fixed minor error when not enough samples, edited feature ammount and patch size to make irradiance msckf more stable

This commit is contained in:
Raphael Maenle 2019-07-09 11:24:25 +02:00
parent a7c296ca3d
commit 1380ec426f
6 changed files with 79 additions and 77 deletions

View File

@ -7,7 +7,7 @@ cam0:
camera_model: pinhole
distortion_coeffs: [0.0034823894022493434, 0.0007150348452162257, -0.0020532361418706202,
0.00020293673591811182]
distortion_model: pre-equidistant
distortion_model: equidistant
intrinsics: [190.97847715128717, 190.9733070521226, 254.93170605935475, 256.8974428996504]
resolution: [512, 512]
rostopic: /cam0/image_raw
@ -25,7 +25,7 @@ cam1:
camera_model: pinhole
distortion_coeffs: [0.0034003170790442797, 0.001766278153469831, -0.00266312569781606,
0.0003299517423931039]
distortion_model: pre-equidistant
distortion_model: equidistant
intrinsics: [190.44236969414825, 190.4344384721956, 252.59949716835982, 254.91723064636983]
resolution: [512, 512]
rostopic: /cam1/image_raw

View File

@ -208,7 +208,7 @@ void Rhocost(const Eigen::Isometry3d& T_c0_ci,
bool estimate_FrameIrradiance(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
CameraCalibration& cam,
std::vector<double>& anchorPatch_estimate,
IlluminationParameter& estimatedIllumination) const;
@ -549,7 +549,7 @@ return delta;
bool Feature::estimate_FrameIrradiance(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
CameraCalibration& cam,
std::vector<double>& anchorPatch_estimate,
IlluminationParameter& estimated_illumination) const
{
@ -558,11 +558,11 @@ bool Feature::estimate_FrameIrradiance(
// muliply by a and add b of this frame
auto anchor = observations.begin();
if(cam0.moving_window.find(anchor->first) == cam0.moving_window.end())
if(cam.moving_window.find(anchor->first) == cam.moving_window.end())
return false;
double anchorExposureTime_ms = cam0.moving_window.find(anchor->first)->second.exposureTime_ms;
double frameExposureTime_ms = cam0.moving_window.find(cam_state_id)->second.exposureTime_ms;
double anchorExposureTime_ms = cam.moving_window.find(anchor->first)->second.exposureTime_ms;
double frameExposureTime_ms = cam.moving_window.find(cam_state_id)->second.exposureTime_ms;
double a_A = anchorExposureTime_ms;

View File

@ -14,8 +14,8 @@
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/>
<param name="grid_col" value="4"/>
<param name="grid_min_feature_num" value="3"/>
<param name="grid_max_feature_num" value="4"/>
<param name="grid_min_feature_num" value="5"/>
<param name="grid_max_feature_num" value="10"/>
<param name="pyramid_levels" value="3"/>
<param name="patch_size" value="15"/>
<param name="fast_threshold" value="10"/>

View File

@ -18,7 +18,7 @@
output="screen">
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
<param name="FILTER" value="1"/>
<param name="FILTER" value="0"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>

View File

@ -25,7 +25,7 @@
<param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="3"/>
<param name="patch_size_n" value="5"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
@ -33,7 +33,7 @@
<param name="frame_rate" value="20"/>
<param name="fixed_frame_id" value="$(arg fixed_frame_id)"/>
<param name="child_frame_id" value="odom"/>
<param name="max_cam_state_size" value="10"/>
<param name="max_cam_state_size" value="20"/>
<param name="position_std_threshold" value="8.0"/>
<param name="rotation_threshold" value="0.2618"/>

View File

@ -277,9 +277,9 @@ bool MsckfVio::createRosIO() {
truth_sub = nh.subscribe("ground_truth", 100,
&MsckfVio::truthCallback, this);
cam0_img_sub.subscribe(nh, "cam0_image", 10);
cam1_img_sub.subscribe(nh, "cam1_image", 10);
feature_sub.subscribe(nh, "features", 10);
cam0_img_sub.subscribe(nh, "cam0_image", 100);
cam1_img_sub.subscribe(nh, "cam1_image", 100);
feature_sub.subscribe(nh, "features", 100);
image_sub.connectInput(cam0_img_sub, cam1_img_sub, feature_sub);
image_sub.registerCallback(&MsckfVio::imageCallback, this);
@ -312,7 +312,7 @@ bool MsckfVio::initialize() {
for (int i = 1; i < 1000; ++i) {
boost::math::chi_squared chi_squared_dist(i);
chi_squared_test_table[i] =
boost::math::quantile(chi_squared_dist, 0.4);
boost::math::quantile(chi_squared_dist, 0.05);
}
if (!createRosIO()) return false;
@ -703,7 +703,7 @@ bool MsckfVio::resetCallback(
is_first_img = true;
// Restart the subscribers.
imu_sub = nh.subscribe("imu", 100,
imu_sub = nh.subscribe("imu", 1000,
&MsckfVio::imuCallback, this);
truth_sub = nh.subscribe("ground_truth", 100,
@ -1563,25 +1563,28 @@ bool MsckfVio::PhotometricPatchPointResidual(
const Feature& feature,
VectorXd& r)
{
VectorXd r_photo = VectorXd::Zero(2*N*N);
int count = 0;
const CAMState& cam_state = state_server.cam_states[cam_state_id];
//estimate photometric measurement
std::vector<double> estimate_irradiance;
std::vector<double> estimate_photo_z;
IlluminationParameter estimated_illumination;
std::vector<double> estimate_photo_z_c0, estimate_photo_z_c1;
std::vector<double> photo_z_c0, photo_z_c1;
// estimate irradiance based on anchor frame
/*
IlluminationParameter estimated_illumination;
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
for (auto& estimate_irradiance_j : estimate_irradiance)
estimate_photo_z.push_back (estimate_irradiance_j);// *
estimate_photo_z_c0.push_back (estimate_irradiance_j);// *
//estimated_illumination.frame_gain * estimated_illumination.feature_gain +
//estimated_illumination.frame_bias + estimated_illumination.feature_bias);
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam1, estimate_irradiance, estimated_illumination);
for (auto& estimate_irradiance_j : estimate_irradiance)
estimate_photo_z_c1.push_back (estimate_irradiance_j);// *
//estimated_illumination.frame_gain * estimated_illumination.feature_gain +
//estimated_illumination.frame_bias + estimated_illumination.feature_bias);
*/
// irradiance measurement around feature point in c0 and c1
std::vector<double> true_irradiance_c0, true_irradiance_c1;
@ -1615,9 +1618,11 @@ bool MsckfVio::PhotometricPatchPointResidual(
// add observation
photo_z_c0.push_back(feature.PixelIrradiance(p_in_c0, current_image_c0));
photo_z_c1.push_back(feature.PixelIrradiance(p_in_c1, current_image_c1));
// calculate photom. residual acc. to paper
// r_photo(count) = photo_z[count] - estimate_photo_z[count];
//r_photo(count*2) = photo_z_c0[count] - estimate_photo_z_c0[count];
//r_photo(count*2+1) = photo_z_c1[count] - estimate_photo_z_c1[count];
// calculate photom. residual alternating between frames
r_photo(count*2) = true_irradiance_c0[count] - photo_z_c0[count];
r_photo(count*2+1) = true_irradiance_c1[count] - photo_z_c1[count];
@ -1747,13 +1752,12 @@ bool MsckfVio::PhotometricMeasurementJacobian(
const FeatureIDType& feature_id,
MatrixXd& H_x, MatrixXd& H_y, VectorXd& r)
{
// Prepare all the required data.
const CAMState& cam_state = state_server.cam_states[cam_state_id];
const Feature& feature = map_server[feature_id];
//photometric observation
VectorXd r_photo = VectorXd::Zero(N*N);
VectorXd r_photo;
// one line of the NxN Jacobians
Eigen::Matrix<double, 2, 1> H_rhoj;
@ -1771,7 +1775,6 @@ bool MsckfVio::PhotometricMeasurementJacobian(
if (not PhotometricPatchPointResidual(cam_state_id, feature, r_photo))
return false;
//cout << "r\n" << r_photo << endl;
// calculate jacobian for patch
int count = 0;
@ -1796,13 +1799,13 @@ bool MsckfVio::PhotometricMeasurementJacobian(
count++;
}
cout << "valid: " << valid_count << "/" << feature.anchorPatch_3d.size() << endl;
//Eigen::Matrix<double, 2, 1> h_photo = (dI_dh.transpose() * dI_dh).inverse() * dI_dh.transpose() * r_photo;
//cout << "h photo: \n" << h_photo << endl;
// cout << "valid: " << valid_count << "/" << feature.anchorPatch_3d.size() << endl;
// Eigen::Matrix<double, 2, 1> h_photo = (dI_dh.transpose() * dI_dh).inverse() * dI_dh.transpose() * r_photo;
// cout << "h photo: \n" << h_photo << endl;
// construct the jacobian structure needed for nullspacing
MatrixXd H_xl = MatrixXd::Zero(2*N*N, 21+state_server.cam_states.size()*7);
MatrixXd H_yl = MatrixXd::Zero(2*N*N, 1);
MatrixXd H_xl;
MatrixXd H_yl;
ConstructJacobians(H_rho, H_pl, H_pA, feature, cam_state_id, H_xl, H_yl);
@ -1844,6 +1847,9 @@ bool MsckfVio::ConstructJacobians(Eigen::MatrixXd& H_rho,
Eigen::MatrixXd& H_xl,
Eigen::MatrixXd& H_yl)
{
H_xl = MatrixXd::Zero(2*N*N, 21+state_server.cam_states.size()*7);
H_yl = MatrixXd::Zero(2*N*N, 1);
// get position of anchor in cam states
auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
@ -1867,9 +1873,9 @@ bool MsckfVio::ConstructJacobians(Eigen::MatrixXd& H_rho,
/*for(int i = 0; i< N*N; i++)
H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i];
*/
*/
H_yl = H_rho;
H_yl.block(0, 0, H_rho.rows(), H_rho.cols()) = H_rho;
}
@ -1894,23 +1900,35 @@ bool MsckfVio::PhotometricFeatureJacobian(
}
int jacobian_row_size = 0;
jacobian_row_size = 2 * N * N * valid_cam_state_ids.size();
// stacked feature jacobians
MatrixXd H_xi;
MatrixXd H_yi;
VectorXd r_i;
MatrixXd H_xi = MatrixXd::Zero(jacobian_row_size,
21+state_server.cam_states.size()*7);
MatrixXd H_yi = MatrixXd::Zero(jacobian_row_size, 1); // CHANGED N*N+1 to 1
VectorXd r_i = VectorXd::Zero(jacobian_row_size);
// temporary measurement jacobians
MatrixXd H_xl;
MatrixXd H_yl;
Eigen::VectorXd r_l;
int stack_cntr = 0;
bool first = true;
// go through every valid state the feature was observed in
for (const auto& cam_id : valid_cam_state_ids) {
MatrixXd H_xl;
MatrixXd H_yl;
Eigen::VectorXd r_l = VectorXd::Zero(2*N*N);
// skip observation if measurement is not valid
if(not PhotometricMeasurementJacobian(cam_id, feature.id, H_xl, H_yl, r_l))
continue;
// set size of stacking jacobians, once the returned jacobians are known
if(first)
{
first = not first;
jacobian_row_size = r_l.size() * valid_cam_state_ids.size();
H_xi = MatrixXd::Zero(jacobian_row_size, H_xl.cols());
H_yi = MatrixXd::Zero(jacobian_row_size, H_yl.cols()); // CHANGED N*N+1 to 1
r_i = VectorXd::Zero(jacobian_row_size);
}
auto cam_state_iter = state_server.cam_states.find(cam_id);
int cam_state_cntr = std::distance(
state_server.cam_states.begin(), cam_state_iter);
@ -1918,12 +1936,12 @@ bool MsckfVio::PhotometricFeatureJacobian(
// Stack the Jacobians.
H_xi.block(stack_cntr, 0, H_xl.rows(), H_xl.cols()) = H_xl;
H_yi.block(stack_cntr, 0, H_yl.rows(), H_yl.cols()) = H_yl;
r_i.segment(stack_cntr, 2*N*N) = r_l;
stack_cntr += 2*N*N;
r_i.segment(stack_cntr, r_l.size()) = r_l;
stack_cntr += r_l.size();
}
// if not enough to propper nullspace (in paper implementation)
if(stack_cntr < 2*N*N)
if(stack_cntr < r_l.size())
return false;
// Project the residual and Jacobians onto the nullspace
@ -1936,6 +1954,7 @@ bool MsckfVio::PhotometricFeatureJacobian(
if(H_yi(i,0) != 0)
valid = true;
FullPivLU<MatrixXd> lu(H_yi.transpose());
MatrixXd A_null_space = lu.kernel();
@ -2004,7 +2023,9 @@ bool MsckfVio::PhotometricFeatureJacobian(
cout << "---------- LOGGED -------- " << endl;
}
return true;
if(valid)
return true;
return false;
}
void MsckfVio::measurementJacobian(
@ -2435,10 +2456,7 @@ void MsckfVio::twoMeasurementUpdate(const MatrixXd& H, const VectorXd& r) {
void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r) {
if (H.rows() == 0 || r.rows() == 0)
{
cout << "zero" << endl;
return;
}
return;
// Decompose the final Jacobian matrix to reduce computational
// complexity as in Equation (28), (29).
MatrixXd H_thin;
@ -2572,12 +2590,6 @@ bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof,
double gamma = r.transpose() * (P1+P2).ldlt().solve(r);
// cout << "r" << r << endl;
// cout << "procov" << P1+P2 << endl;
if(filter == 1)
cout << "gate: " << dof << " " << gamma << " " <<
chi_squared_test_table[dof] << endl;
if(gamma > 1000000)
{
cout << " logging " << endl;
@ -2608,6 +2620,9 @@ bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof,
return false;
if (gamma < chi_squared_test_table[dof]) {
// cout << "passed" << endl;
if(filter == 1)
cout << "gate: " << dof << " " << gamma << " " <<
chi_squared_test_table[dof] << endl;
return true;
} else {
// cout << "failed" << endl;
@ -2713,13 +2728,11 @@ void MsckfVio::removeLostFeatures() {
if(PhotometricFeatureJacobian(feature.id, cam_state_ids, pH_xj, pr_j))
{
if (gatingTest(pH_xj, pr_j, pr_j.size(), 1)) { //, cam_state_ids.size()-1)) {
cout << "passed" << endl;
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
pstack_cntr += pH_xj.rows();
}
}
featureJacobian(feature.id, cam_state_ids, H_xj, r_j);
twodotFeatureJacobian(feature.id, cam_state_ids, twoH_xj, twor_j);
@ -2735,7 +2748,6 @@ void MsckfVio::removeLostFeatures() {
twostack_cntr += twoH_xj.rows();
}
// Put an upper bound on the row size of measurement Jacobian,
// which helps guarantee the executation time.
//if (stack_cntr > 1500) break;
@ -2745,11 +2757,8 @@ void MsckfVio::removeLostFeatures() {
{
pH_x.conservativeResize(pstack_cntr, pH_x.cols());
pr.conservativeResize(pstack_cntr);
photometricMeasurementUpdate(pH_x, pr);
}
H_x.conservativeResize(stack_cntr, H_x.cols());
r.conservativeResize(stack_cntr);
@ -2898,8 +2907,8 @@ void MsckfVio::pruneLastCamStateBuffer()
if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true)
{
if (gatingTest(pH_xj, pr_j, pr_j.size(), 1)) { //, cam_state_ids.size()-1)) {
cout << "passed" << endl;
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
pstack_cntr += pH_xj.rows();
@ -2921,27 +2930,24 @@ void MsckfVio::pruneLastCamStateBuffer()
twor.segment(twostack_cntr, twor_j.rows()) = twor_j;
twostack_cntr += twoH_xj.rows();
}
for (const auto& cam_id : involved_cam_state_ids)
feature.observations.erase(cam_id);
}
if(pstack_cntr)
{
pH_x.conservativeResize(pstack_cntr, pH_x.cols());
pr.conservativeResize(pstack_cntr);
photometricMeasurementUpdate(pH_x, pr);
}
H_x.conservativeResize(stack_cntr, H_x.cols());
r.conservativeResize(stack_cntr);
twoH_x.conservativeResize(twostack_cntr, twoH_x.cols());
twor.conservativeResize(twostack_cntr);
// Perform the measurement update step.
measurementUpdate(H_x, r);
twoMeasurementUpdate(twoH_x, twor);
@ -3081,17 +3087,14 @@ void MsckfVio::pruneCamStateBuffer() {
if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true)
{
if (gatingTest(pH_xj, pr_j, pr_j.size(), 1)) {// involved_cam_state_ids.size())) {
cout << "passed" << endl;
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
pstack_cntr += pH_xj.rows();
}
}
featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
twodotFeatureJacobian(feature.id, involved_cam_state_ids, twoH_xj, twor_j);
if (gatingTest(H_xj, r_j, involved_cam_state_ids.size())) {// involved_cam_state_ids.size())) {
H_x.block(stack_cntr, 0, H_xj.rows(), H_xj.cols()) = H_xj;
r.segment(stack_cntr, r_j.rows()) = r_j;
@ -3104,11 +3107,11 @@ void MsckfVio::pruneCamStateBuffer() {
twostack_cntr += twoH_xj.rows();
}
for (const auto& cam_id : involved_cam_state_ids)
feature.observations.erase(cam_id);
}
if(pstack_cntr)
{
@ -3117,7 +3120,6 @@ void MsckfVio::pruneCamStateBuffer() {
photometricMeasurementUpdate(pH_x, pr);
}
H_x.conservativeResize(stack_cntr, H_x.cols());
r.conservativeResize(stack_cntr);