|
#include <tf_conversions/tf_eigen.h>
|
||
|
#include <sensor_msgs/PointCloud2.h>
|
||
|
#include <pcl_ros/point_cloud.h>
|
||
|
#include <pcl/point_types.h>
|
||
|
|
||
|
#include <msckf_vio/msckf_vio.h>
|
||
|
#include <msckf_vio/math_utils.hpp>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace Eigen;
|
||
|
|
||
|
namespace msckf_vio{
|
||
|
// Static member variables in IMUState class.
|
||
|
StateIDType IMUState::next_id = 0;
|
||
|
double IMUState::gyro_noise = 0.001;
|
||
|
double IMUState::acc_noise = 0.01;
|
||
|
double IMUState::gyro_bias_noise = 0.001;
|
||
|
double IMUState::acc_bias_noise = 0.01;
|
||
|
Vector3d IMUState::gravity = Vector3d(0, 0, -GRAVITY_ACCELERATION);
|
||
|
Isometry3d IMUState::T_imu_body = Isometry3d::Identity();
|
||
|
|
||
|
// Static member variables in CAMState class.
|
||
|
Isometry3d CAMState::T_cam0_cam1 = Isometry3d::Identity();
|
||
|
|
||
|
// Static member variables in Feature class.
|
||
|
FeatureIDType Feature::next_id = 0;
|
||
|
double Feature::observation_noise = 0.01;
|
||
|
Feature::OptimizationConfig Feature::optimization_config;
|
||
|
|
||
|
map<int, double> MsckfVio::chi_squared_test_table;
|
||
|
|
||
|
MsckfVio::MsckfVio(ros::NodeHandle& pnh):
|
||
|
is_gravity_set(false),
|
||
|
is_first_img(true),
|
||
|
nh(pnh) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
bool MsckfVio::loadParameters() {
|
||
|
// Frame id
|
||
|
nh.param<string>("fixed_frame_id", fixed_frame_id, "world");
|
||
|
nh.param<string>("child_frame_id", child_frame_id, "robot");
|
||
|
nh.param<bool>("publish_tf", publish_tf, true);
|
||
|
nh.param<double>("frame_rate", frame_rate, 40.0);
|
||
|
nh.param<double>("position_std_threshold", position_std_threshold, 8.0);
|
||
|
|
||
|
nh.param<double>("rotation_threshold", rotation_threshold, 0.2618);
|
||
|
nh.param<double>("translation_threshold", translation_threshold, 0.4);
|
||
|
nh.param<double>("tracking_rate_threshold", tracking_rate_threshold, 0.5);
|
||
|
|
||
|
// Feature optimization parameters
|
||
|
nh.param<double>("feature/config/translation_threshold",
|
||
|
Feature::optimization_config.translation_threshold, 0.2);
|
||
|
|
||
|
// Noise related parameters
|
||
|
nh.param<double>("noise/gyro", IMUState::gyro_noise, 0.001);
|
||
|
nh.param<double>("noise/acc", IMUState::acc_noise, 0.01);
|
||
|
nh.param<double>("noise/gyro_bias", IMUState::gyro_bias_noise, 0.001);
|
||
|
nh.param<double>("noise/acc_bias", IMUState::acc_bias_noise, 0.01);
|
||
|
nh.param<double>("noise/feature", Feature::observation_noise, 0.01);
|
||
|
|
||
|
// Use variance instead of standard deviation.
|
||
|
IMUState::gyro_noise *= IMUState::gyro_noise;
|
||
|
IMUState::acc_noise *= IMUState::acc_noise;
|
||
|
IMUState::gyro_bias_noise *= IMUState::gyro_bias_noise;
|
||
|
IMUState::acc_bias_noise *= IMUState::acc_bias_noise;
|
||
|
Feature::observation_noise *= Feature::observation_noise;
|
||
|
|
||
|
// Set the initial IMU state.
|
||
|
// The intial orientation and position will be set to the origin
|
||
|
// implicitly. But the initial velocity and bias can be
|
||
|
// set by parameters.
|
||
|
// TODO: is it reasonable to set the initial bias to 0?
|
||
|
nh.param<double>("initial_state/velocity/x",
|
||
|
state_server.imu_state.velocity(0), 0.0);
|
||
|
nh.param<double>("initial_state/velocity/y",
|
||
|
state_server.imu_state.velocity(1), 0.0);
|
||
|
nh.param<double>("initial_state/velocity/z",
|
||
|
state_server.imu_state.velocity(2), 0.0);
|
||
|
|
||
|
// The initial covariance of orientation and position can be
|
||
|
// set to 0. But for velocity, bias and extrinsic parameters,
|
||
|
// there should be nontrivial uncertainty.
|
||
|
double gyro_bias_cov, acc_bias_cov, velocity_cov;
|
||
|
nh.param<double>("initial_covariance/velocity",
|
||
|
velocity_cov, 0.25);
|
||
|
nh.param<double>("initial_covariance/gyro_bias",
|
||
|
gyro_bias_cov, 1e-4);
|
||
|
nh.param<double>("initial_covariance/acc_bias",
|
||
|
acc_bias_cov, 1e-2);
|
||
|
|
||
|
double extrinsic_rotation_cov, extrinsic_translation_cov;
|
||
|
nh.param<double>("initial_covariance/extrinsic_rotation_cov",
|
||
|
extrinsic_rotation_cov, 3.0462e-4);
|
||
|
nh.param<double>("initial_covariance/extrinsic_translation_cov",
|
||
|
extrinsic_translation_cov, 1e-4);
|
||
|
|
||
|
state_server.state_cov = MatrixXd::Zero(21, 21);
|
||
|
for (int i = 3; i < 6; ++i)
|
||
|
state_server.state_cov(i, i) = gyro_bias_cov;
|
||
|
for (int i = 6; i < 9; ++i)
|
||
|
state_server.state_cov(i, i) = velocity_cov;
|
||
|
for (int i = 9; i < 12; ++i)
|
||
|
state_server.state_cov(i, i) = acc_bias_cov;
|
||
|
for (int i = 15; i < 18; ++i)
|
||
|
state_server.state_cov(i, i) = extrinsic_rotation_cov;
|
||
|
for (int i = 18; i < 21; ++i)
|
||
|
state_server.state_cov(i, i) = extrinsic_translation_cov;
|
||
|
|
||
|
// Transformation offsets between the frames involved.
|
||
|
Isometry3d T_imu_cam0;
|
||
|
vector<double> cam0_extrinsics(16);
|
||
|
nh.getParam("cam0/T_cam_imu", cam0_extrinsics);
|
||
|
T_imu_cam0.linear()(0, 0) = cam0_extrinsics[0];
|
||
|
T_imu_cam0.linear()(0, 1) = cam0_extrinsics[1];
|
||
|
T_imu_cam0.linear()(0, 2) = cam0_extrinsics[2];
|
||
|
T_imu_cam0.linear()(1, 0) = cam0_extrinsics[4];
|
||
|
T_imu_cam0.linear()(1, 1) = cam0_extrinsics[5];
|
||
|
T_imu_cam0.linear()(1, 2) = cam0_extrinsics[6];
|
||
|
T_imu_cam0.linear()(2, 0) = cam0_extrinsics[8];
|
||
|
T_imu_cam0.linear()(2, 1) = cam0_extrinsics[9];
|
||
|
T_imu_cam0.linear()(2, 2) = cam0_extrinsics[10];
|
||
|
T_imu_cam0.translation()(0) = cam0_extrinsics[3];
|
||
|
T_imu_cam0.translation()(1) = cam0_extrinsics[7];
|
||
|
T_imu_cam0.translation()(2) = cam0_extrinsics[11];
|
||
|
Isometry3d T_cam0_imu = T_imu_cam0.inverse();
|
||
|
|
||
|
Isometry3d T_imu_cam1;
|
||
|
vector<double> cam1_extrinsics(16);
|
||
|
nh.getParam("cam1/T_cam_imu", cam1_extrinsics);
|
||
|
T_imu_cam1.linear()(0, 0) = cam1_extrinsics[0];
|
||
|
T_imu_cam1.linear()(0, 1) = cam1_extrinsics[1];
|
||
|
T_imu_cam1.linear()(0, 2) = cam1_extrinsics[2];
|
||
|
T_imu_cam1.linear()(1, 0) = cam1_extrinsics[4];
|
||
|
T_imu_cam1.linear()(1, 1) = cam1_extrinsics[5];
|
||
|
T_imu_cam1.linear()(1, 2) = cam1_extrinsics[6];
|
||
|
T_imu_cam1.linear()(2, 0) = cam1_extrinsics[8];
|
||
|
T_imu_cam1.linear()(2, 1) = cam1_extrinsics[9];
|
||
|
T_imu_cam1.linear()(2, 2) = cam1_extrinsics[10];
|
||
|
T_imu_cam1.translation()(0) = cam1_extrinsics[3];
|
||
|
T_imu_cam1.translation()(1) = cam1_extrinsics[7];
|
||
|
T_imu_cam1.translation()(2) = cam1_extrinsics[11];
|
||
|
Isometry3d T_cam1_imu = T_imu_cam1.inverse();
|
||
|
|
||
|
Isometry3d T_body_imu;
|
||
|
vector<double> imu_extrinsics(16);
|
||
|
nh.getParam("T_imu_body", imu_extrinsics);
|
||
|
T_body_imu.linear()(0, 0) = imu_extrinsics[0];
|
||
|
T_body_imu.linear()(0, 1) = imu_extrinsics[1];
|
||
|
T_body_imu.linear()(0, 2) = imu_extrinsics[2];
|
||
|
T_body_imu.linear()(1, 0) = imu_extrinsics[4];
|
||
|
T_body_imu.linear()(1, 1) = imu_extrinsics[5];
|
||
|
T_body_imu.linear()(1, 2) = imu_extrinsics[6];
|
||
|
T_body_imu.linear()(2, 0) = imu_extrinsics[8];
|
||
|
T_body_imu.linear()(2, 1) = imu_extrinsics[9];
|
||
|
T_body_imu.linear()(2, 2) = imu_extrinsics[10];
|
||
|
T_body_imu.translation()(0) = imu_extrinsics[3];
|
||
|
T_body_imu.translation()(1) = imu_extrinsics[7];
|
||
|
T_body_imu.translation()(2) = imu_extrinsics[11];
|
||
|
|
||
|
//CAMState::T_imu_cam0 = T_cam0_imu.inverse();
|
||
|
state_server.imu_state.R_imu_cam0 = T_cam0_imu.linear().transpose();
|
||
|
state_server.imu_state.t_cam0_imu = T_cam0_imu.translation();
|
||
|
CAMState::T_cam0_cam1 = T_imu_cam1 * T_cam0_imu;
|
||
|
IMUState::T_imu_body = T_body_imu.inverse();
|
||
|
|
||
|
// Maximum number of camera states to be stored
|
||
|
nh.param<int>("max_cam_state_size", max_cam_state_size, 30);
|
||
|
|
||
|
ROS_INFO("===========================================");
|
||
|
ROS_INFO("fixed frame id: %s", fixed_frame_id.c_str());
|
||
|
ROS_INFO("child frame id: %s", child_frame_id.c_str());
|
||
|
ROS_INFO("publish tf: %d", publish_tf);
|
||
|
ROS_INFO("frame rate: %f", frame_rate);
|
||
|
ROS_INFO("position std threshold: %f", position_std_threshold);
|
||
|
ROS_INFO("Keyframe rotation threshold: %f", rotation_threshold);
|
||
|
ROS_INFO("Keyframe translation threshold: %f", translation_threshold);
|
||
|
ROS_INFO("Keyframe tracking rate threshold: %f", tracking_rate_threshold);
|
||
|
ROS_INFO("gyro noise: %.10f", IMUState::gyro_noise);
|
||
|
ROS_INFO("gyro bias noise: %.10f", IMUState::gyro_bias_noise);
|
||
|
ROS_INFO("acc noise: %.10f", IMUState::acc_noise);
|
||
|
ROS_INFO("acc bias noise: %.10f", IMUState::acc_bias_noise);
|
||
|
ROS_INFO("observation noise: %.10f", Feature::observation_noise);
|
||
|
ROS_INFO("initial velocity: %f, %f, %f",
|
||
|
state_server.imu_state.velocity(0),
|
||
|
state_server.imu_state.velocity(1),
|
||
|
state_server.imu_state.velocity(2));
|
||
|
ROS_INFO("initial gyro bias cov: %f", gyro_bias_cov);
|
||
|
ROS_INFO("initial acc bias cov: %f", acc_bias_cov);
|
||
|
ROS_INFO("initial velocity cov: %f", velocity_cov);
|
||
|
ROS_INFO("initial extrinsic rotation cov: %f",
|
||
|
extrinsic_rotation_cov);
|
||
|
ROS_INFO("initial extrinsic translation cov: %f",
|
||
|
extrinsic_translation_cov);
|
||
|
|
||
|
cout << T_imu_cam1.linear() << endl;
|
||
|
cout << T_imu_cam1.translation().transpose() << endl;
|
||
|
|
||
|
ROS_INFO("max camera state #: %d", max_cam_state_size);
|
||
|
ROS_INFO("===========================================");
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool MsckfVio::createRosIO() {
|
||
|
odom_pub = nh.advertise<nav_msgs::Odometry>("odom", 10);
|
||
|
feature_pub = nh.advertise<sensor_msgs::PointCloud2>(
|
||
|
"feature_point_cloud", 10);
|
||
|
|
||
|
reset_srv = nh.advertiseService("reset",
|
||
|
&MsckfVio::resetCallback, this);
|
||
|
|
||
|
imu_sub = nh.subscribe("imu", 100,
|
||
|
&MsckfVio::imuCallback, this);
|
||
|
feature_sub = nh.subscribe("features", 40,
|
||
|
&MsckfVio::featureCallback, this);
|
||
|
|
||
|
mocap_odom_sub = nh.subscribe("mocap_odom", 10,
|
||
|
&MsckfVio::mocapOdomCallback, this);
|
||
|
mocap_odom_pub = nh.advertise<nav_msgs::Odometry>("gt_odom", 1);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool MsckfVio::initialize() {
|
||
|
if (!loadParameters()) return false;
|
||
|
ROS_INFO("Finish loading ROS parameters...");
|
||
|
|
||
|
// Initialize state server
|
||
|
state_server.continuous_noise_cov =
|
||
|
Matrix<double, 12, 12>::Zero();
|
||
|
state_server.continuous_noise_cov.block<3, 3>(0, 0) =
|
||
|
Matrix3d::Identity()*IMUState::gyro_noise;
|
||
|
state_server.continuous_noise_cov.block<3, 3>(3, 3) =
|
||
|
Matrix3d::Identity()*IMUState::gyro_bias_noise;
|
||
|
state_server.continuous_noise_cov.block<3, 3>(6, 6) =
|
||
|
Matrix3d::Identity()*IMUState::acc_noise;
|
||
|
state_server.continuous_noise_cov.block<3, 3>(9, 9) =
|
||
|
Matrix3d::Identity()*IMUState::acc_bias_noise;
|
||
|
|
||
|
// Initialize the chi squared test table with confidence
|
||
|
// level 0.95.
|
||
|
for (int i = 1; i < 100; ++i) {
|
||
|
boost::math::chi_squared chi_squared_dist(i);
|
||
|
chi_squared_test_table[i] =
|
||
|
boost::math::quantile(chi_squared_dist, 0.05);
|
||
|
}
|
||
|
|
||
|
if (!createRosIO()) return false;
|
||
|
ROS_INFO("Finish creating ROS IO...");
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::imuCallback(
|
||
|
const sensor_msgs::ImuConstPtr& msg) {
|
||
|
|
||
|
// IMU msgs are pushed backed into a buffer instead of
|
||
|
// being processed immediately. The IMU msgs are processed
|
||
|
// when the next image is available, in which way, we can
|
||
|
// easily handle the transfer delay.
|
||
|
imu_msg_buffer.push_back(*msg);
|
||
|
|
||
|
if (!is_gravity_set) {
|
||
|
if (imu_msg_buffer.size() < 200) return;
|
||
|
//if (imu_msg_buffer.size() < 10) return;
|
||
|
initializeGravityAndBias();
|
||
|
is_gravity_set = true;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::initializeGravityAndBias() {
|
||
|
|
||
|
// Initialize gravity and gyro bias.
|
||
|
Vector3d sum_angular_vel = Vector3d::Zero();
|
||
|
Vector3d sum_linear_acc = Vector3d::Zero();
|
||
|
|
||
|
for (const auto& imu_msg : imu_msg_buffer) {
|
||
|
Vector3d angular_vel = Vector3d::Zero();
|
||
|
Vector3d linear_acc = Vector3d::Zero();
|
||
|
|
||
|
tf::vectorMsgToEigen(imu_msg.angular_velocity, angular_vel);
|
||
|
tf::vectorMsgToEigen(imu_msg.linear_acceleration, linear_acc);
|
||
|
|
||
|
sum_angular_vel += angular_vel;
|
||
|
sum_linear_acc += linear_acc;
|
||
|
}
|
||
|
|
||
|
state_server.imu_state.gyro_bias =
|
||
|
sum_angular_vel / imu_msg_buffer.size();
|
||
|
//IMUState::gravity =
|
||
|
// -sum_linear_acc / imu_msg_buffer.size();
|
||
|
// This is the gravity in the IMU frame.
|
||
|
Vector3d gravity_imu =
|
||
|
sum_linear_acc / imu_msg_buffer.size();
|
||
|
|
||
|
// Initialize the initial orientation, so that the estimation
|
||
|
// is consistent with the inertial frame.
|
||
|
double gravity_norm = gravity_imu.norm();
|
||
|
IMUState::gravity = Vector3d(0.0, 0.0, -gravity_norm);
|
||
|
|
||
|
Quaterniond q0_i_w = Quaterniond::FromTwoVectors(
|
||
|
gravity_imu, -IMUState::gravity);
|
||
|
state_server.imu_state.orientation =
|
||
|
rotationToQuaternion(q0_i_w.toRotationMatrix().transpose());
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
bool MsckfVio::resetCallback(
|
||
|
std_srvs::Trigger::Request& req,
|
||
|
std_srvs::Trigger::Response& res) {
|
||
|
|
||
|
ROS_WARN("Start resetting msckf vio...");
|
||
|
// Temporarily shutdown the subscribers to prevent the
|
||
|
// state from updating.
|
||
|
feature_sub.shutdown();
|
||
|
imu_sub.shutdown();
|
||
|
|
||
|
// Reset the IMU state.
|
||
|
IMUState& imu_state = state_server.imu_state;
|
||
|
imu_state.time = 0.0;
|
||
|
imu_state.orientation = Vector4d(0.0, 0.0, 0.0, 1.0);
|
||
|
imu_state.position = Vector3d::Zero();
|
||
|
imu_state.velocity = Vector3d::Zero();
|
||
|
imu_state.gyro_bias = Vector3d::Zero();
|
||
|
imu_state.acc_bias = Vector3d::Zero();
|
||
|
imu_state.orientation_null = Vector4d(0.0, 0.0, 0.0, 1.0);
|
||
|
imu_state.position_null = Vector3d::Zero();
|
||
|
imu_state.velocity_null = Vector3d::Zero();
|
||
|
|
||
|
// Remove all existing camera states.
|
||
|
state_server.cam_states.clear();
|
||
|
|
||
|
// Reset the state covariance.
|
||
|
double gyro_bias_cov, acc_bias_cov, velocity_cov;
|
||
|
nh.param<double>("initial_covariance/velocity",
|
||
|
velocity_cov, 0.25);
|
||
|
nh.param<double>("initial_covariance/gyro_bias",
|
||
|
gyro_bias_cov, 1e-4);
|
||
|
nh.param<double>("initial_covariance/acc_bias",
|
||
|
acc_bias_cov, 1e-2);
|
||
|
|
||
|
double extrinsic_rotation_cov, extrinsic_translation_cov;
|
||
|
nh.param<double>("initial_covariance/extrinsic_rotation_cov",
|
||
|
extrinsic_rotation_cov, 3.0462e-4);
|
||
|
nh.param<double>("initial_covariance/extrinsic_translation_cov",
|
||
|
extrinsic_translation_cov, 1e-4);
|
||
|
|
||
|
state_server.state_cov = MatrixXd::Zero(21, 21);
|
||
|
for (int i = 3; i < 6; ++i)
|
||
|
state_server.state_cov(i, i) = gyro_bias_cov;
|
||
|
for (int i = 6; i < 9; ++i)
|
||
|
state_server.state_cov(i, i) = velocity_cov;
|
||
|
for (int i = 9; i < 12; ++i)
|
||
|
state_server.state_cov(i, i) = acc_bias_cov;
|
||
|
for (int i = 15; i < 18; ++i)
|
||
|
state_server.state_cov(i, i) = extrinsic_rotation_cov;
|
||
|
for (int i = 18; i < 21; ++i)
|
||
|
state_server.state_cov(i, i) = extrinsic_translation_cov;
|
||
|
|
||
|
// Clear all exsiting features in the map.
|
||
|
map_server.clear();
|
||
|
|
||
|
// Clear the IMU msg buffer.
|
||
|
imu_msg_buffer.clear();
|
||
|
|
||
|
// Reset the starting flags.
|
||
|
is_gravity_set = false;
|
||
|
is_first_img = true;
|
||
|
|
||
|
// Restart the subscribers.
|
||
|
imu_sub = nh.subscribe("imu", 100,
|
||
|
&MsckfVio::imuCallback, this);
|
||
|
feature_sub = nh.subscribe("features", 40,
|
||
|
&MsckfVio::featureCallback, this);
|
||
|
|
||
|
// TODO: When can the reset fail?
|
||
|
res.success = true;
|
||
|
ROS_WARN("Resetting msckf vio completed...");
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::featureCallback(
|
||
|
const CameraMeasurementConstPtr& msg) {
|
||
|
|
||
|
// Return if the gravity vector has not been set.
|
||
|
if (!is_gravity_set) return;
|
||
|
|
||
|
// Start the system if the first image is received.
|
||
|
// The frame where the first image is received will be
|
||
|
// the origin.
|
||
|
if (is_first_img) {
|
||
|
is_first_img = false;
|
||
|
state_server.imu_state.time = msg->header.stamp.toSec();
|
||
|
}
|
||
|
|
||
|
static double max_processing_time = 0.0;
|
||
|
static int critical_time_cntr = 0;
|
||
|
double processing_start_time = ros::Time::now().toSec();
|
||
|
|
||
|
// Propogate the IMU state.
|
||
|
// that are received before the image msg.
|
||
|
ros::Time start_time = ros::Time::now();
|
||
|
batchImuProcessing(msg->header.stamp.toSec());
|
||
|
double imu_processing_time = (
|
||
|
ros::Time::now()-start_time).toSec();
|
||
|
|
||
|
// Augment the state vector.
|
||
|
start_time = ros::Time::now();
|
||
|
stateAugmentation(msg->header.stamp.toSec());
|
||
|
double state_augmentation_time = (
|
||
|
ros::Time::now()-start_time).toSec();
|
||
|
|
||
|
// Add new observations for existing features or new
|
||
|
// features in the map server.
|
||
|
start_time = ros::Time::now();
|
||
|
addFeatureObservations(msg);
|
||
|
double add_observations_time = (
|
||
|
ros::Time::now()-start_time).toSec();
|
||
|
|
||
|
// Perform measurement update if necessary.
|
||
|
start_time = ros::Time::now();
|
||
|
removeLostFeatures();
|
||
|
double remove_lost_features_time = (
|
||
|
ros::Time::now()-start_time).toSec();
|
||
|
|
||
|
start_time = ros::Time::now();
|
||
|
pruneCamStateBuffer();
|
||
|
double prune_cam_states_time = (
|
||
|
ros::Time::now()-start_time).toSec();
|
||
|
|
||
|
// Publish the odometry.
|
||
|
start_time = ros::Time::now();
|
||
|
publish(msg->header.stamp);
|
||
|
double publish_time = (
|
||
|
ros::Time::now()-start_time).toSec();
|
||
|
|
||
|
// Reset the system if necessary.
|
||
|
onlineReset();
|
||
|
|
||
|
double processing_end_time = ros::Time::now().toSec();
|
||
|
double processing_time =
|
||
|
processing_end_time - processing_start_time;
|
||
|
if (processing_time > 1.0/frame_rate) {
|
||
|
++critical_time_cntr;
|
||
|
ROS_INFO("\033[1;31mTotal processing time %f/%d...\033[0m",
|
||
|
processing_time, critical_time_cntr);
|
||
|
//printf("IMU processing time: %f/%f\n",
|
||
|
// imu_processing_time, imu_processing_time/processing_time);
|
||
|
//printf("State augmentation time: %f/%f\n",
|
||
|
// state_augmentation_time, state_augmentation_time/processing_time);
|
||
|
//printf("Add observations time: %f/%f\n",
|
||
|
// add_observations_time, add_observations_time/processing_time);
|
||
|
printf("Remove lost features time: %f/%f\n",
|
||
|
remove_lost_features_time, remove_lost_features_time/processing_time);
|
||
|
printf("Remove camera states time: %f/%f\n",
|
||
|
prune_cam_states_time, prune_cam_states_time/processing_time);
|
||
|
//printf("Publish time: %f/%f\n",
|
||
|
// publish_time, publish_time/processing_time);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::mocapOdomCallback(
|
||
|
const nav_msgs::OdometryConstPtr& msg) {
|
||
|
static bool first_mocap_odom_msg = true;
|
||
|
|
||
|
// If this is the first mocap odometry messsage, set
|
||
|
// the initial frame.
|
||
|
if (first_mocap_odom_msg) {
|
||
|
Quaterniond orientation;
|
||
|
Vector3d translation;
|
||
|
tf::pointMsgToEigen(
|
||
|
msg->pose.pose.position, translation);
|
||
|
tf::quaternionMsgToEigen(
|
||
|
msg->pose.pose.orientation, orientation);
|
||
|
//tf::vectorMsgToEigen(
|
||
|
// msg->transform.translation, translation);
|
||
|
//tf::quaternionMsgToEigen(
|
||
|
// msg->transform.rotation, orientation);
|
||
|
mocap_initial_frame.linear() = orientation.toRotationMatrix();
|
||
|
mocap_initial_frame.translation() = translation;
|
||
|
first_mocap_odom_msg = false;
|
||
|
}
|
||
|
|
||
|
// Transform the ground truth.
|
||
|
Quaterniond orientation;
|
||
|
Vector3d translation;
|
||
|
//tf::vectorMsgToEigen(
|
||
|
// msg->transform.translation, translation);
|
||
|
//tf::quaternionMsgToEigen(
|
||
|
// msg->transform.rotation, orientation);
|
||
|
tf::pointMsgToEigen(
|
||
|
msg->pose.pose.position, translation);
|
||
|
tf::quaternionMsgToEigen(
|
||
|
msg->pose.pose.orientation, orientation);
|
||
|
|
||
|
Eigen::Isometry3d T_b_v_gt;
|
||
|
T_b_v_gt.linear() = orientation.toRotationMatrix();
|
||
|
T_b_v_gt.translation() = translation;
|
||
|
Eigen::Isometry3d T_b_w_gt = mocap_initial_frame.inverse() * T_b_v_gt;
|
||
|
|
||
|
//Eigen::Vector3d body_velocity_gt;
|
||
|
//tf::vectorMsgToEigen(msg->twist.twist.linear, body_velocity_gt);
|
||
|
//body_velocity_gt = mocap_initial_frame.linear().transpose() *
|
||
|
// body_velocity_gt;
|
||
|
|
||
|
// Ground truth tf.
|
||
|
if (publish_tf) {
|
||
|
tf::Transform T_b_w_gt_tf;
|
||
|
tf::transformEigenToTF(T_b_w_gt, T_b_w_gt_tf);
|
||
|
tf_pub.sendTransform(tf::StampedTransform(
|
||
|
T_b_w_gt_tf, msg->header.stamp, fixed_frame_id, child_frame_id+"_mocap"));
|
||
|
}
|
||
|
|
||
|
// Ground truth odometry.
|
||
|
nav_msgs::Odometry mocap_odom_msg;
|
||
|
mocap_odom_msg.header.stamp = msg->header.stamp;
|
||
|
mocap_odom_msg.header.frame_id = fixed_frame_id;
|
||
|
mocap_odom_msg.child_frame_id = child_frame_id+"_mocap";
|
||
|
|
||
|
tf::poseEigenToMsg(T_b_w_gt, mocap_odom_msg.pose.pose);
|
||
|
//tf::vectorEigenToMsg(body_velocity_gt,
|
||
|
// mocap_odom_msg.twist.twist.linear);
|
||
|
|
||
|
mocap_odom_pub.publish(mocap_odom_msg);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::batchImuProcessing(const double& time_bound) {
|
||
|
// Counter how many IMU msgs in the buffer are used.
|
||
|
int used_imu_msg_cntr = 0;
|
||
|
|
||
|
for (const auto& imu_msg : imu_msg_buffer) {
|
||
|
double imu_time = imu_msg.header.stamp.toSec();
|
||
|
if (imu_time < state_server.imu_state.time) {
|
||
|
++used_imu_msg_cntr;
|
||
|
continue;
|
||
|
}
|
||
|
if (imu_time > time_bound) break;
|
||
|
|
||
|
// Convert the msgs.
|
||
|
Vector3d m_gyro, m_acc;
|
||
|
tf::vectorMsgToEigen(imu_msg.angular_velocity, m_gyro);
|
||
|
tf::vectorMsgToEigen(imu_msg.linear_acceleration, m_acc);
|
||
|
|
||
|
// Execute process model.
|
||
|
processModel(imu_time, m_gyro, m_acc);
|
||
|
++used_imu_msg_cntr;
|
||
|
}
|
||
|
|
||
|
// Set the state ID for the new IMU state.
|
||
|
state_server.imu_state.id = IMUState::next_id++;
|
||
|
|
||
|
// Remove all used IMU msgs.
|
||
|
imu_msg_buffer.erase(imu_msg_buffer.begin(),
|
||
|
imu_msg_buffer.begin()+used_imu_msg_cntr);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::processModel(const double& time,
|
||
|
const Vector3d& m_gyro,
|
||
|
const Vector3d& m_acc) {
|
||
|
|
||
|
// Remove the bias from the measured gyro and acceleration
|
||
|
IMUState& imu_state = state_server.imu_state;
|
||
|
Vector3d gyro = m_gyro - imu_state.gyro_bias;
|
||
|
Vector3d acc = m_acc - imu_state.acc_bias;
|
||
|
double dtime = time - imu_state.time;
|
||
|
|
||
|
// Compute discrete transition and noise covariance matrix
|
||
|
Matrix<double, 21, 21> F = Matrix<double, 21, 21>::Zero();
|
||
|
Matrix<double, 21, 12> G = Matrix<double, 21, 12>::Zero();
|
||
|
|
||
|
F.block<3, 3>(0, 0) = -skewSymmetric(gyro);
|
||
|
F.block<3, 3>(0, 3) = -Matrix3d::Identity();
|
||
|
F.block<3, 3>(6, 0) = -quaternionToRotation(
|
||
|
imu_state.orientation).transpose()*skewSymmetric(acc);
|
||
|
F.block<3, 3>(6, 9) = -quaternionToRotation(
|
||
|
imu_state.orientation).transpose();
|
||
|
F.block<3, 3>(12, 6) = Matrix3d::Identity();
|
||
|
|
||
|
G.block<3, 3>(0, 0) = -Matrix3d::Identity();
|
||
|
G.block<3, 3>(3, 3) = Matrix3d::Identity();
|
||
|
G.block<3, 3>(6, 6) = -quaternionToRotation(
|
||
|
imu_state.orientation).transpose();
|
||
|
G.block<3, 3>(9, 9) = Matrix3d::Identity();
|
||
|
|
||
|
// Approximate matrix exponential to the 3rd order,
|
||
|
// which can be considered to be accurate enough assuming
|
||
|
// dtime is within 0.01s.
|
||
|
Matrix<double, 21, 21> Fdt = F * dtime;
|
||
|
Matrix<double, 21, 21> Fdt_square = Fdt * Fdt;
|
||
|
Matrix<double, 21, 21> Fdt_cube = Fdt_square * Fdt;
|
||
|
Matrix<double, 21, 21> Phi = Matrix<double, 21, 21>::Identity() +
|
||
|
Fdt + 0.5*Fdt_square + (1.0/6.0)*Fdt_cube;
|
||
|
|
||
|
// Propogate the state using 4th order Runge-Kutta
|
||
|
predictNewState(dtime, gyro, acc);
|
||
|
|
||
|
// Modify the transition matrix
|
||
|
Matrix3d R_kk_1 = quaternionToRotation(imu_state.orientation_null);
|
||
|
Phi.block<3, 3>(0, 0) =
|
||
|
quaternionToRotation(imu_state.orientation) * R_kk_1.transpose();
|
||
|
|
||
|
Vector3d u = R_kk_1 * IMUState::gravity;
|
||
|
RowVector3d s = (u.transpose()*u).inverse() * u.transpose();
|
||
|
|
||
|
Matrix3d A1 = Phi.block<3, 3>(6, 0);
|
||
|
Vector3d w1 = skewSymmetric(
|
||
|
imu_state.velocity_null-imu_state.velocity) * IMUState::gravity;
|
||
|
Phi.block<3, 3>(6, 0) = A1 - (A1*u-w1)*s;
|
||
|
|
||
|
Matrix3d A2 = Phi.block<3, 3>(12, 0);
|
||
|
Vector3d w2 = skewSymmetric(
|
||
|
dtime*imu_state.velocity_null+imu_state.position_null-
|
||
|
imu_state.position) * IMUState::gravity;
|
||
|
Phi.block<3, 3>(12, 0) = A2 - (A2*u-w2)*s;
|
||
|
|
||
|
// Propogate the state covariance matrix.
|
||
|
Matrix<double, 21, 21> Q = Phi*G*state_server.continuous_noise_cov*
|
||
|
G.transpose()*Phi.transpose()*dtime;
|
||
|
state_server.state_cov.block<21, 21>(0, 0) =
|
||
|
Phi*state_server.state_cov.block<21, 21>(0, 0)*Phi.transpose() + Q;
|
||
|
|
||
|
if (state_server.cam_states.size() > 0) {
|
||
|
state_server.state_cov.block(
|
||
|
0, 21, 21, state_server.state_cov.cols()-21) =
|
||
|
Phi * state_server.state_cov.block(
|
||
|
0, 21, 21, state_server.state_cov.cols()-21);
|
||
|
state_server.state_cov.block(
|
||
|
21, 0, state_server.state_cov.rows()-21, 21) =
|
||
|
state_server.state_cov.block(
|
||
|
21, 0, state_server.state_cov.rows()-21, 21) * Phi.transpose();
|
||
|
}
|
||
|
|
||
|
MatrixXd state_cov_fixed = (state_server.state_cov +
|
||
|
state_server.state_cov.transpose()) / 2.0;
|
||
|
state_server.state_cov = state_cov_fixed;
|
||
|
|
||
|
// Update the state correspondes to null space.
|
||
|
imu_state.orientation_null = imu_state.orientation;
|
||
|
imu_state.position_null = imu_state.position;
|
||
|
imu_state.velocity_null = imu_state.velocity;
|
||
|
|
||
|
// Update the state info
|
||
|
state_server.imu_state.time = time;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::predictNewState(const double& dt,
|
||
|
const Vector3d& gyro,
|
||
|
const Vector3d& acc) {
|
||
|
|
||
|
// TODO: Will performing the forward integration using
|
||
|
// the inverse of the quaternion give better accuracy?
|
||
|
double gyro_norm = gyro.norm();
|
||
|
Matrix4d Omega = Matrix4d::Zero();
|
||
|
Omega.block<3, 3>(0, 0) = -skewSymmetric(gyro);
|
||
|
Omega.block<3, 1>(0, 3) = gyro;
|
||
|
Omega.block<1, 3>(3, 0) = -gyro;
|
||
|
|
||
|
Vector4d& q = state_server.imu_state.orientation;
|
||
|
Vector3d& v = state_server.imu_state.velocity;
|
||
|
Vector3d& p = state_server.imu_state.position;
|
||
|
|
||
|
// Some pre-calculation
|
||
|
Vector4d dq_dt, dq_dt2;
|
||
|
if (gyro_norm > 1e-5) {
|
||
|
dq_dt = (cos(gyro_norm*dt*0.5)*Matrix4d::Identity() +
|
||
|
1/gyro_norm*sin(gyro_norm*dt*0.5)*Omega) * q;
|
||
|
dq_dt2 = (cos(gyro_norm*dt*0.25)*Matrix4d::Identity() +
|
||
|
1/gyro_norm*sin(gyro_norm*dt*0.25)*Omega) * q;
|
||
|
}
|
||
|
else {
|
||
|
dq_dt = (Matrix4d::Identity()+0.5*dt*Omega) *
|
||
|
cos(gyro_norm*dt*0.5) * q;
|
||
|
dq_dt2 = (Matrix4d::Identity()+0.25*dt*Omega) *
|
||
|
cos(gyro_norm*dt*0.25) * q;
|
||
|
}
|
||
|
Matrix3d dR_dt_transpose = quaternionToRotation(dq_dt).transpose();
|
||
|
Matrix3d dR_dt2_transpose = quaternionToRotation(dq_dt2).transpose();
|
||
|
|
||
|
// k1 = f(tn, yn)
|
||
|
Vector3d k1_v_dot = quaternionToRotation(q).transpose()*acc +
|
||
|
IMUState::gravity;
|
||
|
Vector3d k1_p_dot = v;
|
||
|
|
||
|
// k2 = f(tn+dt/2, yn+k1*dt/2)
|
||
|
Vector3d k1_v = v + k1_v_dot*dt/2;
|
||
|
Vector3d k2_v_dot = dR_dt2_transpose*acc +
|
||
|
IMUState::gravity;
|
||
|
Vector3d k2_p_dot = k1_v;
|
||
|
|
||
|
// k3 = f(tn+dt/2, yn+k2*dt/2)
|
||
|
Vector3d k2_v = v + k2_v_dot*dt/2;
|
||
|
Vector3d k3_v_dot = dR_dt2_transpose*acc +
|
||
|
IMUState::gravity;
|
||
|
Vector3d k3_p_dot = k2_v;
|
||
|
|
||
|
// k4 = f(tn+dt, yn+k3*dt)
|
||
|
Vector3d k3_v = v + k3_v_dot*dt;
|
||
|
Vector3d k4_v_dot = dR_dt_transpose*acc +
|
||
|
IMUState::gravity;
|
||
|
Vector3d k4_p_dot = k3_v;
|
||
|
|
||
|
// yn+1 = yn + dt/6*(k1+2*k2+2*k3+k4)
|
||
|
q = dq_dt;
|
||
|
quaternionNormalize(q);
|
||
|
v = v + dt/6*(k1_v_dot+2*k2_v_dot+2*k3_v_dot+k4_v_dot);
|
||
|
p = p + dt/6*(k1_p_dot+2*k2_p_dot+2*k3_p_dot+k4_p_dot);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::stateAugmentation(const double& time) {
|
||
|
|
||
|
const Matrix3d& R_i_c = state_server.imu_state.R_imu_cam0;
|
||
|
const Vector3d& t_c_i = state_server.imu_state.t_cam0_imu;
|
||
|
|
||
|
// Add a new camera state to the state server.
|
||
|
Matrix3d R_w_i = quaternionToRotation(
|
||
|
state_server.imu_state.orientation);
|
||
|
Matrix3d R_w_c = R_i_c * R_w_i;
|
||
|
Vector3d t_c_w = state_server.imu_state.position +
|
||
|
R_w_i.transpose()*t_c_i;
|
||
|
|
||
|
state_server.cam_states[state_server.imu_state.id] =
|
||
|
CAMState(state_server.imu_state.id);
|
||
|
CAMState& cam_state = state_server.cam_states[
|
||
|
state_server.imu_state.id];
|
||
|
|
||
|
cam_state.time = time;
|
||
|
cam_state.orientation = rotationToQuaternion(R_w_c);
|
||
|
cam_state.position = t_c_w;
|
||
|
|
||
|
cam_state.orientation_null = cam_state.orientation;
|
||
|
cam_state.position_null = cam_state.position;
|
||
|
|
||
|
// Update the covariance matrix of the state.
|
||
|
// To simplify computation, the matrix J below is the nontrivial block
|
||
|
// in Equation (16) in "A Multi-State Constraint Kalman Filter for Vision
|
||
|
// -aided Inertial Navigation".
|
||
|
Matrix<double, 6, 21> J = Matrix<double, 6, 21>::Zero();
|
||
|
J.block<3, 3>(0, 0) = R_i_c;
|
||
|
J.block<3, 3>(0, 15) = Matrix3d::Identity();
|
||
|
J.block<3, 3>(3, 0) = skewSymmetric(R_w_i.transpose()*t_c_i);
|
||
|
//J.block<3, 3>(3, 0) = -R_w_i.transpose()*skewSymmetric(t_c_i);
|
||
|
J.block<3, 3>(3, 12) = Matrix3d::Identity();
|
||
|
J.block<3, 3>(3, 18) = Matrix3d::Identity();
|
||
|
|
||
|
// Resize the state covariance matrix.
|
||
|
size_t old_rows = state_server.state_cov.rows();
|
||
|
size_t old_cols = state_server.state_cov.cols();
|
||
|
state_server.state_cov.conservativeResize(old_rows+6, old_cols+6);
|
||
|
|
||
|
// Rename some matrix blocks for convenience.
|
||
|
const Matrix<double, 21, 21>& P11 =
|
||
|
state_server.state_cov.block<21, 21>(0, 0);
|
||
|
const MatrixXd& P12 =
|
||
|
state_server.state_cov.block(0, 21, 21, old_cols-21);
|
||
|
|
||
|
// Fill in the augmented state covariance.
|
||
|
state_server.state_cov.block(old_rows, 0, 6, old_cols) << J*P11, J*P12;
|
||
|
state_server.state_cov.block(0, old_cols, old_rows, 6) =
|
||
|
state_server.state_cov.block(old_rows, 0, 6, old_cols).transpose();
|
||
|
state_server.state_cov.block<6, 6>(old_rows, old_cols) =
|
||
|
J * P11 * J.transpose();
|
||
|
|
||
|
// Fix the covariance to be symmetric
|
||
|
MatrixXd state_cov_fixed = (state_server.state_cov +
|
||
|
state_server.state_cov.transpose()) / 2.0;
|
||
|
state_server.state_cov = state_cov_fixed;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::addFeatureObservations(
|
||
|
const CameraMeasurementConstPtr& msg) {
|
||
|
|
||
|
StateIDType state_id = state_server.imu_state.id;
|
||
|
int curr_feature_num = map_server.size();
|
||
|
int tracked_feature_num = 0;
|
||
|
|
||
|
// Add new observations for existing features or new
|
||
|
// features in the map server.
|
||
|
for (const auto& feature : msg->features) {
|
||
|
if (map_server.find(feature.id) == map_server.end()) {
|
||
|
// This is a new feature.
|
||
|
map_server[feature.id] = Feature(feature.id);
|
||
|
map_server[feature.id].observations[state_id] =
|
||
|
Vector4d(feature.u0, feature.v0,
|
||
|
feature.u1, feature.v1);
|
||
|
} else {
|
||
|
// This is an old feature.
|
||
|
map_server[feature.id].observations[state_id] =
|
||
|
Vector4d(feature.u0, feature.v0,
|
||
|
feature.u1, feature.v1);
|
||
|
++tracked_feature_num;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
tracking_rate =
|
||
|
static_cast<double>(tracked_feature_num) /
|
||
|
static_cast<double>(curr_feature_num);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::measurementJacobian(
|
||
|
const StateIDType& cam_state_id,
|
||
|
const FeatureIDType& feature_id,
|
||
|
Matrix<double, 4, 6>& H_x, Matrix<double, 4, 3>& H_f, Vector4d& r) {
|
||
|
|
||
|
// Prepare all the required data.
|
||
|
const CAMState& cam_state = state_server.cam_states[cam_state_id];
|
||
|
const Feature& feature = map_server[feature_id];
|
||
|
|
||
|
// Cam0 pose.
|
||
|
Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
|
||
|
const Vector3d& t_c0_w = cam_state.position;
|
||
|
|
||
|
// Cam1 pose.
|
||
|
Matrix3d R_c0_c1 = CAMState::T_cam0_cam1.linear();
|
||
|
Matrix3d R_w_c1 = CAMState::T_cam0_cam1.linear() * R_w_c0;
|
||
|
Vector3d t_c1_w = t_c0_w - R_w_c1.transpose()*CAMState::T_cam0_cam1.translation();
|
||
|
|
||
|
// 3d feature position in the world frame.
|
||
|
// And its observation with the stereo cameras.
|
||
|
const Vector3d& p_w = feature.position;
|
||
|
const Vector4d& z = feature.observations.find(cam_state_id)->second;
|
||
|
|
||
|
// Convert the feature position from the world frame to
|
||
|
// the cam0 and cam1 frame.
|
||
|
Vector3d p_c0 = R_w_c0 * (p_w-t_c0_w);
|
||
|
Vector3d p_c1 = R_w_c1 * (p_w-t_c1_w);
|
||
|
|
||
|
// Compute the Jacobians.
|
||
|
Matrix<double, 4, 3> dz_dpc0 = Matrix<double, 4, 3>::Zero();
|
||
|
dz_dpc0(0, 0) = 1 / p_c0(2);
|
||
|
dz_dpc0(1, 1) = 1 / p_c0(2);
|
||
|
dz_dpc0(0, 2) = -p_c0(0) / (p_c0(2)*p_c0(2));
|
||
|
dz_dpc0(1, 2) = -p_c0(1) / (p_c0(2)*p_c0(2));
|
||
|
|
||
|
Matrix<double, 4, 3> dz_dpc1 = Matrix<double, 4, 3>::Zero();
|
||
|
dz_dpc1(2, 0) = 1 / p_c1(2);
|
||
|
dz_dpc1(3, 1) = 1 / p_c1(2);
|
||
|
dz_dpc1(2, 2) = -p_c1(0) / (p_c1(2)*p_c1(2));
|
||
|
dz_dpc1(3, 2) = -p_c1(1) / (p_c1(2)*p_c1(2));
|
||
|
|
||
|
Matrix<double, 3, 6> dpc0_dxc = Matrix<double, 3, 6>::Zero();
|
||
|
dpc0_dxc.leftCols(3) = skewSymmetric(p_c0);
|
||
|
dpc0_dxc.rightCols(3) = -R_w_c0;
|
||
|
|
||
|
Matrix<double, 3, 6> dpc1_dxc = Matrix<double, 3, 6>::Zero();
|
||
|
dpc1_dxc.leftCols(3) = R_c0_c1 * skewSymmetric(p_c0);
|
||
|
dpc1_dxc.rightCols(3) = -R_w_c1;
|
||
|
|
||
|
Matrix3d dpc0_dpg = R_w_c0;
|
||
|
Matrix3d dpc1_dpg = R_w_c1;
|
||
|
|
||
|
H_x = dz_dpc0*dpc0_dxc + dz_dpc1*dpc1_dxc;
|
||
|
H_f = dz_dpc0*dpc0_dpg + dz_dpc1*dpc1_dpg;
|
||
|
|
||
|
// Modifty the measurement Jacobian to ensure
|
||
|
// observability constrain.
|
||
|
Matrix<double, 4, 6> A = H_x;
|
||
|
Matrix<double, 6, 1> u = Matrix<double, 6, 1>::Zero();
|
||
|
u.block<3, 1>(0, 0) = quaternionToRotation(
|
||
|
cam_state.orientation_null) * IMUState::gravity;
|
||
|
u.block<3, 1>(3, 0) = skewSymmetric(
|
||
|
p_w-cam_state.position_null) * IMUState::gravity;
|
||
|
H_x = A - A*u*(u.transpose()*u).inverse()*u.transpose();
|
||
|
H_f = -H_x.block<4, 3>(0, 3);
|
||
|
|
||
|
// Compute the residual.
|
||
|
r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2),
|
||
|
p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::featureJacobian(
|
||
|
const FeatureIDType& feature_id,
|
||
|
const std::vector<StateIDType>& cam_state_ids,
|
||
|
MatrixXd& H_x, VectorXd& r) {
|
||
|
|
||
|
const auto& feature = map_server[feature_id];
|
||
|
|
||
|
// Check how many camera states in the provided camera
|
||
|
// id camera has actually seen this feature.
|
||
|
vector<StateIDType> valid_cam_state_ids(0);
|
||
|
for (const auto& cam_id : cam_state_ids) {
|
||
|
if (feature.observations.find(cam_id) ==
|
||
|
feature.observations.end()) continue;
|
||
|
|
||
|
valid_cam_state_ids.push_back(cam_id);
|
||
|
}
|
||
|
|
||
|
int jacobian_row_size = 0;
|
||
|
jacobian_row_size = 4 * valid_cam_state_ids.size();
|
||
|
|
||
|
MatrixXd H_xj = MatrixXd::Zero(jacobian_row_size,
|
||
|
21+state_server.cam_states.size()*6);
|
||
|
MatrixXd H_fj = MatrixXd::Zero(jacobian_row_size, 3);
|
||
|
VectorXd r_j = VectorXd::Zero(jacobian_row_size);
|
||
|
int stack_cntr = 0;
|
||
|
|
||
|
for (const auto& cam_id : valid_cam_state_ids) {
|
||
|
|
||
|
Matrix<double, 4, 6> H_xi = Matrix<double, 4, 6>::Zero();
|
||
|
Matrix<double, 4, 3> H_fi = Matrix<double, 4, 3>::Zero();
|
||
|
Vector4d r_i = Vector4d::Zero();
|
||
|
measurementJacobian(cam_id, feature.id, H_xi, H_fi, r_i);
|
||
|
|
||
|
auto cam_state_iter = state_server.cam_states.find(cam_id);
|
||
|
int cam_state_cntr = std::distance(
|
||
|
state_server.cam_states.begin(), cam_state_iter);
|
||
|
|
||
|
// Stack the Jacobians.
|
||
|
H_xj.block<4, 6>(stack_cntr, 21+6*cam_state_cntr) = H_xi;
|
||
|
H_fj.block<4, 3>(stack_cntr, 0) = H_fi;
|
||
|
r_j.segment<4>(stack_cntr) = r_i;
|
||
|
stack_cntr += 4;
|
||
|
}
|
||
|
|
||
|
// Project the residual and Jacobians onto the nullspace
|
||
|
// of H_fj.
|
||
|
JacobiSVD<MatrixXd> svd_helper(H_fj, ComputeFullU | ComputeThinV);
|
||
|
MatrixXd A = svd_helper.matrixU().rightCols(
|
||
|
jacobian_row_size - 3);
|
||
|
|
||
|
H_x = A.transpose() * H_xj;
|
||
|
r = A.transpose() * r_j;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::measurementUpdate(
|
||
|
const MatrixXd& H, const VectorXd& r) {
|
||
|
|
||
|
if (H.rows() == 0 || r.rows() == 0) return;
|
||
|
|
||
|
// Decompose the final Jacobian matrix to reduce computational
|
||
|
// complexity as in Equation (28), (29).
|
||
|
MatrixXd H_thin;
|
||
|
VectorXd r_thin;
|
||
|
|
||
|
if (H.rows() > H.cols()) {
|
||
|
// Convert H to a sparse matrix.
|
||
|
SparseMatrix<double> H_sparse = H.sparseView();
|
||
|
|
||
|
// Perform QR decompostion on H_sparse.
|
||
|
SPQR<SparseMatrix<double> > spqr_helper;
|
||
|
spqr_helper.setSPQROrdering(SPQR_ORDERING_NATURAL);
|
||
|
spqr_helper.compute(H_sparse);
|
||
|
|
||
|
MatrixXd H_temp;
|
||
|
VectorXd r_temp;
|
||
|
(spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);
|
||
|
(spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);
|
||
|
|
||
|
H_thin = H_temp.topRows(21+state_server.cam_states.size()*6);
|
||
|
r_thin = r_temp.head(21+state_server.cam_states.size()*6);
|
||
|
|
||
|
//HouseholderQR<MatrixXd> qr_helper(H);
|
||
|
//MatrixXd Q = qr_helper.householderQ();
|
||
|
//MatrixXd Q1 = Q.leftCols(21+state_server.cam_states.size()*6);
|
||
|
|
||
|
//H_thin = Q1.transpose() * H;
|
||
|
//r_thin = Q1.transpose() * r;
|
||
|
} else {
|
||
|
H_thin = H;
|
||
|
r_thin = r;
|
||
|
}
|
||
|
|
||
|
// Compute the Kalman gain.
|
||
|
const MatrixXd& P = state_server.state_cov;
|
||
|
MatrixXd S = H_thin*P*H_thin.transpose() +
|
||
|
Feature::observation_noise*MatrixXd::Identity(
|
||
|
H_thin.rows(), H_thin.rows());
|
||
|
//MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H_thin*P);
|
||
|
MatrixXd K_transpose = S.ldlt().solve(H_thin*P);
|
||
|
MatrixXd K = K_transpose.transpose();
|
||
|
|
||
|
// Compute the error of the state.
|
||
|
VectorXd delta_x = K * r_thin;
|
||
|
|
||
|
// Update the IMU state.
|
||
|
const VectorXd& delta_x_imu = delta_x.head<21>();
|
||
|
|
||
|
if (//delta_x_imu.segment<3>(0).norm() > 0.15 ||
|
||
|
//delta_x_imu.segment<3>(3).norm() > 0.15 ||
|
||
|
delta_x_imu.segment<3>(6).norm() > 0.5 ||
|
||
|
//delta_x_imu.segment<3>(9).norm() > 0.5 ||
|
||
|
delta_x_imu.segment<3>(12).norm() > 1.0) {
|
||
|
printf("delta velocity: %f\n", delta_x_imu.segment<3>(6).norm());
|
||
|
printf("delta position: %f\n", delta_x_imu.segment<3>(12).norm());
|
||
|
ROS_WARN("Update change is too large.");
|
||
|
//return;
|
||
|
}
|
||
|
|
||
|
const Vector4d dq_imu =
|
||
|
smallAngleQuaternion(delta_x_imu.head<3>());
|
||
|
state_server.imu_state.orientation = quaternionMultiplication(
|
||
|
dq_imu, state_server.imu_state.orientation);
|
||
|
state_server.imu_state.gyro_bias += delta_x_imu.segment<3>(3);
|
||
|
state_server.imu_state.velocity += delta_x_imu.segment<3>(6);
|
||
|
state_server.imu_state.acc_bias += delta_x_imu.segment<3>(9);
|
||
|
state_server.imu_state.position += delta_x_imu.segment<3>(12);
|
||
|
|
||
|
const Vector4d dq_extrinsic =
|
||
|
smallAngleQuaternion(delta_x_imu.segment<3>(15));
|
||
|
state_server.imu_state.R_imu_cam0 = quaternionToRotation(
|
||
|
dq_extrinsic) * state_server.imu_state.R_imu_cam0;
|
||
|
state_server.imu_state.t_cam0_imu += delta_x_imu.segment<3>(18);
|
||
|
|
||
|
// Update the camera states.
|
||
|
auto cam_state_iter = state_server.cam_states.begin();
|
||
|
for (int i = 0; i < state_server.cam_states.size();
|
||
|
++i, ++cam_state_iter) {
|
||
|
const VectorXd& delta_x_cam = delta_x.segment<6>(21+i*6);
|
||
|
const Vector4d dq_cam = smallAngleQuaternion(delta_x_cam.head<3>());
|
||
|
cam_state_iter->second.orientation = quaternionMultiplication(
|
||
|
dq_cam, cam_state_iter->second.orientation);
|
||
|
cam_state_iter->second.position += delta_x_cam.tail<3>();
|
||
|
}
|
||
|
|
||
|
// Update state covariance.
|
||
|
MatrixXd I_KH = MatrixXd::Identity(K.rows(), H_thin.cols()) - K*H_thin;
|
||
|
//state_server.state_cov = I_KH*state_server.state_cov*I_KH.transpose() +
|
||
|
// K*K.transpose()*Feature::observation_noise;
|
||
|
state_server.state_cov = I_KH*state_server.state_cov;
|
||
|
|
||
|
// Fix the covariance to be symmetric
|
||
|
MatrixXd state_cov_fixed = (state_server.state_cov +
|
||
|
state_server.state_cov.transpose()) / 2.0;
|
||
|
state_server.state_cov = state_cov_fixed;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
bool MsckfVio::gatingTest(
|
||
|
const MatrixXd& H, const VectorXd& r, const int& dof) {
|
||
|
|
||
|
MatrixXd P1 = H * state_server.state_cov * H.transpose();
|
||
|
MatrixXd P2 = Feature::observation_noise *
|
||
|
MatrixXd::Identity(H.rows(), H.rows());
|
||
|
double gamma = r.transpose() * (P1+P2).ldlt().solve(r);
|
||
|
|
||
|
//cout << dof << " " << gamma << " " <<
|
||
|
// chi_squared_test_table[dof] << " ";
|
||
|
|
||
|
if (gamma < chi_squared_test_table[dof]) {
|
||
|
//cout << "passed" << endl;
|
||
|
return true;
|
||
|
} else {
|
||
|
//cout << "failed" << endl;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void MsckfVio::removeLostFeatures() {
|
||
|
|
||
|
// Remove the features that lost track.
|
||
|
// BTW, find the size the final Jacobian matrix and residual vector.
|
||
|
int jacobian_row_size = 0;
|
||
|
vector<FeatureIDType> invalid_feature_ids(0);
|
||
|
vector<FeatureIDType> processed_feature_ids(0);
|
||
|
|
||
|
for (auto iter = map_server.begin();
|
||
|
iter != map_server.end(); ++iter) {
|
||
|
// Rename the feature to be checked.
|
||
|
auto& feature = iter->second;
|
||
|
|
||
|
// Pass the features that are still being tracked.
|
||
|
if (feature.observations.find(state_server.imu_state.id) !=
|
||
|
feature.observations.end()) continue;
|
||
|
if (feature.observations.size() < 3) {
|
||
|
invalid_feature_ids.push_back(feature.id);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Check if the feature can be initialized if it
|
||
|
// has not been.
|
||
|
if (!feature.is_initialized) {
|
||
|
if (!feature.checkMotion(state_server.cam_states)) {
|
||
|
invalid_feature_ids.push_back(feature.id);
|
||
|
continue;
|
||
|
} else {
|
||
|
if(!feature.initializePosition(state_server.cam_states)) {
|
||
|
invalid_feature_ids.push_back(feature.id);
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
jacobian_row_size += 4*feature.observations.size() - 3;
|
||
|
processed_feature_ids.push_back(feature.id);
|
||
|
}
|
||
|
|
||
|
//cout << "invalid/processed feature #: " <<
|
||
|
// invalid_feature_ids.size() << "/" <<
|
||
|
// processed_feature_ids.size() << endl;
|
||
|
//cout << "jacobian row #: " << jacobian_row_size << endl;
|
||
|
|
||
|
// Remove the features that do not have enough measurements.
|
||
|
for (const auto& feature_id : invalid_feature_ids)
|
||
|
map_server.erase(feature_id);
|
||
|
|
||
|
// Return if there is no lost feature to be processed.
|
||
|
if (processed_feature_ids.size() == 0) return;
|
||
|
|
||
|
MatrixXd H_x = MatrixXd::Zero(jacobian_row_size,
|
||
|
21+6*state_server.cam_states.size());
|
||
|
VectorXd r = VectorXd::Zero(jacobian_row_size);
|
||
|
int stack_cntr = 0;
|
||
|
|
||
|
// Process the features which lose track.
|
||
|
for (const auto& feature_id : processed_feature_ids) {
|
||
|
auto& feature = map_server[feature_id];
|
||
|
|
||
|
vector<StateIDType> cam_state_ids(0);
|
||
|
for (const auto& measurement : feature.observations)
|
||
|
cam_state_ids.push_back(measurement.first);
|
||
|
|
||
|
MatrixXd H_xj;
|
||
|
VectorXd r_j;
|
||
|
featureJacobian(feature.id, cam_state_ids, H_xj, r_j);
|
||
|
|
||
|
if (gatingTest(H_xj, r_j, cam_state_ids.size()-1)) {
|
||
|
H_x.block(stack_cntr, 0, H_xj.rows(), H_xj.cols()) = H_xj;
|
||
|
r.segment(stack_cntr, r_j.rows()) = r_j;
|
||
|
stack_cntr += H_xj.rows();
|
||
|
}
|
||
|
|
||
|
// Put an upper bound on the row size of measurement Jacobian,
|
||
|
// which helps guarantee the executation time.
|
||
|
if (stack_cntr > 1500) break;
|
||
|
}
|
||
|
|
||
|
H_x.conservativeResize(stack_cntr, H_x.cols());
|
||
|
r.conservativeResize(stack_cntr);
|
||
|
|
||
|
// Perform the measurement update step.
|
||
|
measurementUpdate(H_x, r);
|
||
|
|
||
|
// Remove all processed features from the map.
|
||
|
for (const auto& feature_id : processed_feature_ids)
|
||
|
map_server.erase(feature_id);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::findRedundantCamStates(
|
||
|
vector<StateIDType>& rm_cam_state_ids) {
|
||
|
|
||
|
// Move the iterator to the key position.
|
||
|
auto key_cam_state_iter = state_server.cam_states.end();
|
||
|
for (int i = 0; i < 4; ++i)
|
||
|
--key_cam_state_iter;
|
||
|
auto cam_state_iter = key_cam_state_iter;
|
||
|
++cam_state_iter;
|
||
|
auto first_cam_state_iter = state_server.cam_states.begin();
|
||
|
|
||
|
// Pose of the key camera state.
|
||
|
const Vector3d key_position =
|
||
|
key_cam_state_iter->second.position;
|
||
|
const Matrix3d key_rotation = quaternionToRotation(
|
||
|
key_cam_state_iter->second.orientation);
|
||
|
|
||
|
// Mark the camera states to be removed based on the
|
||
|
// motion between states.
|
||
|
for (int i = 0; i < 2; ++i) {
|
||
|
const Vector3d position =
|
||
|
cam_state_iter->second.position;
|
||
|
const Matrix3d rotation = quaternionToRotation(
|
||
|
cam_state_iter->second.orientation);
|
||
|
|
||
|
double distance = (position-key_position).norm();
|
||
|
double angle = AngleAxisd(
|
||
|
rotation*key_rotation.transpose()).angle();
|
||
|
|
||
|
//if (angle < 0.1745 && distance < 0.2 && tracking_rate > 0.5) {
|
||
|
if (angle < 0.2618 && distance < 0.4 && tracking_rate > 0.5) {
|
||
|
rm_cam_state_ids.push_back(cam_state_iter->first);
|
||
|
++cam_state_iter;
|
||
|
} else {
|
||
|
rm_cam_state_ids.push_back(first_cam_state_iter->first);
|
||
|
++first_cam_state_iter;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Sort the elements in the output vector.
|
||
|
sort(rm_cam_state_ids.begin(), rm_cam_state_ids.end());
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::pruneCamStateBuffer() {
|
||
|
|
||
|
if (state_server.cam_states.size() < max_cam_state_size)
|
||
|
return;
|
||
|
|
||
|
// Find two camera states to be removed.
|
||
|
vector<StateIDType> rm_cam_state_ids(0);
|
||
|
findRedundantCamStates(rm_cam_state_ids);
|
||
|
|
||
|
// Find the size of the Jacobian matrix.
|
||
|
int jacobian_row_size = 0;
|
||
|
for (auto& item : map_server) {
|
||
|
auto& feature = item.second;
|
||
|
// Check how many camera states to be removed are associated
|
||
|
// with this feature.
|
||
|
vector<StateIDType> involved_cam_state_ids(0);
|
||
|
for (const auto& cam_id : rm_cam_state_ids) {
|
||
|
if (feature.observations.find(cam_id) !=
|
||
|
feature.observations.end())
|
||
|
involved_cam_state_ids.push_back(cam_id);
|
||
|
}
|
||
|
|
||
|
if (involved_cam_state_ids.size() == 0) continue;
|
||
|
if (involved_cam_state_ids.size() == 1) {
|
||
|
feature.observations.erase(involved_cam_state_ids[0]);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!feature.is_initialized) {
|
||
|
// Check if the feature can be initialize.
|
||
|
if (!feature.checkMotion(state_server.cam_states)) {
|
||
|
// If the feature cannot be initialized, just remove
|
||
|
// the observations associated with the camera states
|
||
|
// to be removed.
|
||
|
for (const auto& cam_id : involved_cam_state_ids)
|
||
|
feature.observations.erase(cam_id);
|
||
|
continue;
|
||
|
} else {
|
||
|
if(!feature.initializePosition(state_server.cam_states)) {
|
||
|
for (const auto& cam_id : involved_cam_state_ids)
|
||
|
feature.observations.erase(cam_id);
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
jacobian_row_size += 4*involved_cam_state_ids.size() - 3;
|
||
|
}
|
||
|
|
||
|
//cout << "jacobian row #: " << jacobian_row_size << endl;
|
||
|
|
||
|
// Compute the Jacobian and residual.
|
||
|
MatrixXd H_x = MatrixXd::Zero(jacobian_row_size,
|
||
|
21+6*state_server.cam_states.size());
|
||
|
VectorXd r = VectorXd::Zero(jacobian_row_size);
|
||
|
int stack_cntr = 0;
|
||
|
|
||
|
for (auto& item : map_server) {
|
||
|
auto& feature = item.second;
|
||
|
// Check how many camera states to be removed are associated
|
||
|
// with this feature.
|
||
|
vector<StateIDType> involved_cam_state_ids(0);
|
||
|
for (const auto& cam_id : rm_cam_state_ids) {
|
||
|
if (feature.observations.find(cam_id) !=
|
||
|
feature.observations.end())
|
||
|
involved_cam_state_ids.push_back(cam_id);
|
||
|
}
|
||
|
|
||
|
if (involved_cam_state_ids.size() == 0) continue;
|
||
|
|
||
|
MatrixXd H_xj;
|
||
|
VectorXd r_j;
|
||
|
featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
|
||
|
|
||
|
if (gatingTest(H_xj, r_j, involved_cam_state_ids.size())) {
|
||
|
H_x.block(stack_cntr, 0, H_xj.rows(), H_xj.cols()) = H_xj;
|
||
|
r.segment(stack_cntr, r_j.rows()) = r_j;
|
||
|
stack_cntr += H_xj.rows();
|
||
|
}
|
||
|
|
||
|
for (const auto& cam_id : involved_cam_state_ids)
|
||
|
feature.observations.erase(cam_id);
|
||
|
}
|
||
|
|
||
|
H_x.conservativeResize(stack_cntr, H_x.cols());
|
||
|
r.conservativeResize(stack_cntr);
|
||
|
|
||
|
// Perform measurement update.
|
||
|
measurementUpdate(H_x, r);
|
||
|
|
||
|
for (const auto& cam_id : rm_cam_state_ids) {
|
||
|
int cam_sequence = std::distance(state_server.cam_states.begin(),
|
||
|
state_server.cam_states.find(cam_id));
|
||
|
int cam_state_start = 21 + 6*cam_sequence;
|
||
|
int cam_state_end = cam_state_start + 6;
|
||
|
|
||
|
// Remove the corresponding rows and columns in the state
|
||
|
// covariance matrix.
|
||
|
if (cam_state_end < state_server.state_cov.rows()) {
|
||
|
state_server.state_cov.block(cam_state_start, 0,
|
||
|
state_server.state_cov.rows()-cam_state_end,
|
||
|
state_server.state_cov.cols()) =
|
||
|
state_server.state_cov.block(cam_state_end, 0,
|
||
|
state_server.state_cov.rows()-cam_state_end,
|
||
|
state_server.state_cov.cols());
|
||
|
|
||
|
state_server.state_cov.block(0, cam_state_start,
|
||
|
state_server.state_cov.rows(),
|
||
|
state_server.state_cov.cols()-cam_state_end) =
|
||
|
state_server.state_cov.block(0, cam_state_end,
|
||
|
state_server.state_cov.rows(),
|
||
|
state_server.state_cov.cols()-cam_state_end);
|
||
|
|
||
|
state_server.state_cov.conservativeResize(
|
||
|
state_server.state_cov.rows()-6, state_server.state_cov.cols()-6);
|
||
|
} else {
|
||
|
state_server.state_cov.conservativeResize(
|
||
|
state_server.state_cov.rows()-6, state_server.state_cov.cols()-6);
|
||
|
}
|
||
|
|
||
|
// Remove this camera state in the state vector.
|
||
|
state_server.cam_states.erase(cam_id);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::onlineReset() {
|
||
|
|
||
|
// Never perform online reset if position std threshold
|
||
|
// is non-positive.
|
||
|
if (position_std_threshold <= 0) return;
|
||
|
static long long int online_reset_counter = 0;
|
||
|
|
||
|
// Check the uncertainty of positions to determine if
|
||
|
// the system can be reset.
|
||
|
double position_x_std = std::sqrt(state_server.state_cov(12, 12));
|
||
|
double position_y_std = std::sqrt(state_server.state_cov(13, 13));
|
||
|
double position_z_std = std::sqrt(state_server.state_cov(14, 14));
|
||
|
|
||
|
if (position_x_std < position_std_threshold &&
|
||
|
position_y_std < position_std_threshold &&
|
||
|
position_z_std < position_std_threshold) return;
|
||
|
|
||
|
ROS_WARN("Start %lld online reset procedure...",
|
||
|
++online_reset_counter);
|
||
|
ROS_INFO("Stardard deviation in xyz: %f, %f, %f",
|
||
|
position_x_std, position_y_std, position_z_std);
|
||
|
|
||
|
// Remove all existing camera states.
|
||
|
state_server.cam_states.clear();
|
||
|
|
||
|
// Clear all exsiting features in the map.
|
||
|
map_server.clear();
|
||
|
|
||
|
// Reset the state covariance.
|
||
|
double gyro_bias_cov, acc_bias_cov, velocity_cov;
|
||
|
nh.param<double>("initial_covariance/velocity",
|
||
|
velocity_cov, 0.25);
|
||
|
nh.param<double>("initial_covariance/gyro_bias",
|
||
|
gyro_bias_cov, 1e-4);
|
||
|
nh.param<double>("initial_covariance/acc_bias",
|
||
|
acc_bias_cov, 1e-2);
|
||
|
|
||
|
double extrinsic_rotation_cov, extrinsic_translation_cov;
|
||
|
nh.param<double>("initial_covariance/extrinsic_rotation_cov",
|
||
|
extrinsic_rotation_cov, 3.0462e-4);
|
||
|
nh.param<double>("initial_covariance/extrinsic_translation_cov",
|
||
|
extrinsic_translation_cov, 1e-4);
|
||
|
|
||
|
state_server.state_cov = MatrixXd::Zero(21, 21);
|
||
|
for (int i = 3; i < 6; ++i)
|
||
|
state_server.state_cov(i, i) = gyro_bias_cov;
|
||
|
for (int i = 6; i < 9; ++i)
|
||
|
state_server.state_cov(i, i) = velocity_cov;
|
||
|
for (int i = 9; i < 12; ++i)
|
||
|
state_server.state_cov(i, i) = acc_bias_cov;
|
||
|
for (int i = 15; i < 18; ++i)
|
||
|
state_server.state_cov(i, i) = extrinsic_rotation_cov;
|
||
|
for (int i = 18; i < 21; ++i)
|
||
|
state_server.state_cov(i, i) = extrinsic_translation_cov;
|
||
|
|
||
|
ROS_WARN("%lld online reset complete...", online_reset_counter);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void MsckfVio::publish(const ros::Time& time) {
|
||
|
|
||
|
// Convert the IMU frame to the body frame.
|
||
|
const IMUState& imu_state = state_server.imu_state;
|
||
|
Eigen::Isometry3d T_i_w = Eigen::Isometry3d::Identity();
|
||
|
T_i_w.linear() = quaternionToRotation(
|
||
|
imu_state.orientation).transpose();
|
||
|
T_i_w.translation() = imu_state.position;
|
||
|
|
||
|
Eigen::Isometry3d T_b_w = IMUState::T_imu_body * T_i_w *
|
||
|
IMUState::T_imu_body.inverse();
|
||
|
Eigen::Vector3d body_velocity =
|
||
|
IMUState::T_imu_body.linear() * imu_state.velocity;
|
||
|
|
||
|
// Publish tf
|
||
|
if (publish_tf) {
|
||
|
tf::Transform T_b_w_tf;
|
||
|
tf::transformEigenToTF(T_b_w, T_b_w_tf);
|
||
|
tf_pub.sendTransform(tf::StampedTransform(
|
||
|
T_b_w_tf, time, fixed_frame_id, child_frame_id));
|
||
|
}
|
||
|
|
||
|
// Publish the odometry
|
||
|
nav_msgs::Odometry odom_msg;
|
||
|
odom_msg.header.stamp = time;
|
||
|
odom_msg.header.frame_id = fixed_frame_id;
|
||
|
odom_msg.child_frame_id = child_frame_id;
|
||
|
|
||
|
tf::poseEigenToMsg(T_b_w, odom_msg.pose.pose);
|
||
|
tf::vectorEigenToMsg(body_velocity, odom_msg.twist.twist.linear);
|
||
|
|
||
|
// Convert the covariance.
|
||
|
Matrix3d P_oo = state_server.state_cov.block<3, 3>(0, 0);
|
||
|
Matrix3d P_op = state_server.state_cov.block<3, 3>(0, 12);
|
||
|
Matrix3d P_po = state_server.state_cov.block<3, 3>(12, 0);
|
||
|
Matrix3d P_pp = state_server.state_cov.block<3, 3>(12, 12);
|
||
|
Matrix<double, 6, 6> P_imu_pose = Matrix<double, 6, 6>::Zero();
|
||
|
P_imu_pose << P_pp, P_po, P_op, P_oo;
|
||
|
|
||
|
Matrix<double, 6, 6> H_pose = Matrix<double, 6, 6>::Zero();
|
||
|
H_pose.block<3, 3>(0, 0) = IMUState::T_imu_body.linear();
|
||
|
H_pose.block<3, 3>(3, 3) = IMUState::T_imu_body.linear();
|
||
|
Matrix<double, 6, 6> P_body_pose = H_pose *
|
||
|
P_imu_pose * H_pose.transpose();
|
||
|
|
||
|
for (int i = 0; i < 6; ++i)
|
||
|
for (int j = 0; j < 6; ++j)
|
||
|
odom_msg.pose.covariance[6*i+j] = P_body_pose(i, j);
|
||
|
|
||
|
// Construct the covariance for the velocity.
|
||
|
Matrix3d P_imu_vel = state_server.state_cov.block<3, 3>(6, 6);
|
||
|
Matrix3d H_vel = IMUState::T_imu_body.linear();
|
||
|
Matrix3d P_body_vel = H_vel * P_imu_vel * H_vel.transpose();
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
for (int j = 0; j < 3; ++j)
|
||
|
odom_msg.twist.covariance[i*6+j] = P_body_vel(i, j);
|
||
|
|
||
|
odom_pub.publish(odom_msg);
|
||
|
|
||
|
// Publish the 3D positions of the features that
|
||
|
// has been initialized.
|
||
|
pcl::PointCloud<pcl::PointXYZ>::Ptr feature_msg_ptr(
|
||
|
new pcl::PointCloud<pcl::PointXYZ>());
|
||
|
feature_msg_ptr->header.frame_id = fixed_frame_id;
|
||
|
feature_msg_ptr->height = 1;
|
||
|
for (const auto& item : map_server) {
|
||
|
const auto& feature = item.second;
|
||
|
if (feature.is_initialized) {
|
||
|
Vector3d feature_position =
|
||
|
IMUState::T_imu_body.linear() * feature.position;
|
||
|
feature_msg_ptr->points.push_back(pcl::PointXYZ(
|
||
|
feature_position(0), feature_position(1), feature_position(2)));
|
||
|
}
|
||
|
}
|
||
|
feature_msg_ptr->width = feature_msg_ptr->points.size();
|
||
|
|
||
|
feature_pub.publish(feature_msg_ptr);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
} // namespace msckf_vio
|
||
|
|