restructured calcualtion of patches in code
This commit is contained in:
		@@ -223,8 +223,8 @@ void ImageProcessor::stereoCallback(
 | 
			
		||||
 | 
			
		||||
  image_handler::undistortImage(cam0_curr_img_ptr->image, cam0_curr_img_ptr->image, cam0.distortion_model, cam0.intrinsics, cam0.distortion_coeffs);
 | 
			
		||||
  image_handler::undistortImage(cam1_curr_img_ptr->image, cam1_curr_img_ptr->image, cam1.distortion_model, cam1.intrinsics, cam1.distortion_coeffs);
 | 
			
		||||
  ROS_INFO("Publishing: %f",
 | 
			
		||||
      (ros::Time::now()-start_time).toSec());
 | 
			
		||||
  //ROS_INFO("Publishing: %f",
 | 
			
		||||
  //    (ros::Time::now()-start_time).toSec());
 | 
			
		||||
  // Build the image pyramids once since they're used at multiple places
 | 
			
		||||
  createImagePyramids();
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -260,6 +260,7 @@ bool MsckfVio::createRosIO() {
 | 
			
		||||
  // activating bag playing parameter, for debugging
 | 
			
		||||
  nh.setParam("/play_bag", true);
 | 
			
		||||
 | 
			
		||||
  eval_time = 0;
 | 
			
		||||
  odom_pub = nh.advertise<nav_msgs::Odometry>("odom", 10);
 | 
			
		||||
  truth_odom_pub = nh.advertise<nav_msgs::Odometry>("true_odom", 10);
 | 
			
		||||
  feature_pub = nh.advertise<sensor_msgs::PointCloud2>(
 | 
			
		||||
@@ -412,6 +413,10 @@ void MsckfVio::imageCallback(
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  old_imu_state = state_server.imu_state;
 | 
			
		||||
  old_true_state = true_state_server.imu_state;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // Start the system if the first image is received.
 | 
			
		||||
  // The frame where the first image is received will be
 | 
			
		||||
  // the origin.
 | 
			
		||||
@@ -419,7 +424,6 @@ void MsckfVio::imageCallback(
 | 
			
		||||
    is_first_img = false;
 | 
			
		||||
    state_server.imu_state.time = feature_msg->header.stamp.toSec();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static double max_processing_time = 0.0;
 | 
			
		||||
  static int critical_time_cntr = 0;
 | 
			
		||||
  double processing_start_time = ros::Time::now().toSec();
 | 
			
		||||
@@ -427,24 +431,14 @@ void MsckfVio::imageCallback(
 | 
			
		||||
  // Propogate the IMU state.
 | 
			
		||||
  // that are received before the image feature_msg.
 | 
			
		||||
  ros::Time start_time = ros::Time::now();
 | 
			
		||||
  
 | 
			
		||||
  
 | 
			
		||||
  batchImuProcessing(feature_msg->header.stamp.toSec());
 | 
			
		||||
  
 | 
			
		||||
  if(GROUNDTRUTH)
 | 
			
		||||
  {
 | 
			
		||||
    state_server.imu_state.position = true_state_server.imu_state.position;
 | 
			
		||||
    state_server.imu_state.orientation = true_state_server.imu_state.orientation;
 | 
			
		||||
    state_server.imu_state.position_null = true_state_server.imu_state.position_null;
 | 
			
		||||
    state_server.imu_state.orientation_null = true_state_server.imu_state.orientation_null;
 | 
			
		||||
 | 
			
		||||
    state_server.imu_state.R_imu_cam0 = true_state_server.imu_state.R_imu_cam0;
 | 
			
		||||
    state_server.imu_state.t_cam0_imu = true_state_server.imu_state.t_cam0_imu;
 | 
			
		||||
  }
 | 
			
		||||
  nh.param<int>("FILTER", FILTER, 0);  
 | 
			
		||||
 | 
			
		||||
  batchImuProcessing(feature_msg->header.stamp.toSec());
 | 
			
		||||
 | 
			
		||||
  double imu_processing_time = (
 | 
			
		||||
      ros::Time::now()-start_time).toSec();
 | 
			
		||||
 | 
			
		||||
  cout << "1" << endl;
 | 
			
		||||
  // Augment the state vector.
 | 
			
		||||
  start_time = ros::Time::now();
 | 
			
		||||
  //truePhotometricStateAugmentation(feature_msg->header.stamp.toSec());
 | 
			
		||||
@@ -453,7 +447,7 @@ void MsckfVio::imageCallback(
 | 
			
		||||
      ros::Time::now()-start_time).toSec();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  cout << "2" << endl;
 | 
			
		||||
  // cout << "2" << endl;
 | 
			
		||||
  // Add new observations for existing features or new
 | 
			
		||||
  // features in the map server.
 | 
			
		||||
  start_time = ros::Time::now();
 | 
			
		||||
@@ -462,7 +456,7 @@ void MsckfVio::imageCallback(
 | 
			
		||||
      ros::Time::now()-start_time).toSec();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  cout << "3" << endl;
 | 
			
		||||
  // cout << "3" << endl;
 | 
			
		||||
  // Add new images to moving window
 | 
			
		||||
  start_time = ros::Time::now();
 | 
			
		||||
  manageMovingWindow(cam0_img, cam1_img, feature_msg);
 | 
			
		||||
@@ -470,14 +464,14 @@ void MsckfVio::imageCallback(
 | 
			
		||||
      ros::Time::now()-start_time).toSec();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  cout << "4" << endl;
 | 
			
		||||
  // cout << "4" << endl;
 | 
			
		||||
  // Perform measurement update if necessary.
 | 
			
		||||
  start_time = ros::Time::now();
 | 
			
		||||
  removeLostFeatures();
 | 
			
		||||
  double remove_lost_features_time = (
 | 
			
		||||
      ros::Time::now()-start_time).toSec();
 | 
			
		||||
 | 
			
		||||
  cout << "5" << endl;
 | 
			
		||||
  // cout << "5" << endl;
 | 
			
		||||
  start_time = ros::Time::now();
 | 
			
		||||
  pruneLastCamStateBuffer();
 | 
			
		||||
  double prune_cam_states_time = (
 | 
			
		||||
@@ -487,7 +481,7 @@ void MsckfVio::imageCallback(
 | 
			
		||||
  batchTruthProcessing(feature_msg->header.stamp.toSec());
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  cout << "6" << endl;
 | 
			
		||||
  // cout << "6" << endl;
 | 
			
		||||
  // Publish the odometry.
 | 
			
		||||
  start_time = ros::Time::now();
 | 
			
		||||
  publish(feature_msg->header.stamp);
 | 
			
		||||
@@ -504,18 +498,18 @@ void MsckfVio::imageCallback(
 | 
			
		||||
    ++critical_time_cntr;
 | 
			
		||||
    ROS_INFO("\033[1;31mTotal processing time %f/%d...\033[0m",
 | 
			
		||||
        processing_time, critical_time_cntr);
 | 
			
		||||
    printf("IMU processing time: %f/%f\n",
 | 
			
		||||
        imu_processing_time, imu_processing_time/processing_time);
 | 
			
		||||
    printf("State augmentation time: %f/%f\n",
 | 
			
		||||
        state_augmentation_time, state_augmentation_time/processing_time);
 | 
			
		||||
    printf("Add observations time: %f/%f\n",
 | 
			
		||||
        add_observations_time, add_observations_time/processing_time);
 | 
			
		||||
    printf("Remove lost features time: %f/%f\n",
 | 
			
		||||
        remove_lost_features_time, remove_lost_features_time/processing_time);
 | 
			
		||||
    printf("Remove camera states time: %f/%f\n",
 | 
			
		||||
        prune_cam_states_time, prune_cam_states_time/processing_time);
 | 
			
		||||
    printf("Publish time: %f/%f\n",
 | 
			
		||||
        publish_time, publish_time/processing_time);
 | 
			
		||||
    //printf("IMU processing time: %f/%f\n",
 | 
			
		||||
    //    imu_processing_time, imu_processing_time/processing_time);
 | 
			
		||||
    //printf("State augmentation time: %f/%f\n",
 | 
			
		||||
    //    state_augmentation_time, state_augmentation_time/processing_time);
 | 
			
		||||
    //printf("Add observations time: %f/%f\n",
 | 
			
		||||
    //    add_observations_time, add_observations_time/processing_time);
 | 
			
		||||
    //printf("Remove lost features time: %f/%f\n",
 | 
			
		||||
    //    remove_lost_features_time, remove_lost_features_time/processing_time);
 | 
			
		||||
    //printf("Remove camera states time: %f/%f\n",
 | 
			
		||||
    //    prune_cam_states_time, prune_cam_states_time/processing_time);
 | 
			
		||||
    //printf("Publish time: %f/%f\n",
 | 
			
		||||
    //    publish_time, publish_time/processing_time);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if(STREAMPAUSE)
 | 
			
		||||
@@ -806,8 +800,6 @@ void MsckfVio::batchTruthProcessing(const double& time_bound) {
 | 
			
		||||
  // Counter how many IMU msgs in the buffer are used.
 | 
			
		||||
  int used_truth_msg_cntr = 0;
 | 
			
		||||
 | 
			
		||||
  const IMUState old_true_state = true_state_server.imu_state;
 | 
			
		||||
 | 
			
		||||
  for (const auto& truth_msg : truth_msg_buffer) {
 | 
			
		||||
    double truth_time = truth_msg.header.stamp.toSec();
 | 
			
		||||
    if (truth_time < true_state_server.imu_state.time) {
 | 
			
		||||
@@ -839,22 +831,76 @@ void MsckfVio::batchTruthProcessing(const double& time_bound) {
 | 
			
		||||
  truth_msg_buffer.erase(truth_msg_buffer.begin(),
 | 
			
		||||
      truth_msg_buffer.begin()+used_truth_msg_cntr);
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  // calculate change
 | 
			
		||||
  delta_position = state_server.imu_state.position - old_imu_state.position;
 | 
			
		||||
  Eigen::Vector4d delta_orientation_quaternion = quaternionMultiplication(quaternionConjugate(state_server.imu_state.orientation), old_imu_state.orientation);
 | 
			
		||||
  delta_orientation = Eigen::Vector3d(delta_orientation_quaternion[0]*2, delta_orientation_quaternion[1]*2, delta_orientation_quaternion[2]*2);
 | 
			
		||||
  // calculate error in position
 | 
			
		||||
 | 
			
		||||
  // calculate error in change
 | 
			
		||||
 | 
			
		||||
  // calculate change
 | 
			
		||||
  Eigen::Vector3d delta_true_position = true_state_server.imu_state.position - old_true_state.position;
 | 
			
		||||
  Eigen::Vector4d delta_true_orientation = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), old_true_state.orientation);
 | 
			
		||||
  Eigen::Vector3d delta_smallangle_true_orientation = Eigen::Vector3d(delta_true_orientation[0]*2, delta_true_orientation[1]*2, delta_true_orientation[2]*2);
 | 
			
		||||
  Eigen::Vector3d error_delta_position = delta_true_position - delta_position;
 | 
			
		||||
  Eigen::Vector3d error_delta_orientation = delta_smallangle_true_orientation  - delta_orientation;
 | 
			
		||||
  
 | 
			
		||||
  double dx  = (error_delta_position[0]/delta_true_position[0]);
 | 
			
		||||
  double dy = (error_delta_position[1]/delta_true_position[1]);
 | 
			
		||||
  double dz = (error_delta_position[2]/delta_true_position[2]);
 | 
			
		||||
  cout << "relative pos error: " << sqrt(dx*dx + dy*dy + dz*dz) * 100 << "%" << endl;
 | 
			
		||||
 | 
			
		||||
  Eigen::Vector3d error_position = true_state_server.imu_state.position - state_server.imu_state.position;
 | 
			
		||||
  Eigen::Vector4d error_orientation_q = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), state_server.imu_state.orientation);
 | 
			
		||||
  Eigen::Vector3d error_orientation = Eigen::Vector3d(error_orientation_q[0]*2, error_orientation_q[1]*2, error_orientation_q[2]*2);
 | 
			
		||||
 | 
			
		||||
  double relerr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
 | 
			
		||||
               sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
 | 
			
		||||
 
 | 
			
		||||
  double relOerr = (sqrt(error_delta_orientation[0]*error_delta_orientation[0] + error_delta_orientation[1]*error_delta_orientation[1] + error_delta_orientation[2]*error_delta_orientation[2])/
 | 
			
		||||
               sqrt(delta_smallangle_true_orientation[0]*delta_smallangle_true_orientation[0] + delta_smallangle_true_orientation[1]*delta_smallangle_true_orientation[1] + delta_smallangle_true_orientation[2]*delta_smallangle_true_orientation[2]));
 | 
			
		||||
 | 
			
		||||
  double abserr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
 | 
			
		||||
               sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  cout << "relative pos error: " << relerr * 100 << "%" << endl;
 | 
			
		||||
  cout << "relative ori error: " << relOerr * 100 << "%" << endl;
 | 
			
		||||
  //cout << "absolute pos error: " << 
 | 
			
		||||
  */
 | 
			
		||||
  if (eval_time + 1 < ros::Time::now().toSec())
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
     // calculate change
 | 
			
		||||
    delta_position = state_server.imu_state.position - timed_old_imu_state.position;
 | 
			
		||||
    Eigen::Vector4d delta_orientation_quaternion = quaternionMultiplication(quaternionConjugate(state_server.imu_state.orientation), timed_old_imu_state.orientation);
 | 
			
		||||
    delta_orientation = Eigen::Vector3d(delta_orientation_quaternion[0]*2, delta_orientation_quaternion[1]*2, delta_orientation_quaternion[2]*2);
 | 
			
		||||
    // calculate error in position
 | 
			
		||||
 | 
			
		||||
    // calculate error in change
 | 
			
		||||
 | 
			
		||||
    Eigen::Vector3d delta_true_position = true_state_server.imu_state.position - timed_old_true_state.position;
 | 
			
		||||
    Eigen::Vector4d delta_true_orientation = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), timed_old_true_state.orientation);
 | 
			
		||||
    Eigen::Vector3d delta_smallangle_true_orientation = Eigen::Vector3d(delta_true_orientation[0]*2, delta_true_orientation[1]*2, delta_true_orientation[2]*2);
 | 
			
		||||
    Eigen::Vector3d error_delta_position = delta_true_position - delta_position;
 | 
			
		||||
    Eigen::Vector3d error_delta_orientation = delta_smallangle_true_orientation  - delta_orientation;
 | 
			
		||||
 | 
			
		||||
    Eigen::Vector3d error_position = true_state_server.imu_state.position - state_server.imu_state.position;
 | 
			
		||||
    Eigen::Vector4d error_orientation_q = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), state_server.imu_state.orientation);
 | 
			
		||||
    Eigen::Vector3d error_orientation = Eigen::Vector3d(error_orientation_q[0]*2, error_orientation_q[1]*2, error_orientation_q[2]*2);
 | 
			
		||||
 | 
			
		||||
    double relerr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
 | 
			
		||||
                 sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
 | 
			
		||||
   
 | 
			
		||||
    double relOerr = (sqrt(error_delta_orientation[0]*error_delta_orientation[0] + error_delta_orientation[1]*error_delta_orientation[1] + error_delta_orientation[2]*error_delta_orientation[2])/
 | 
			
		||||
                 sqrt(delta_smallangle_true_orientation[0]*delta_smallangle_true_orientation[0] + delta_smallangle_true_orientation[1]*delta_smallangle_true_orientation[1] + delta_smallangle_true_orientation[2]*delta_smallangle_true_orientation[2]));
 | 
			
		||||
 | 
			
		||||
    double abserr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
 | 
			
		||||
                 sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
 | 
			
		||||
 | 
			
		||||
    // cout << "relative pos error: " << relerr * 100 << "%" << endl;
 | 
			
		||||
    // cout << "relative ori error: " << relOerr * 100 << "%" << endl;
 | 
			
		||||
 | 
			
		||||
    timed_old_imu_state = state_server.imu_state;
 | 
			
		||||
    timed_old_true_state = true_state_server.imu_state;
 | 
			
		||||
    eval_time = ros::Time::now().toSec();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MsckfVio::processTruthtoIMU(const double& time,
 | 
			
		||||
@@ -1477,17 +1523,60 @@ void MsckfVio::twodotFeatureJacobian(
 | 
			
		||||
  return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
bool MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
    const StateIDType& cam_state_id,
 | 
			
		||||
    const FeatureIDType& feature_id,
 | 
			
		||||
    MatrixXd& H_x, MatrixXd& H_y, VectorXd& r) 
 | 
			
		||||
bool MsckfVio::PhotometricPatchPointResidual(
 | 
			
		||||
  const StateIDType& cam_state_id,
 | 
			
		||||
  const Feature& feature, 
 | 
			
		||||
  VectorXd& r)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  // Prepare all the required data.
 | 
			
		||||
  VectorXd r_photo = VectorXd::Zero(N*N);
 | 
			
		||||
  int count = 0;
 | 
			
		||||
  auto frame = cam0.moving_window.find(cam_state_id)->second.image;
 | 
			
		||||
 | 
			
		||||
  const CAMState& cam_state = state_server.cam_states[cam_state_id];
 | 
			
		||||
  const Feature& feature = map_server[feature_id];
 | 
			
		||||
 | 
			
		||||
  //estimate photometric measurement
 | 
			
		||||
  std::vector<double> estimate_irradiance;
 | 
			
		||||
  std::vector<double> estimate_photo_z;
 | 
			
		||||
  std::vector<double> photo_z;
 | 
			
		||||
 | 
			
		||||
  IlluminationParameter estimated_illumination;
 | 
			
		||||
  feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
 | 
			
		||||
  for (auto& estimate_irradiance_j : estimate_irradiance)
 | 
			
		||||
            estimate_photo_z.push_back (estimate_irradiance_j * 
 | 
			
		||||
                    estimated_illumination.frame_gain * estimated_illumination.feature_gain +
 | 
			
		||||
                    estimated_illumination.frame_bias + estimated_illumination.feature_bias);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  for(auto point : feature.anchorPatch_3d)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
 | 
			
		||||
    // test if projection is inside frame 
 | 
			
		||||
    if(p_in_c0.x < 0 or p_in_c0.x > frame.cols-1 or p_in_c0.y < 0 or p_in_c0.y > frame.rows-1)
 | 
			
		||||
      return false;
 | 
			
		||||
    //add observation
 | 
			
		||||
    photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
 | 
			
		||||
    
 | 
			
		||||
    //calculate photom. residual
 | 
			
		||||
    r_photo(count) = photo_z[count] - estimate_photo_z[count];
 | 
			
		||||
    count++;
 | 
			
		||||
  }
 | 
			
		||||
  r = r_photo;
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// generates the jacobian of one patch point regarding rho, anchor and current frame
 | 
			
		||||
bool MsckfVio::PhotometricPatchPointJacobian(
 | 
			
		||||
    const CAMState& cam_state,
 | 
			
		||||
    const Feature& feature,
 | 
			
		||||
    Eigen::Vector3d point,
 | 
			
		||||
    int count,
 | 
			
		||||
    Eigen::Matrix<double, 1, 1>& H_rhoj,
 | 
			
		||||
    Eigen::Matrix<double, 1, 6>& H_plj,
 | 
			
		||||
    Eigen::Matrix<double, 1, 6>& H_pAj) 
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  const StateIDType anchor_state_id = feature.observations.begin()->first;
 | 
			
		||||
  const CAMState anchor_state = state_server.cam_states[anchor_state_id];
 | 
			
		||||
@@ -1501,10 +1590,7 @@ bool MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
  Matrix3d R_w_c1 = CAMState::T_cam0_cam1.linear() * R_w_c0;
 | 
			
		||||
  Vector3d t_c1_w = t_c0_w - R_w_c1.transpose()*CAMState::T_cam0_cam1.translation();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //photometric observation
 | 
			
		||||
  std::vector<double> photo_z;
 | 
			
		||||
  VectorXd r_photo = VectorXd::Zero(N*N);
 | 
			
		||||
  
 | 
			
		||||
  // individual Jacobians
 | 
			
		||||
  Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
 | 
			
		||||
  Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
 | 
			
		||||
@@ -1517,6 +1603,69 @@ bool MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
  Matrix<double, 3, 3> dCpij_dCGtheta = Matrix<double, 3, 3>::Zero();
 | 
			
		||||
  Matrix<double, 3, 3> dCpij_dGpC = Matrix<double, 3, 3>::Zero();
 | 
			
		||||
 | 
			
		||||
  double dx, dy;
 | 
			
		||||
 | 
			
		||||
  Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
 | 
			
		||||
  cv::Point2f p_in_anchor = feature.projectPositionToCamera(anchor_state, anchor_state_id, cam0, point);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // calculate derivation for anchor frame, use position for derivation calculation
 | 
			
		||||
  // frame derivative calculated convoluting with kernel [-1, 0, 1]
 | 
			
		||||
  dx = feature.cvKernel(p_in_anchor, "Sobel_x");
 | 
			
		||||
  dy = feature.cvKernel(p_in_anchor, "Sobel_y");
 | 
			
		||||
 | 
			
		||||
  dI_dhj(0, 0) = dx * cam0.intrinsics[0];
 | 
			
		||||
  dI_dhj(0, 1) = dy * cam0.intrinsics[1];
 | 
			
		||||
 | 
			
		||||
  //dh / d{}^Cp_{ij}
 | 
			
		||||
  dh_dCpij(0, 0) = 1 / p_c0(2);
 | 
			
		||||
  dh_dCpij(1, 1) = 1 / p_c0(2);
 | 
			
		||||
  dh_dCpij(0, 2) = -(p_c0(0))/(p_c0(2)*p_c0(2));
 | 
			
		||||
  dh_dCpij(1, 2) = -(p_c0(1))/(p_c0(2)*p_c0(2));
 | 
			
		||||
 | 
			
		||||
  dCpij_dGpij = quaternionToRotation(cam_state.orientation);
 | 
			
		||||
 | 
			
		||||
  //orientation takes camera frame to world frame, we wa
 | 
			
		||||
  dh_dGpij = dh_dCpij * dCpij_dGpij;
 | 
			
		||||
 | 
			
		||||
  //dh / d X_{pl}
 | 
			
		||||
  dCpij_dCGtheta = skewSymmetric(p_c0);
 | 
			
		||||
  dCpij_dGpC = -quaternionToRotation(cam_state.orientation);
 | 
			
		||||
  dh_dXplj.block<2, 3>(0, 0) = dh_dCpij * dCpij_dCGtheta;
 | 
			
		||||
  dh_dXplj.block<2, 3>(0, 3) = dh_dCpij * dCpij_dGpC;
 | 
			
		||||
 | 
			
		||||
  // d{}^Gp_P{ij} / \rho_i
 | 
			
		||||
  double rho = feature.anchor_rho;
 | 
			
		||||
  // Isometry T_anchor_w takes a vector in anchor frame to world frame
 | 
			
		||||
  dGpj_drhoj = -feature.T_anchor_w.linear() * Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho*rho), feature.anchorPatch_ideal[count].y/(rho*rho), 1/(rho*rho));
 | 
			
		||||
 | 
			
		||||
  dGpj_XpAj.block<3, 3>(0, 0) = - feature.T_anchor_w.linear()
 | 
			
		||||
                               * skewSymmetric(Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho), 
 | 
			
		||||
                                                 feature.anchorPatch_ideal[count].y/(rho), 
 | 
			
		||||
                                                 1/(rho)));
 | 
			
		||||
  dGpj_XpAj.block<3, 3>(0, 3) = Matrix<double, 3, 3>::Identity();
 | 
			
		||||
 | 
			
		||||
  // Intermediate Jakobians
 | 
			
		||||
  H_rhoj = dI_dhj * dh_dGpij * dGpj_drhoj; // 1 x 1
 | 
			
		||||
  H_plj =  dI_dhj * dh_dXplj; // 1 x 6
 | 
			
		||||
  H_pAj =  dI_dhj * dh_dGpij * dGpj_XpAj; // 1 x 6
 | 
			
		||||
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
    const StateIDType& cam_state_id,
 | 
			
		||||
    const FeatureIDType& feature_id,
 | 
			
		||||
    MatrixXd& H_x, MatrixXd& H_y, VectorXd& r) 
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  // Prepare all the required data.
 | 
			
		||||
  const CAMState& cam_state = state_server.cam_states[cam_state_id];
 | 
			
		||||
  const Feature& feature = map_server[feature_id];
 | 
			
		||||
 | 
			
		||||
  //photometric observation
 | 
			
		||||
  VectorXd r_photo = VectorXd::Zero(N*N);
 | 
			
		||||
 | 
			
		||||
  // one line of the NxN Jacobians
 | 
			
		||||
  Eigen::Matrix<double, 1, 1> H_rhoj;
 | 
			
		||||
  Eigen::Matrix<double, 1, 6> H_plj;
 | 
			
		||||
@@ -1528,89 +1677,18 @@ bool MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
  Eigen::MatrixXd H_pA(N*N, 6);
 | 
			
		||||
 | 
			
		||||
  auto frame = cam0.moving_window.find(cam_state_id)->second.image;
 | 
			
		||||
  auto anchor_frame = cam0.moving_window.find(anchor_state_id)->second.image;
 | 
			
		||||
  //observation
 | 
			
		||||
  const Vector4d& z = feature.observations.find(cam_state_id)->second;
 | 
			
		||||
 | 
			
		||||
  //estimate photometric measurement
 | 
			
		||||
  std::vector<double> estimate_irradiance;
 | 
			
		||||
  std::vector<double> estimate_photo_z;
 | 
			
		||||
  IlluminationParameter estimated_illumination;
 | 
			
		||||
  feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
 | 
			
		||||
  
 | 
			
		||||
  // calculated here, because we need true 'estimate_irradiance' later for jacobi
 | 
			
		||||
  for (auto& estimate_irradiance_j : estimate_irradiance)
 | 
			
		||||
            estimate_photo_z.push_back (estimate_irradiance_j * 
 | 
			
		||||
                    estimated_illumination.frame_gain * estimated_illumination.feature_gain +
 | 
			
		||||
                    estimated_illumination.frame_bias + estimated_illumination.feature_bias);
 | 
			
		||||
  // calcualte residual of patch
 | 
			
		||||
  PhotometricPatchPointResidual(cam_state_id, feature, r_photo);
 | 
			
		||||
 | 
			
		||||
  // calculate jacobian for patch
 | 
			
		||||
  int count = 0;
 | 
			
		||||
  double dx, dy;
 | 
			
		||||
 | 
			
		||||
  for (auto point : feature.anchorPatch_3d)
 | 
			
		||||
  {
 | 
			
		||||
    //cout << "____feature-measurement_____\n" << endl;
 | 
			
		||||
    Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
 | 
			
		||||
    cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
 | 
			
		||||
    cv::Point2f p_in_anchor = feature.projectPositionToCamera(anchor_state, anchor_state_id, cam0, point);
 | 
			
		||||
 | 
			
		||||
    if(p_in_c0.x < 0 or p_in_c0.x > frame.cols-1 or p_in_c0.y < 0 or p_in_c0.y > frame.rows-1)
 | 
			
		||||
    {
 | 
			
		||||
      cout << "skipped" << endl;
 | 
			
		||||
      return false;
 | 
			
		||||
    }
 | 
			
		||||
    //add observation
 | 
			
		||||
    photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
 | 
			
		||||
 | 
			
		||||
      //calculate photom. residual
 | 
			
		||||
    r_photo(count) = photo_z[count] - estimate_photo_z[count];
 | 
			
		||||
    //cout << "residual: " << photo_r.back() << endl;
 | 
			
		||||
 | 
			
		||||
    // calculate derivation for anchor frame, use position for derivation calculation
 | 
			
		||||
    // frame derivative calculated convoluting with kernel [-1, 0, 1]
 | 
			
		||||
 | 
			
		||||
    dx = feature.cvKernel(p_in_anchor, "Sobel_x");
 | 
			
		||||
    dy = feature.cvKernel(p_in_anchor, "Sobel_y");
 | 
			
		||||
    
 | 
			
		||||
    // dx = feature.PixelIrradiance(cv::Point2f(p_in_anchor.x+1, p_in_anchor.y), anchor_frame) - feature.PixelIrradiance(cv::Point2f(p_in_anchor.x-1, p_in_anchor.y), anchor_frame);
 | 
			
		||||
    // dy = feature.PixelIrradiance(cv::Point2f(p_in_anchor.x, p_in_anchor.y+1), anchor_frame) - feature.PixelIrradiance(cv::Point2f(p_in_anchor.x, p_in_anchor.y-1), anchor_frame);
 | 
			
		||||
    
 | 
			
		||||
    dI_dhj(0, 0) = dx * cam0.intrinsics[0];
 | 
			
		||||
    dI_dhj(0, 1) = dy * cam0.intrinsics[1];
 | 
			
		||||
 | 
			
		||||
    //dh / d{}^Cp_{ij}
 | 
			
		||||
    dh_dCpij(0, 0) = 1 / p_c0(2);
 | 
			
		||||
    dh_dCpij(1, 1) = 1 / p_c0(2);
 | 
			
		||||
    dh_dCpij(0, 2) = -(p_c0(0))/(p_c0(2)*p_c0(2));
 | 
			
		||||
    dh_dCpij(1, 2) = -(p_c0(1))/(p_c0(2)*p_c0(2));
 | 
			
		||||
 | 
			
		||||
    dCpij_dGpij = quaternionToRotation(cam_state.orientation);
 | 
			
		||||
 | 
			
		||||
    //orientation takes camera frame to world frame, we wa
 | 
			
		||||
    dh_dGpij = dh_dCpij * dCpij_dGpij;
 | 
			
		||||
 | 
			
		||||
    //dh / d X_{pl}
 | 
			
		||||
    dCpij_dCGtheta = skewSymmetric(p_c0);
 | 
			
		||||
    dCpij_dGpC = -quaternionToRotation(cam_state.orientation);
 | 
			
		||||
    dh_dXplj.block<2, 3>(0, 0) = dh_dCpij * dCpij_dCGtheta;
 | 
			
		||||
    dh_dXplj.block<2, 3>(0, 3) = dh_dCpij * dCpij_dGpC;
 | 
			
		||||
 | 
			
		||||
    // d{}^Gp_P{ij} / \rho_i
 | 
			
		||||
    double rho = feature.anchor_rho;
 | 
			
		||||
    // Isometry T_anchor_w takes a vector in anchor frame to world frame
 | 
			
		||||
    dGpj_drhoj = -feature.T_anchor_w.linear() * Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho*rho), feature.anchorPatch_ideal[count].y/(rho*rho), 1/(rho*rho));
 | 
			
		||||
 | 
			
		||||
    dGpj_XpAj.block<3, 3>(0, 0) = - feature.T_anchor_w.linear()
 | 
			
		||||
                                 * skewSymmetric(Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho), 
 | 
			
		||||
                                                   feature.anchorPatch_ideal[count].y/(rho), 
 | 
			
		||||
                                                   1/(rho)));
 | 
			
		||||
    dGpj_XpAj.block<3, 3>(0, 3) = Matrix<double, 3, 3>::Identity();
 | 
			
		||||
 | 
			
		||||
    // Intermediate Jakobians
 | 
			
		||||
    H_rhoj = dI_dhj * dh_dGpij * dGpj_drhoj; // 1 x 1
 | 
			
		||||
    H_plj =  dI_dhj * dh_dXplj; // 1 x 6
 | 
			
		||||
    H_pAj =  dI_dhj * dh_dGpij * dGpj_XpAj; // 1 x 6
 | 
			
		||||
 | 
			
		||||
    // get jacobi of single point in patch
 | 
			
		||||
    PhotometricPatchPointJacobian(cam_state, feature, point, count, H_rhoj, H_plj, H_pAj);
 | 
			
		||||
  
 | 
			
		||||
    // stack point into entire jacobi
 | 
			
		||||
    H_rho.block<1, 1>(count, 0) = H_rhoj;
 | 
			
		||||
    H_pl.block<1, 6>(count, 0) = H_plj;
 | 
			
		||||
    H_pA.block<1, 6>(count, 0) = H_pAj;
 | 
			
		||||
@@ -1618,48 +1696,31 @@ bool MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
    count++;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  cout << "done" << endl;
 | 
			
		||||
  // construct the jacobian structure needed for nullspacing
 | 
			
		||||
  MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
 | 
			
		||||
  MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+1);
 | 
			
		||||
 | 
			
		||||
  // set anchor Jakobi
 | 
			
		||||
    // get position of anchor in cam states
 | 
			
		||||
  ConstructJacobians(H_rho, H_pl, H_pA, feature, cam_state_id, H_xl, H_yl);
 | 
			
		||||
 | 
			
		||||
  auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
 | 
			
		||||
  int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
 | 
			
		||||
  H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA; 
 | 
			
		||||
 | 
			
		||||
  // set frame Jakobi
 | 
			
		||||
    //get position of current frame in cam states
 | 
			
		||||
  auto cam_state_iter = state_server.cam_states.find(cam_state_id);
 | 
			
		||||
  int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
 | 
			
		||||
  
 | 
			
		||||
    // set jakobi of state
 | 
			
		||||
  H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = -H_pl;
 | 
			
		||||
 | 
			
		||||
    // set ones for irradiance bias
 | 
			
		||||
  // H_xl.block(0, 21+cam_state_cntr*7+6, N*N, 1) = Eigen::ArrayXd::Ones(N*N);
 | 
			
		||||
 | 
			
		||||
  // set irradiance error Block
 | 
			
		||||
  H_yl.block(0, 0,N*N, N*N) = /* estimated_illumination.feature_gain * estimated_illumination.frame_gain * */ Eigen::MatrixXd::Identity(N*N, N*N);
 | 
			
		||||
  
 | 
			
		||||
  // TODO make this calculation more fluent
 | 
			
		||||
  
 | 
			
		||||
  /*for(int i = 0; i< N*N; i++)   
 | 
			
		||||
    H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i];
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  H_yl.block(0, N*N, N*N, 1) = -H_rho;
 | 
			
		||||
 | 
			
		||||
  // set to return values
 | 
			
		||||
  H_x = H_xl;
 | 
			
		||||
  H_y = H_yl;
 | 
			
		||||
 | 
			
		||||
  r = r_photo;
 | 
			
		||||
 | 
			
		||||
  std::stringstream ss;
 | 
			
		||||
  ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << "  frame: " << cam_state_cntr;
 | 
			
		||||
  if(PRINTIMAGES)
 | 
			
		||||
  {  
 | 
			
		||||
  { 
 | 
			
		||||
    // pregenerating information for visualization
 | 
			
		||||
    std::stringstream ss;
 | 
			
		||||
    auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
 | 
			
		||||
    int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
 | 
			
		||||
    //get position of current frame in cam states
 | 
			
		||||
    auto cam_state_iter = state_server.cam_states.find(cam_state_id);
 | 
			
		||||
    int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
 | 
			
		||||
 | 
			
		||||
    ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << "  frame: " << cam_state_cntr;
 | 
			
		||||
 | 
			
		||||
    // visualizing functions
 | 
			
		||||
    feature.MarkerGeneration(marker_pub, state_server.cam_states);
 | 
			
		||||
    feature.VisualizePatch(cam_state, cam_state_id, cam0, r_photo, ss);
 | 
			
		||||
    //feature.VisualizeKernel(cam_state, cam_state_id, cam0);
 | 
			
		||||
@@ -1668,6 +1729,43 @@ bool MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool MsckfVio::ConstructJacobians(Eigen::MatrixXd& H_rho,
 | 
			
		||||
                                  Eigen::MatrixXd& H_pl,
 | 
			
		||||
                                  Eigen::MatrixXd& H_pA,
 | 
			
		||||
                                  const Feature& feature,
 | 
			
		||||
                                  const StateIDType&  cam_state_id,
 | 
			
		||||
                                  Eigen::MatrixXd& H_xl,
 | 
			
		||||
                                  Eigen::MatrixXd& H_yl)
 | 
			
		||||
{
 | 
			
		||||
  // get position of anchor in cam states
 | 
			
		||||
  auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
 | 
			
		||||
  int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
 | 
			
		||||
  // set anchor Jakobi
 | 
			
		||||
  H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA; 
 | 
			
		||||
 | 
			
		||||
  //get position of current frame in cam states
 | 
			
		||||
  auto cam_state_iter = state_server.cam_states.find(cam_state_id);
 | 
			
		||||
  // set frame Jakobi
 | 
			
		||||
  int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
 | 
			
		||||
  
 | 
			
		||||
  // set jakobi of state
 | 
			
		||||
  H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = -H_pl;
 | 
			
		||||
 | 
			
		||||
  // set ones for irradiance bias
 | 
			
		||||
  // H_xl.block(0, 21+cam_state_cntr*7+6, N*N, 1) = Eigen::ArrayXd::Ones(N*N);
 | 
			
		||||
 | 
			
		||||
  // set irradiance error Block
 | 
			
		||||
  H_yl.block(0, 0,N*N, N*N) = /* estimated_illumination.feature_gain * estimated_illumination.frame_gain * */ Eigen::MatrixXd::Identity(N*N, N*N);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /*for(int i = 0; i< N*N; i++)   
 | 
			
		||||
    H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i];
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  H_yl.block(0, N*N, N*N, 1) = -H_rho;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
bool MsckfVio::PhotometricFeatureJacobian(
 | 
			
		||||
    const FeatureIDType& feature_id,
 | 
			
		||||
@@ -1717,11 +1815,9 @@ bool MsckfVio::PhotometricFeatureJacobian(
 | 
			
		||||
    r_i.segment(stack_cntr, N*N) = r_l;
 | 
			
		||||
    stack_cntr += N*N;
 | 
			
		||||
  }
 | 
			
		||||
  if(stack_cntr == 0)
 | 
			
		||||
  {
 | 
			
		||||
    cout << "skip feature" << endl;
 | 
			
		||||
  if(stack_cntr < 2*N*N)
 | 
			
		||||
    return false;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Project the residual and Jacobians onto the nullspace
 | 
			
		||||
  // of H_yj.
 | 
			
		||||
 | 
			
		||||
@@ -2027,8 +2123,8 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
			
		||||
  VectorXd delta_x = K * r;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  cout << "reg rotate: " << delta_x[0] << ", " << delta_x[1] << ", " << delta_x[2] << endl;
 | 
			
		||||
  cout << "reg update: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
 | 
			
		||||
  // cout << "reg rotate: " << delta_x[0] << ", " << delta_x[1] << ", " << delta_x[2] << endl;
 | 
			
		||||
  cout << "reg: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
 | 
			
		||||
 | 
			
		||||
  if(FILTER != 0) return;
 | 
			
		||||
 | 
			
		||||
@@ -2053,9 +2149,6 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
			
		||||
 | 
			
		||||
    myfile.close();
 | 
			
		||||
  }
 | 
			
		||||
  delta_position = Eigen::Vector3d(delta_x[12], delta_x[13], delta_x[14]);
 | 
			
		||||
  delta_orientation = Eigen::Vector3d(delta_x[0], delta_x[1], delta_x[2]);
 | 
			
		||||
 | 
			
		||||
  // Update the IMU state.
 | 
			
		||||
  
 | 
			
		||||
  const VectorXd& delta_x_imu = delta_x.head<21>();
 | 
			
		||||
@@ -2239,10 +2332,13 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
 | 
			
		||||
    // Perform QR decompostion on H_sparse.
 | 
			
		||||
    SPQR<SparseMatrix<double> > spqr_helper;
 | 
			
		||||
    spqr_helper.setSPQROrdering(SPQR_ORDERING_NATURAL);
 | 
			
		||||
    spqr_helper.compute(H_sparse);
 | 
			
		||||
 | 
			
		||||
    cout << "comp" << endl;
 | 
			
		||||
    spqr_helper.compute(H_sparse);
 | 
			
		||||
    cout << "done" << endl;
 | 
			
		||||
    MatrixXd H_temp;
 | 
			
		||||
    VectorXd r_temp;
 | 
			
		||||
 | 
			
		||||
    (spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);
 | 
			
		||||
    (spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);
 | 
			
		||||
 | 
			
		||||
@@ -2261,6 +2357,7 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
 | 
			
		||||
      Feature::observation_noise*MatrixXd::Identity(
 | 
			
		||||
        H_thin.rows(), H_thin.rows());
 | 
			
		||||
  //MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H*P);
 | 
			
		||||
 | 
			
		||||
 MatrixXd K_transpose = S.ldlt().solve(H_thin*P);
 | 
			
		||||
  MatrixXd K = K_transpose.transpose();
 | 
			
		||||
  // Compute the error of the state.
 | 
			
		||||
@@ -2271,28 +2368,27 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
 | 
			
		||||
 | 
			
		||||
  if(PRINTIMAGES)
 | 
			
		||||
  {
 | 
			
		||||
  //octave
 | 
			
		||||
  ofstream myfile;
 | 
			
		||||
  
 | 
			
		||||
  myfile.open("/home/raphael/dev/octave/measurement2octave");
 | 
			
		||||
  myfile << "# Created by Octave 3.8.1, Wed Jun 12 14:36:37 2019 CEST <raphael@raphael-desktop>\n"
 | 
			
		||||
         << "# name: K\n"
 | 
			
		||||
         << "# type: matrix\n"
 | 
			
		||||
         << "# rows: " << K.rows() << "\n"
 | 
			
		||||
         << "# columns: " << K.cols() << "\n"
 | 
			
		||||
         << K << endl;
 | 
			
		||||
    //octave
 | 
			
		||||
    ofstream myfile;
 | 
			
		||||
    
 | 
			
		||||
    myfile.open("/home/raphael/dev/octave/measurement2octave");
 | 
			
		||||
    myfile << "# Created by Octave 3.8.1, Wed Jun 12 14:36:37 2019 CEST <raphael@raphael-desktop>\n"
 | 
			
		||||
           << "# name: K\n"
 | 
			
		||||
           << "# type: matrix\n"
 | 
			
		||||
           << "# rows: " << K.rows() << "\n"
 | 
			
		||||
           << "# columns: " << K.cols() << "\n"
 | 
			
		||||
           << K << endl;
 | 
			
		||||
 | 
			
		||||
  myfile << "# name: r\n"
 | 
			
		||||
         << "# type: matrix\n"
 | 
			
		||||
         << "# rows: " << r.rows() << "\n"
 | 
			
		||||
         << "# columns: " << r.cols() << "\n"
 | 
			
		||||
         << r << endl;
 | 
			
		||||
    myfile << "# name: r\n"
 | 
			
		||||
           << "# type: matrix\n"
 | 
			
		||||
           << "# rows: " << r.rows() << "\n"
 | 
			
		||||
           << "# columns: " << r.cols() << "\n"
 | 
			
		||||
           << r << endl;
 | 
			
		||||
 | 
			
		||||
  myfile.close();
 | 
			
		||||
    myfile.close();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  delta_position = Eigen::Vector3d(delta_x[12], delta_x[13], delta_x[14]);
 | 
			
		||||
  delta_orientation = Eigen::Vector3d(delta_x[0], delta_x[1], delta_x[2]);
 | 
			
		||||
  cout << "pho: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
 | 
			
		||||
 | 
			
		||||
  const VectorXd& delta_x_imu = delta_x.head<21>();
 | 
			
		||||
 | 
			
		||||
@@ -2349,8 +2445,8 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
 | 
			
		||||
  MatrixXd P1 = H * state_server.state_cov * H.transpose();
 | 
			
		||||
 | 
			
		||||
  MatrixXd P1 = H * state_server.state_cov * H.transpose();
 | 
			
		||||
 | 
			
		||||
  MatrixXd P2 = Feature::observation_noise *
 | 
			
		||||
    MatrixXd::Identity(H.rows(), H.rows());
 | 
			
		||||
@@ -2363,10 +2459,10 @@ bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof)
 | 
			
		||||
    if (chi_squared_test_table[dof] == 0)
 | 
			
		||||
      return false;
 | 
			
		||||
  if (gamma < chi_squared_test_table[dof]) {
 | 
			
		||||
    //cout << "passed" << endl;
 | 
			
		||||
    // cout << "passed" << endl;
 | 
			
		||||
    return true;
 | 
			
		||||
  } else {
 | 
			
		||||
    //cout << "failed" << endl;
 | 
			
		||||
    // cout << "failed" << endl;
 | 
			
		||||
    return false;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
@@ -2465,16 +2561,15 @@ void MsckfVio::removeLostFeatures() {
 | 
			
		||||
    VectorXd pr_j;
 | 
			
		||||
    MatrixXd twoH_xj;
 | 
			
		||||
    VectorXd twor_j;
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
    if(PhotometricFeatureJacobian(feature.id, cam_state_ids, pH_xj, pr_j) == true);
 | 
			
		||||
    
 | 
			
		||||
    if(PhotometricFeatureJacobian(feature.id, cam_state_ids, pH_xj, pr_j) == true)
 | 
			
		||||
    {
 | 
			
		||||
      if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
 | 
			
		||||
        if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
 | 
			
		||||
        pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
 | 
			
		||||
        pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
 | 
			
		||||
        pstack_cntr += pH_xj.rows();
 | 
			
		||||
      }
 | 
			
		||||
    }*/
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    featureJacobian(feature.id, cam_state_ids, H_xj, r_j);
 | 
			
		||||
    twodotFeatureJacobian(feature.id, cam_state_ids, twoH_xj, twor_j);
 | 
			
		||||
@@ -2499,10 +2594,11 @@ void MsckfVio::removeLostFeatures() {
 | 
			
		||||
  {
 | 
			
		||||
    pH_x.conservativeResize(pstack_cntr, pH_x.cols());
 | 
			
		||||
    pr.conservativeResize(pstack_cntr);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
    photometricMeasurementUpdate(pH_x, pr);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  H_x.conservativeResize(stack_cntr, H_x.cols());
 | 
			
		||||
  r.conservativeResize(stack_cntr);
 | 
			
		||||
 
 | 
			
		||||
@@ -2648,17 +2744,15 @@ void MsckfVio::pruneLastCamStateBuffer()
 | 
			
		||||
    for (const auto& cam_state : state_server.cam_states)
 | 
			
		||||
      involved_cam_state_ids.push_back(cam_state.first);
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
    if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true);
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
    if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true)
 | 
			
		||||
    {
 | 
			
		||||
      if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
 | 
			
		||||
        pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
 | 
			
		||||
        pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
 | 
			
		||||
        pstack_cntr += pH_xj.rows();
 | 
			
		||||
      }
 | 
			
		||||
    }*/
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
 | 
			
		||||
    twodotFeatureJacobian(feature.id, involved_cam_state_ids, twoH_xj, twor_j);
 | 
			
		||||
@@ -2679,26 +2773,26 @@ void MsckfVio::pruneLastCamStateBuffer()
 | 
			
		||||
      feature.observations.erase(cam_id);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (pstack_cntr)
 | 
			
		||||
 | 
			
		||||
  if(pstack_cntr)
 | 
			
		||||
  {
 | 
			
		||||
    pH_x.conservativeResize(pstack_cntr, pH_x.cols());
 | 
			
		||||
    pr.conservativeResize(pstack_cntr);
 | 
			
		||||
 | 
			
		||||
    photometricMeasurementUpdate(pH_x, pr);  
 | 
			
		||||
    photometricMeasurementUpdate(pH_x, pr);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  H_x.conservativeResize(stack_cntr, H_x.cols());
 | 
			
		||||
  r.conservativeResize(stack_cntr);
 | 
			
		||||
  // Perform measurement update.  
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
  twoH_x.conservativeResize(twostack_cntr, twoH_x.cols());
 | 
			
		||||
  twor.conservativeResize(twostack_cntr);
 | 
			
		||||
  // Perform measurement update.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  // Perform the measurement update step.
 | 
			
		||||
  measurementUpdate(H_x, r);
 | 
			
		||||
  twoMeasurementUpdate(twoH_x, twor);
 | 
			
		||||
 | 
			
		||||
  //reduction
 | 
			
		||||
  int cam_sequence = std::distance(state_server.cam_states.begin(),
 | 
			
		||||
      state_server.cam_states.find(rm_cam_state_id));
 | 
			
		||||
@@ -2831,7 +2925,7 @@ void MsckfVio::pruneCamStateBuffer() {
 | 
			
		||||
 | 
			
		||||
    if (involved_cam_state_ids.size() == 0) continue;
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
    
 | 
			
		||||
    if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true)
 | 
			
		||||
    { 
 | 
			
		||||
      if (gatingTest(pH_xj, pr_j, pr_j.size())) {// involved_cam_state_ids.size())) {
 | 
			
		||||
@@ -2839,7 +2933,8 @@ void MsckfVio::pruneCamStateBuffer() {
 | 
			
		||||
        pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
 | 
			
		||||
        pstack_cntr += pH_xj.rows();
 | 
			
		||||
      }
 | 
			
		||||
    }*/
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
 | 
			
		||||
    twodotFeatureJacobian(feature.id, involved_cam_state_ids, twoH_xj, twor_j);
 | 
			
		||||
    
 | 
			
		||||
@@ -2860,23 +2955,24 @@ void MsckfVio::pruneCamStateBuffer() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  if(pstack_cntr > 0)
 | 
			
		||||
  
 | 
			
		||||
  if(pstack_cntr)
 | 
			
		||||
  {
 | 
			
		||||
    pH_x.conservativeResize(pstack_cntr, pH_x.cols());
 | 
			
		||||
    pr.conservativeResize(pstack_cntr); 
 | 
			
		||||
  
 | 
			
		||||
    pr.conservativeResize(pstack_cntr);
 | 
			
		||||
    photometricMeasurementUpdate(pH_x, pr);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  H_x.conservativeResize(stack_cntr, H_x.cols());
 | 
			
		||||
  r.conservativeResize(stack_cntr);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
  twoH_x.conservativeResize(twostack_cntr, twoH_x.cols());
 | 
			
		||||
  twor.conservativeResize(twostack_cntr);
 | 
			
		||||
 | 
			
		||||
  // Perform measurement update.
 | 
			
		||||
  
 | 
			
		||||
  // Perform the measurement update step.
 | 
			
		||||
  measurementUpdate(H_x, r);
 | 
			
		||||
  twoMeasurementUpdate(twoH_x, twor);
 | 
			
		||||
 | 
			
		||||
  //reduction
 | 
			
		||||
  for (const auto& cam_id : rm_cam_state_ids) {
 | 
			
		||||
    int cam_sequence = std::distance(state_server.cam_states.begin(),
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user