changed to simple irradiance calcualation with derivation of image per frame - not working

This commit is contained in:
Raphael Maenle 2019-07-02 16:58:03 +02:00
parent 737c23f32a
commit 6bcc72f826
5 changed files with 137 additions and 50 deletions

View File

@ -184,6 +184,11 @@ void Rhocost(const Eigen::Isometry3d& T_c0_ci,
const CameraCalibration& cam, const CameraCalibration& cam,
Eigen::Vector3d& in_p) const; Eigen::Vector3d& in_p) const;
double CompleteCvKernel(
const cv::Point2f pose,
const cv::Mat& frame,
std::string type) const;
double cvKernel( double cvKernel(
const cv::Point2f pose, const cv::Point2f pose,
std::string type) const; std::string type) const;
@ -488,6 +493,45 @@ bool Feature::checkMotion(const CamStateServer& cam_states) const
else return false; else return false;
} }
double Feature::CompleteCvKernel(
const cv::Point2f pose,
const cv::Mat& frame,
std::string type) const
{
double delta = 0;
cv::Mat xder;
cv::Mat yder;
cv::Mat deeper_frame;
frame.convertTo(deeper_frame,CV_16S);
//TODO remove this?
cv::Sobel(deeper_frame, xder, -1, 1, 0, 3);
cv::Sobel(deeper_frame, yder, -1, 0, 1, 3);
xder/=8.;
yder/=8.;
/*
cv::Mat norm_abs_xderImage;
cv::Mat abs_xderImage2;
cv::convertScaleAbs(xder, abs_xderImage2);
cv::normalize(abs_xderImage2, norm_abs_xderImage, 0, 255, cv::NORM_MINMAX, CV_8UC1);
cv::imshow("xder", norm_abs_xderImage);
cvWaitKey(0);
*/
if(type == "Sobel_x")
delta = ((double)xder.at<short>(pose.y, pose.x))/255.;
else if (type == "Sobel_y")
delta = ((double)yder.at<short>(pose.y, pose.x))/255.;
return delta;
}
double Feature::cvKernel( double Feature::cvKernel(
const cv::Point2f pose, const cv::Point2f pose,
std::string type) const std::string type) const
@ -823,6 +867,7 @@ bool Feature::VisualizePatch(
// residual grid projection, positive - red, negative - blue colored // residual grid projection, positive - red, negative - blue colored
namer.str(std::string()); namer.str(std::string());
namer << "residual"; namer << "residual";
std::cout << "-- photo_r -- \n" << photo_r << " -- " << std::endl;
cv::putText(irradianceFrame, namer.str() , cvPoint(30+scale*N, scale*N/2-5), cv::putText(irradianceFrame, namer.str() , cvPoint(30+scale*N, scale*N/2-5),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA); cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);

View File

@ -229,12 +229,14 @@ class MsckfVio {
bool PhotometricPatchPointJacobian( bool PhotometricPatchPointJacobian(
const CAMState& cam_state, const CAMState& cam_state,
const StateIDType& cam_state_id,
const Feature& feature, const Feature& feature,
Eigen::Vector3d point, Eigen::Vector3d point,
int count, int count,
Eigen::Matrix<double, 1, 1>& H_rhoj, Eigen::Matrix<double, 1, 1>& H_rhoj,
Eigen::Matrix<double, 1, 6>& H_plj, Eigen::Matrix<double, 1, 6>& H_plj,
Eigen::Matrix<double, 1, 6>& H_pAj); Eigen::Matrix<double, 1, 6>& H_pAj,
Eigen::Matrix<double, 1, 2>& dI_dhj);
bool PhotometricMeasurementJacobian( bool PhotometricMeasurementJacobian(
const StateIDType& cam_state_id, const StateIDType& cam_state_id,

View File

@ -18,14 +18,14 @@
output="screen"> output="screen">
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two --> <!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
<param name="FILTER" value="0"/> <param name="FILTER" value="1"/>
<!-- Debugging Flaggs --> <!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/> <param name="StreamPause" value="true"/>
<param name="PrintImages" value="false"/> <param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/> <param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="3"/> <param name="patch_size_n" value="5"/>
<!-- Calibration parameters --> <!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/> <rosparam command="load" file="$(arg calibration_file)"/>

View File

@ -25,7 +25,7 @@
<param name="PrintImages" value="false"/> <param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/> <param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="1"/> <param name="patch_size_n" value="5"/>
<!-- Calibration parameters --> <!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/> <rosparam command="load" file="$(arg calibration_file)"/>

View File

@ -496,8 +496,8 @@ void MsckfVio::imageCallback(
processing_end_time - processing_start_time; processing_end_time - processing_start_time;
if (processing_time > 1.0/frame_rate) { if (processing_time > 1.0/frame_rate) {
++critical_time_cntr; ++critical_time_cntr;
ROS_INFO("\033[1;31mTotal processing time %f/%d...\033[0m", //ROS_INFO("\033[1;31mTotal processing time %f/%d...\033[0m",
processing_time, critical_time_cntr); // processing_time, critical_time_cntr);
//printf("IMU processing time: %f/%f\n", //printf("IMU processing time: %f/%f\n",
// imu_processing_time, imu_processing_time/processing_time); // imu_processing_time, imu_processing_time/processing_time);
//printf("State augmentation time: %f/%f\n", //printf("State augmentation time: %f/%f\n",
@ -1419,7 +1419,6 @@ void MsckfVio::twodotMeasurementJacobian(
std::stringstream ss; std::stringstream ss;
ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr; ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr;
feature.MarkerGeneration(marker_pub, state_server.cam_states); feature.MarkerGeneration(marker_pub, state_server.cam_states);
//feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss);
} }
return; return;
@ -1540,18 +1539,28 @@ bool MsckfVio::PhotometricPatchPointResidual(
std::vector<double> estimate_photo_z; std::vector<double> estimate_photo_z;
std::vector<double> photo_z; std::vector<double> photo_z;
// estimate irradiance based on anchor frame
IlluminationParameter estimated_illumination; IlluminationParameter estimated_illumination;
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination); feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
for (auto& estimate_irradiance_j : estimate_irradiance) for (auto& estimate_irradiance_j : estimate_irradiance)
estimate_photo_z.push_back (estimate_irradiance_j * estimate_photo_z.push_back (estimate_irradiance_j);// *
estimated_illumination.frame_gain * estimated_illumination.feature_gain + //estimated_illumination.frame_gain * estimated_illumination.feature_gain +
estimated_illumination.frame_bias + estimated_illumination.feature_bias); //estimated_illumination.frame_bias + estimated_illumination.feature_bias);
// irradiance measurement around feature point
std::vector<double> true_irradiance;
cv::Point2f p_f(feature.observations.find(cam_state_id)->second(0), feature.observations.find(cam_state_id)->second(1));
p_f = image_handler::distortPoint(p_f, cam0.intrinsics, cam0.distortion_model, cam0.distortion_coeffs);
cv::Mat current_image = cam0.moving_window.find(cam_state_id)->second.image;
for(int i = 0; i<N; i++)
for(int j = 0; j<N ; j++)
true_irradiance.push_back(feature.PixelIrradiance(cv::Point2f(p_f.x + (i-(N-1)/2), p_f.y + (j-(N-1)/2)), current_image));
for(auto point : feature.anchorPatch_3d) for(auto point : feature.anchorPatch_3d)
{ {
cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point); cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
// test if projection is inside frame // test if projection is inside frame
if(p_in_c0.x < 0 or p_in_c0.x > frame.cols-1 or p_in_c0.y < 0 or p_in_c0.y > frame.rows-1) if(p_in_c0.x < 0 or p_in_c0.x > frame.cols-1 or p_in_c0.y < 0 or p_in_c0.y > frame.rows-1)
@ -1559,8 +1568,11 @@ bool MsckfVio::PhotometricPatchPointResidual(
// add observation // add observation
photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame)); photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
//calculate photom. residual // calculate photom. residual acc. to paper
r_photo(count) = photo_z[count] - estimate_photo_z[count]; // r_photo(count) = photo_z[count] - estimate_photo_z[count];
// calculate alternate photom. residual
r_photo(count) = true_irradiance[count] - photo_z[count];
count++; count++;
} }
r = r_photo; r = r_photo;
@ -1570,12 +1582,14 @@ bool MsckfVio::PhotometricPatchPointResidual(
// generates the jacobian of one patch point regarding rho, anchor and current frame // generates the jacobian of one patch point regarding rho, anchor and current frame
bool MsckfVio::PhotometricPatchPointJacobian( bool MsckfVio::PhotometricPatchPointJacobian(
const CAMState& cam_state, const CAMState& cam_state,
const StateIDType& cam_state_id,
const Feature& feature, const Feature& feature,
Eigen::Vector3d point, Eigen::Vector3d point,
int count, int count,
Eigen::Matrix<double, 1, 1>& H_rhoj, Eigen::Matrix<double, 1, 1>& H_rhoj,
Eigen::Matrix<double, 1, 6>& H_plj, Eigen::Matrix<double, 1, 6>& H_plj,
Eigen::Matrix<double, 1, 6>& H_pAj) Eigen::Matrix<double, 1, 6>& H_pAj,
Matrix<double, 1, 2>& dI_dhj)
{ {
const StateIDType anchor_state_id = feature.observations.begin()->first; const StateIDType anchor_state_id = feature.observations.begin()->first;
@ -1592,7 +1606,7 @@ bool MsckfVio::PhotometricPatchPointJacobian(
// individual Jacobians // individual Jacobians
Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero(); /*Matrix<double, 1, 2> */dI_dhj = Matrix<double, 1, 2>::Zero();
Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero(); Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
Matrix<double, 2, 3> dh_dGpij = Matrix<double, 2, 3>::Zero(); Matrix<double, 2, 3> dh_dGpij = Matrix<double, 2, 3>::Zero();
Matrix<double, 2, 6> dh_dXplj = Matrix<double, 2, 6>::Zero(); Matrix<double, 2, 6> dh_dXplj = Matrix<double, 2, 6>::Zero();
@ -1606,13 +1620,17 @@ bool MsckfVio::PhotometricPatchPointJacobian(
double dx, dy; double dx, dy;
Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w); Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
cv::Point2f p_in_anchor = feature.projectPositionToCamera(anchor_state, anchor_state_id, cam0, point); cv::Point2f p_in_anchor = feature.projectPositionToCamera(anchor_state, anchor_state_id, cam0, point);
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
// calculate derivation for anchor frame, use position for derivation calculation // calculate derivation for anchor frame, use position for derivation calculation
// frame derivative calculated convoluting with kernel [-1, 0, 1] // frame derivative calculated convoluting with kernel [-1, 0, 1]
dx = feature.cvKernel(p_in_anchor, "Sobel_x"); dx = feature.CompleteCvKernel(p_in_c0, frame, "Sobel_x");
dy = feature.cvKernel(p_in_anchor, "Sobel_y"); dy = feature.CompleteCvKernel(p_in_c0, frame, "Sobel_y");
//cout << "dx: " << dx << " : " << feature.cvKernel(p_in_c0, "Sobel_x") << " : " << feature.Kernel(p_in_c0, frame, "Sobel_x") << endl;
dI_dhj(0, 0) = dx * cam0.intrinsics[0]; dI_dhj(0, 0) = dx * cam0.intrinsics[0];
dI_dhj(0, 1) = dy * cam0.intrinsics[1]; dI_dhj(0, 1) = dy * cam0.intrinsics[1];
@ -1650,7 +1668,11 @@ bool MsckfVio::PhotometricPatchPointJacobian(
H_plj = dI_dhj * dh_dXplj; // 1 x 6 H_plj = dI_dhj * dh_dXplj; // 1 x 6
H_pAj = dI_dhj * dh_dGpij * dGpj_XpAj; // 1 x 6 H_pAj = dI_dhj * dh_dGpij * dGpj_XpAj; // 1 x 6
// check if point nullspaceable
if (H_rhoj(0, 0) != 0)
return true; return true;
return false;
} }
bool MsckfVio::PhotometricMeasurementJacobian( bool MsckfVio::PhotometricMeasurementJacobian(
@ -1671,6 +1693,8 @@ bool MsckfVio::PhotometricMeasurementJacobian(
Eigen::Matrix<double, 1, 6> H_plj; Eigen::Matrix<double, 1, 6> H_plj;
Eigen::Matrix<double, 1, 6> H_pAj; Eigen::Matrix<double, 1, 6> H_pAj;
Eigen::MatrixXd dI_dh(N*N, 2);
// combined Jacobians // combined Jacobians
Eigen::MatrixXd H_rho(N*N, 1); Eigen::MatrixXd H_rho(N*N, 1);
Eigen::MatrixXd H_pl(N*N, 6); Eigen::MatrixXd H_pl(N*N, 6);
@ -1683,26 +1707,33 @@ bool MsckfVio::PhotometricMeasurementJacobian(
// calculate jacobian for patch // calculate jacobian for patch
int count = 0; int count = 0;
bool valid = false;
Matrix<double, 1, 2> dI_dhj;// = Matrix<double, 1, 2>::Zero();
for (auto point : feature.anchorPatch_3d) for (auto point : feature.anchorPatch_3d)
{ {
// get jacobi of single point in patch // get jacobi of single point in patch
PhotometricPatchPointJacobian(cam_state, feature, point, count, H_rhoj, H_plj, H_pAj); if (PhotometricPatchPointJacobian(cam_state, cam_state_id, feature, point, count, H_rhoj, H_plj, H_pAj, dI_dhj))
valid = true;
// stack point into entire jacobi // stack point into entire jacobi
H_rho.block<1, 1>(count, 0) = H_rhoj; H_rho.block<1, 1>(count, 0) = H_rhoj;
H_pl.block<1, 6>(count, 0) = H_plj; H_pl.block<1, 6>(count, 0) = H_plj;
H_pA.block<1, 6>(count, 0) = H_pAj; H_pA.block<1, 6>(count, 0) = H_pAj;
dI_dh.block<1, 2>(count, 0) = dI_dhj;
count++; count++;
} }
//Eigen::Matrix<double, 2, 1> h_photo = (dI_dh.transpose() * dI_dh).inverse() * dI_dh.transpose() * r_photo;
//cout << "h photo: \n" << h_photo << endl;
// construct the jacobian structure needed for nullspacing // construct the jacobian structure needed for nullspacing
MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7); MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+1); MatrixXd H_yl = MatrixXd::Zero(N*N, 1);
ConstructJacobians(H_rho, H_pl, H_pA, feature, cam_state_id, H_xl, H_yl); ConstructJacobians(H_rho, H_pl, H_pA, feature, cam_state_id, H_xl, H_yl);
// set to return values // set to return values
H_x = H_xl; H_x = H_xl;
H_y = H_yl; H_y = H_yl;
@ -1726,9 +1757,13 @@ bool MsckfVio::PhotometricMeasurementJacobian(
//feature.VisualizeKernel(cam_state, cam_state_id, cam0); //feature.VisualizeKernel(cam_state, cam_state_id, cam0);
} }
if(valid)
return true; return true;
else
return false;
} }
// uses the calcualted jacobians to construct the final Hx Hy jacobians used for nullspacing
bool MsckfVio::ConstructJacobians(Eigen::MatrixXd& H_rho, bool MsckfVio::ConstructJacobians(Eigen::MatrixXd& H_rho,
Eigen::MatrixXd& H_pl, Eigen::MatrixXd& H_pl,
Eigen::MatrixXd& H_pA, Eigen::MatrixXd& H_pA,
@ -1741,7 +1776,7 @@ bool MsckfVio::ConstructJacobians(Eigen::MatrixXd& H_rho,
auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first); auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor); int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
// set anchor Jakobi // set anchor Jakobi
H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA; H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = H_pA;
//get position of current frame in cam states //get position of current frame in cam states
auto cam_state_iter = state_server.cam_states.find(cam_state_id); auto cam_state_iter = state_server.cam_states.find(cam_state_id);
@ -1749,21 +1784,20 @@ bool MsckfVio::ConstructJacobians(Eigen::MatrixXd& H_rho,
int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter); int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
// set jakobi of state // set jakobi of state
H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = -H_pl; H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = H_pl;
// set ones for irradiance bias // set ones for irradiance bias
// H_xl.block(0, 21+cam_state_cntr*7+6, N*N, 1) = Eigen::ArrayXd::Ones(N*N); // H_xl.block(0, 21+cam_state_cntr*7+6, N*N, 1) = Eigen::ArrayXd::Ones(N*N);
// set irradiance error Block // set irradiance error Block
H_yl.block(0, 0,N*N, N*N) = /* estimated_illumination.feature_gain * estimated_illumination.frame_gain * */ Eigen::MatrixXd::Identity(N*N, N*N); //H_yl.block(0, 0, N*N, N*N) = /* estimated_illumination.feature_gain * estimated_illumination.frame_gain * */ Eigen::MatrixXd::Identity(N*N, N*N);
/*for(int i = 0; i< N*N; i++) /*for(int i = 0; i< N*N; i++)
H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i]; H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i];
*/ */
H_yl.block(0, N*N, N*N, 1) = -H_rho; H_yl = H_rho;
} }
@ -1772,7 +1806,6 @@ bool MsckfVio::PhotometricFeatureJacobian(
const std::vector<StateIDType>& cam_state_ids, const std::vector<StateIDType>& cam_state_ids,
MatrixXd& H_x, VectorXd& r) MatrixXd& H_x, VectorXd& r)
{ {
const auto& feature = map_server[feature_id]; const auto& feature = map_server[feature_id];
// Check how many camera states in the provided camera // Check how many camera states in the provided camera
@ -1792,7 +1825,7 @@ bool MsckfVio::PhotometricFeatureJacobian(
MatrixXd H_xi = MatrixXd::Zero(jacobian_row_size, MatrixXd H_xi = MatrixXd::Zero(jacobian_row_size,
21+state_server.cam_states.size()*7); 21+state_server.cam_states.size()*7);
MatrixXd H_yi = MatrixXd::Zero(jacobian_row_size, N*N+1); MatrixXd H_yi = MatrixXd::Zero(jacobian_row_size, 1); // CHANGED N*N+1 to 1
VectorXd r_i = VectorXd::Zero(jacobian_row_size); VectorXd r_i = VectorXd::Zero(jacobian_row_size);
int stack_cntr = 0; int stack_cntr = 0;
@ -1815,19 +1848,25 @@ bool MsckfVio::PhotometricFeatureJacobian(
r_i.segment(stack_cntr, N*N) = r_l; r_i.segment(stack_cntr, N*N) = r_l;
stack_cntr += N*N; stack_cntr += N*N;
} }
if(stack_cntr < 2*N*N) // if not enough to propper nullspace (in paper implementation)
if(stack_cntr < N*N)
return false; return false;
// Project the residual and Jacobians onto the nullspace // Project the residual and Jacobians onto the nullspace
// of H_yj. // of H_yj.
// get Nullspace // get Nullspace
bool valid = false;
for(int i = 0; i < H_yi.rows(); i++)
if(H_yi(i,0) != 0)
valid = true;
FullPivLU<MatrixXd> lu(H_yi.transpose()); FullPivLU<MatrixXd> lu(H_yi.transpose());
MatrixXd A_null_space = lu.kernel(); MatrixXd A_null_space = lu.kernel();
H_x = A_null_space.transpose() * H_xi; H_x = A_null_space.transpose() * H_xi;
r = A_null_space.transpose() * r_i; r = A_null_space.transpose() * r_i;
//cout << "\nx\n" << H_x.colPivHouseholderQr().solve(r) << endl; //cout << "\nx\n" << H_x.colPivHouseholderQr().solve(r) << endl;
if(PRINTIMAGES) if(PRINTIMAGES)
@ -1956,6 +1995,7 @@ void MsckfVio::measurementJacobian(
r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2), r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2),
p_c1(0)/p_c1(2), p_c1(1)/p_c1(2)); p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
// cout << "h reg: \n" << r(0) << "\n" << r(1) << endl;
return; return;
} }
@ -2333,9 +2373,8 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
SPQR<SparseMatrix<double> > spqr_helper; SPQR<SparseMatrix<double> > spqr_helper;
spqr_helper.setSPQROrdering(SPQR_ORDERING_NATURAL); spqr_helper.setSPQROrdering(SPQR_ORDERING_NATURAL);
cout << "comp" << endl;
spqr_helper.compute(H_sparse); spqr_helper.compute(H_sparse);
cout << "done" << endl;
MatrixXd H_temp; MatrixXd H_temp;
VectorXd r_temp; VectorXd r_temp;
@ -2364,6 +2403,9 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
VectorXd delta_x = K * r; VectorXd delta_x = K * r;
// Update the IMU state. // Update the IMU state.
cout << "pho: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
if (FILTER != 1) return; if (FILTER != 1) return;
if(PRINTIMAGES) if(PRINTIMAGES)
@ -2387,9 +2429,6 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
myfile.close(); myfile.close();
} }
cout << "pho: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
const VectorXd& delta_x_imu = delta_x.head<21>(); const VectorXd& delta_x_imu = delta_x.head<21>();
if (//delta_x_imu.segment<3>(0).norm() > 0.15 || if (//delta_x_imu.segment<3>(0).norm() > 0.15 ||
@ -2445,7 +2484,7 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) { bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
return true;
MatrixXd P1 = H * state_server.state_cov * H.transpose(); MatrixXd P1 = H * state_server.state_cov * H.transpose();
MatrixXd P2 = Feature::observation_noise * MatrixXd P2 = Feature::observation_noise *
@ -2453,8 +2492,8 @@ bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof)
double gamma = r.transpose() * (P1+P2).ldlt().solve(r); double gamma = r.transpose() * (P1+P2).ldlt().solve(r);
//cout << "gate: " << dof << " " << gamma << " " << cout << "gate: " << dof << " " << gamma << " " <<
//chi_squared_test_table[dof] << endl; chi_squared_test_table[dof] << endl;
if (chi_squared_test_table[dof] == 0) if (chi_squared_test_table[dof] == 0)
return false; return false;
@ -2562,7 +2601,7 @@ void MsckfVio::removeLostFeatures() {
MatrixXd twoH_xj; MatrixXd twoH_xj;
VectorXd twor_j; VectorXd twor_j;
if(PhotometricFeatureJacobian(feature.id, cam_state_ids, pH_xj, pr_j) == true) if(PhotometricFeatureJacobian(feature.id, cam_state_ids, pH_xj, pr_j))
{ {
if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) { if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj; pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
@ -2769,6 +2808,7 @@ void MsckfVio::pruneLastCamStateBuffer()
twor.segment(twostack_cntr, twor_j.rows()) = twor_j; twor.segment(twostack_cntr, twor_j.rows()) = twor_j;
twostack_cntr += twoH_xj.rows(); twostack_cntr += twoH_xj.rows();
} }
for (const auto& cam_id : involved_cam_state_ids) for (const auto& cam_id : involved_cam_state_ids)
feature.observations.erase(cam_id); feature.observations.erase(cam_id);
} }