restructured calcualtion of patches in code
This commit is contained in:
parent
58fe991647
commit
737c23f32a
@ -202,32 +202,56 @@ class MsckfVio {
|
|||||||
Eigen::Vector4d& r);
|
Eigen::Vector4d& r);
|
||||||
// This function computes the Jacobian of all measurements viewed
|
// This function computes the Jacobian of all measurements viewed
|
||||||
// in the given camera states of this feature.
|
// in the given camera states of this feature.
|
||||||
void featureJacobian(const FeatureIDType& feature_id,
|
void featureJacobian(
|
||||||
|
const FeatureIDType& feature_id,
|
||||||
const std::vector<StateIDType>& cam_state_ids,
|
const std::vector<StateIDType>& cam_state_ids,
|
||||||
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
|
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
|
||||||
|
|
||||||
|
|
||||||
void twodotMeasurementJacobian(
|
void twodotMeasurementJacobian(
|
||||||
const StateIDType& cam_state_id,
|
const StateIDType& cam_state_id,
|
||||||
const FeatureIDType& feature_id,
|
const FeatureIDType& feature_id,
|
||||||
Eigen::MatrixXd& H_x, Eigen::MatrixXd& H_y, Eigen::VectorXd& r);
|
Eigen::MatrixXd& H_x, Eigen::MatrixXd& H_y, Eigen::VectorXd& r);
|
||||||
|
|
||||||
|
bool ConstructJacobians(
|
||||||
|
Eigen::MatrixXd& H_rho,
|
||||||
|
Eigen::MatrixXd& H_pl,
|
||||||
|
Eigen::MatrixXd& H_pA,
|
||||||
|
const Feature& feature,
|
||||||
|
const StateIDType& cam_state_id,
|
||||||
|
Eigen::MatrixXd& H_xl,
|
||||||
|
Eigen::MatrixXd& H_yl);
|
||||||
|
|
||||||
|
bool PhotometricPatchPointResidual(
|
||||||
|
const StateIDType& cam_state_id,
|
||||||
|
const Feature& feature,
|
||||||
|
Eigen::VectorXd& r);
|
||||||
|
|
||||||
|
bool PhotometricPatchPointJacobian(
|
||||||
|
const CAMState& cam_state,
|
||||||
|
const Feature& feature,
|
||||||
|
Eigen::Vector3d point,
|
||||||
|
int count,
|
||||||
|
Eigen::Matrix<double, 1, 1>& H_rhoj,
|
||||||
|
Eigen::Matrix<double, 1, 6>& H_plj,
|
||||||
|
Eigen::Matrix<double, 1, 6>& H_pAj);
|
||||||
|
|
||||||
bool PhotometricMeasurementJacobian(
|
bool PhotometricMeasurementJacobian(
|
||||||
const StateIDType& cam_state_id,
|
const StateIDType& cam_state_id,
|
||||||
const FeatureIDType& feature_id,
|
const FeatureIDType& feature_id,
|
||||||
Eigen::MatrixXd& H_x,
|
Eigen::MatrixXd& H_x,
|
||||||
Eigen::MatrixXd& H_y,
|
Eigen::MatrixXd& H_y,
|
||||||
Eigen::VectorXd& r);
|
Eigen::VectorXd& r);
|
||||||
|
|
||||||
void twodotFeatureJacobian(
|
void twodotFeatureJacobian(
|
||||||
const FeatureIDType& feature_id,
|
const FeatureIDType& feature_id,
|
||||||
const std::vector<StateIDType>& cam_state_ids,
|
const std::vector<StateIDType>& cam_state_ids,
|
||||||
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
|
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
|
||||||
|
|
||||||
bool PhotometricFeatureJacobian(
|
bool PhotometricFeatureJacobian(
|
||||||
const FeatureIDType& feature_id,
|
const FeatureIDType& feature_id,
|
||||||
const std::vector<StateIDType>& cam_state_ids,
|
const std::vector<StateIDType>& cam_state_ids,
|
||||||
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
|
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
|
||||||
|
|
||||||
void photometricMeasurementUpdate(const Eigen::MatrixXd& H, const Eigen::VectorXd& r);
|
void photometricMeasurementUpdate(const Eigen::MatrixXd& H, const Eigen::VectorXd& r);
|
||||||
void measurementUpdate(const Eigen::MatrixXd& H,
|
void measurementUpdate(const Eigen::MatrixXd& H,
|
||||||
@ -263,6 +287,13 @@ class MsckfVio {
|
|||||||
// Chi squared test table.
|
// Chi squared test table.
|
||||||
static std::map<int, double> chi_squared_test_table;
|
static std::map<int, double> chi_squared_test_table;
|
||||||
|
|
||||||
|
double eval_time;
|
||||||
|
|
||||||
|
IMUState timed_old_imu_state;
|
||||||
|
IMUState timed_old_true_state;
|
||||||
|
|
||||||
|
IMUState old_imu_state;
|
||||||
|
IMUState old_true_state;
|
||||||
|
|
||||||
// change in position
|
// change in position
|
||||||
Eigen::Vector3d delta_position;
|
Eigen::Vector3d delta_position;
|
||||||
|
@ -18,14 +18,14 @@
|
|||||||
output="screen">
|
output="screen">
|
||||||
|
|
||||||
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
|
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
|
||||||
<param name="FILTER" value="1"/>
|
<param name="FILTER" value="0"/>
|
||||||
|
|
||||||
<!-- Debugging Flaggs -->
|
<!-- Debugging Flaggs -->
|
||||||
<param name="StreamPause" value="true"/>
|
<param name="StreamPause" value="true"/>
|
||||||
<param name="PrintImages" value="false"/>
|
<param name="PrintImages" value="false"/>
|
||||||
<param name="GroundTruth" value="false"/>
|
<param name="GroundTruth" value="false"/>
|
||||||
|
|
||||||
<param name="patch_size_n" value="5"/>
|
<param name="patch_size_n" value="3"/>
|
||||||
<!-- Calibration parameters -->
|
<!-- Calibration parameters -->
|
||||||
<rosparam command="load" file="$(arg calibration_file)"/>
|
<rosparam command="load" file="$(arg calibration_file)"/>
|
||||||
|
|
||||||
|
@ -223,8 +223,8 @@ void ImageProcessor::stereoCallback(
|
|||||||
|
|
||||||
image_handler::undistortImage(cam0_curr_img_ptr->image, cam0_curr_img_ptr->image, cam0.distortion_model, cam0.intrinsics, cam0.distortion_coeffs);
|
image_handler::undistortImage(cam0_curr_img_ptr->image, cam0_curr_img_ptr->image, cam0.distortion_model, cam0.intrinsics, cam0.distortion_coeffs);
|
||||||
image_handler::undistortImage(cam1_curr_img_ptr->image, cam1_curr_img_ptr->image, cam1.distortion_model, cam1.intrinsics, cam1.distortion_coeffs);
|
image_handler::undistortImage(cam1_curr_img_ptr->image, cam1_curr_img_ptr->image, cam1.distortion_model, cam1.intrinsics, cam1.distortion_coeffs);
|
||||||
ROS_INFO("Publishing: %f",
|
//ROS_INFO("Publishing: %f",
|
||||||
(ros::Time::now()-start_time).toSec());
|
// (ros::Time::now()-start_time).toSec());
|
||||||
// Build the image pyramids once since they're used at multiple places
|
// Build the image pyramids once since they're used at multiple places
|
||||||
createImagePyramids();
|
createImagePyramids();
|
||||||
|
|
||||||
|
@ -260,6 +260,7 @@ bool MsckfVio::createRosIO() {
|
|||||||
// activating bag playing parameter, for debugging
|
// activating bag playing parameter, for debugging
|
||||||
nh.setParam("/play_bag", true);
|
nh.setParam("/play_bag", true);
|
||||||
|
|
||||||
|
eval_time = 0;
|
||||||
odom_pub = nh.advertise<nav_msgs::Odometry>("odom", 10);
|
odom_pub = nh.advertise<nav_msgs::Odometry>("odom", 10);
|
||||||
truth_odom_pub = nh.advertise<nav_msgs::Odometry>("true_odom", 10);
|
truth_odom_pub = nh.advertise<nav_msgs::Odometry>("true_odom", 10);
|
||||||
feature_pub = nh.advertise<sensor_msgs::PointCloud2>(
|
feature_pub = nh.advertise<sensor_msgs::PointCloud2>(
|
||||||
@ -412,6 +413,10 @@ void MsckfVio::imageCallback(
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
old_imu_state = state_server.imu_state;
|
||||||
|
old_true_state = true_state_server.imu_state;
|
||||||
|
|
||||||
|
|
||||||
// Start the system if the first image is received.
|
// Start the system if the first image is received.
|
||||||
// The frame where the first image is received will be
|
// The frame where the first image is received will be
|
||||||
// the origin.
|
// the origin.
|
||||||
@ -419,7 +424,6 @@ void MsckfVio::imageCallback(
|
|||||||
is_first_img = false;
|
is_first_img = false;
|
||||||
state_server.imu_state.time = feature_msg->header.stamp.toSec();
|
state_server.imu_state.time = feature_msg->header.stamp.toSec();
|
||||||
}
|
}
|
||||||
|
|
||||||
static double max_processing_time = 0.0;
|
static double max_processing_time = 0.0;
|
||||||
static int critical_time_cntr = 0;
|
static int critical_time_cntr = 0;
|
||||||
double processing_start_time = ros::Time::now().toSec();
|
double processing_start_time = ros::Time::now().toSec();
|
||||||
@ -428,23 +432,13 @@ void MsckfVio::imageCallback(
|
|||||||
// that are received before the image feature_msg.
|
// that are received before the image feature_msg.
|
||||||
ros::Time start_time = ros::Time::now();
|
ros::Time start_time = ros::Time::now();
|
||||||
|
|
||||||
|
nh.param<int>("FILTER", FILTER, 0);
|
||||||
|
|
||||||
batchImuProcessing(feature_msg->header.stamp.toSec());
|
batchImuProcessing(feature_msg->header.stamp.toSec());
|
||||||
|
|
||||||
if(GROUNDTRUTH)
|
|
||||||
{
|
|
||||||
state_server.imu_state.position = true_state_server.imu_state.position;
|
|
||||||
state_server.imu_state.orientation = true_state_server.imu_state.orientation;
|
|
||||||
state_server.imu_state.position_null = true_state_server.imu_state.position_null;
|
|
||||||
state_server.imu_state.orientation_null = true_state_server.imu_state.orientation_null;
|
|
||||||
|
|
||||||
state_server.imu_state.R_imu_cam0 = true_state_server.imu_state.R_imu_cam0;
|
|
||||||
state_server.imu_state.t_cam0_imu = true_state_server.imu_state.t_cam0_imu;
|
|
||||||
}
|
|
||||||
double imu_processing_time = (
|
double imu_processing_time = (
|
||||||
ros::Time::now()-start_time).toSec();
|
ros::Time::now()-start_time).toSec();
|
||||||
|
|
||||||
cout << "1" << endl;
|
|
||||||
// Augment the state vector.
|
// Augment the state vector.
|
||||||
start_time = ros::Time::now();
|
start_time = ros::Time::now();
|
||||||
//truePhotometricStateAugmentation(feature_msg->header.stamp.toSec());
|
//truePhotometricStateAugmentation(feature_msg->header.stamp.toSec());
|
||||||
@ -453,7 +447,7 @@ void MsckfVio::imageCallback(
|
|||||||
ros::Time::now()-start_time).toSec();
|
ros::Time::now()-start_time).toSec();
|
||||||
|
|
||||||
|
|
||||||
cout << "2" << endl;
|
// cout << "2" << endl;
|
||||||
// Add new observations for existing features or new
|
// Add new observations for existing features or new
|
||||||
// features in the map server.
|
// features in the map server.
|
||||||
start_time = ros::Time::now();
|
start_time = ros::Time::now();
|
||||||
@ -462,7 +456,7 @@ void MsckfVio::imageCallback(
|
|||||||
ros::Time::now()-start_time).toSec();
|
ros::Time::now()-start_time).toSec();
|
||||||
|
|
||||||
|
|
||||||
cout << "3" << endl;
|
// cout << "3" << endl;
|
||||||
// Add new images to moving window
|
// Add new images to moving window
|
||||||
start_time = ros::Time::now();
|
start_time = ros::Time::now();
|
||||||
manageMovingWindow(cam0_img, cam1_img, feature_msg);
|
manageMovingWindow(cam0_img, cam1_img, feature_msg);
|
||||||
@ -470,14 +464,14 @@ void MsckfVio::imageCallback(
|
|||||||
ros::Time::now()-start_time).toSec();
|
ros::Time::now()-start_time).toSec();
|
||||||
|
|
||||||
|
|
||||||
cout << "4" << endl;
|
// cout << "4" << endl;
|
||||||
// Perform measurement update if necessary.
|
// Perform measurement update if necessary.
|
||||||
start_time = ros::Time::now();
|
start_time = ros::Time::now();
|
||||||
removeLostFeatures();
|
removeLostFeatures();
|
||||||
double remove_lost_features_time = (
|
double remove_lost_features_time = (
|
||||||
ros::Time::now()-start_time).toSec();
|
ros::Time::now()-start_time).toSec();
|
||||||
|
|
||||||
cout << "5" << endl;
|
// cout << "5" << endl;
|
||||||
start_time = ros::Time::now();
|
start_time = ros::Time::now();
|
||||||
pruneLastCamStateBuffer();
|
pruneLastCamStateBuffer();
|
||||||
double prune_cam_states_time = (
|
double prune_cam_states_time = (
|
||||||
@ -487,7 +481,7 @@ void MsckfVio::imageCallback(
|
|||||||
batchTruthProcessing(feature_msg->header.stamp.toSec());
|
batchTruthProcessing(feature_msg->header.stamp.toSec());
|
||||||
|
|
||||||
|
|
||||||
cout << "6" << endl;
|
// cout << "6" << endl;
|
||||||
// Publish the odometry.
|
// Publish the odometry.
|
||||||
start_time = ros::Time::now();
|
start_time = ros::Time::now();
|
||||||
publish(feature_msg->header.stamp);
|
publish(feature_msg->header.stamp);
|
||||||
@ -504,18 +498,18 @@ void MsckfVio::imageCallback(
|
|||||||
++critical_time_cntr;
|
++critical_time_cntr;
|
||||||
ROS_INFO("\033[1;31mTotal processing time %f/%d...\033[0m",
|
ROS_INFO("\033[1;31mTotal processing time %f/%d...\033[0m",
|
||||||
processing_time, critical_time_cntr);
|
processing_time, critical_time_cntr);
|
||||||
printf("IMU processing time: %f/%f\n",
|
//printf("IMU processing time: %f/%f\n",
|
||||||
imu_processing_time, imu_processing_time/processing_time);
|
// imu_processing_time, imu_processing_time/processing_time);
|
||||||
printf("State augmentation time: %f/%f\n",
|
//printf("State augmentation time: %f/%f\n",
|
||||||
state_augmentation_time, state_augmentation_time/processing_time);
|
// state_augmentation_time, state_augmentation_time/processing_time);
|
||||||
printf("Add observations time: %f/%f\n",
|
//printf("Add observations time: %f/%f\n",
|
||||||
add_observations_time, add_observations_time/processing_time);
|
// add_observations_time, add_observations_time/processing_time);
|
||||||
printf("Remove lost features time: %f/%f\n",
|
//printf("Remove lost features time: %f/%f\n",
|
||||||
remove_lost_features_time, remove_lost_features_time/processing_time);
|
// remove_lost_features_time, remove_lost_features_time/processing_time);
|
||||||
printf("Remove camera states time: %f/%f\n",
|
//printf("Remove camera states time: %f/%f\n",
|
||||||
prune_cam_states_time, prune_cam_states_time/processing_time);
|
// prune_cam_states_time, prune_cam_states_time/processing_time);
|
||||||
printf("Publish time: %f/%f\n",
|
//printf("Publish time: %f/%f\n",
|
||||||
publish_time, publish_time/processing_time);
|
// publish_time, publish_time/processing_time);
|
||||||
}
|
}
|
||||||
|
|
||||||
if(STREAMPAUSE)
|
if(STREAMPAUSE)
|
||||||
@ -806,8 +800,6 @@ void MsckfVio::batchTruthProcessing(const double& time_bound) {
|
|||||||
// Counter how many IMU msgs in the buffer are used.
|
// Counter how many IMU msgs in the buffer are used.
|
||||||
int used_truth_msg_cntr = 0;
|
int used_truth_msg_cntr = 0;
|
||||||
|
|
||||||
const IMUState old_true_state = true_state_server.imu_state;
|
|
||||||
|
|
||||||
for (const auto& truth_msg : truth_msg_buffer) {
|
for (const auto& truth_msg : truth_msg_buffer) {
|
||||||
double truth_time = truth_msg.header.stamp.toSec();
|
double truth_time = truth_msg.header.stamp.toSec();
|
||||||
if (truth_time < true_state_server.imu_state.time) {
|
if (truth_time < true_state_server.imu_state.time) {
|
||||||
@ -839,22 +831,76 @@ void MsckfVio::batchTruthProcessing(const double& time_bound) {
|
|||||||
truth_msg_buffer.erase(truth_msg_buffer.begin(),
|
truth_msg_buffer.erase(truth_msg_buffer.begin(),
|
||||||
truth_msg_buffer.begin()+used_truth_msg_cntr);
|
truth_msg_buffer.begin()+used_truth_msg_cntr);
|
||||||
|
|
||||||
|
/*
|
||||||
|
// calculate change
|
||||||
|
delta_position = state_server.imu_state.position - old_imu_state.position;
|
||||||
|
Eigen::Vector4d delta_orientation_quaternion = quaternionMultiplication(quaternionConjugate(state_server.imu_state.orientation), old_imu_state.orientation);
|
||||||
|
delta_orientation = Eigen::Vector3d(delta_orientation_quaternion[0]*2, delta_orientation_quaternion[1]*2, delta_orientation_quaternion[2]*2);
|
||||||
// calculate error in position
|
// calculate error in position
|
||||||
|
|
||||||
// calculate error in change
|
// calculate error in change
|
||||||
|
|
||||||
// calculate change
|
|
||||||
Eigen::Vector3d delta_true_position = true_state_server.imu_state.position - old_true_state.position;
|
Eigen::Vector3d delta_true_position = true_state_server.imu_state.position - old_true_state.position;
|
||||||
Eigen::Vector4d delta_true_orientation = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), old_true_state.orientation);
|
Eigen::Vector4d delta_true_orientation = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), old_true_state.orientation);
|
||||||
Eigen::Vector3d delta_smallangle_true_orientation = Eigen::Vector3d(delta_true_orientation[0]*2, delta_true_orientation[1]*2, delta_true_orientation[2]*2);
|
Eigen::Vector3d delta_smallangle_true_orientation = Eigen::Vector3d(delta_true_orientation[0]*2, delta_true_orientation[1]*2, delta_true_orientation[2]*2);
|
||||||
Eigen::Vector3d error_delta_position = delta_true_position - delta_position;
|
Eigen::Vector3d error_delta_position = delta_true_position - delta_position;
|
||||||
Eigen::Vector3d error_delta_orientation = delta_smallangle_true_orientation - delta_orientation;
|
Eigen::Vector3d error_delta_orientation = delta_smallangle_true_orientation - delta_orientation;
|
||||||
|
|
||||||
double dx = (error_delta_position[0]/delta_true_position[0]);
|
Eigen::Vector3d error_position = true_state_server.imu_state.position - state_server.imu_state.position;
|
||||||
double dy = (error_delta_position[1]/delta_true_position[1]);
|
Eigen::Vector4d error_orientation_q = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), state_server.imu_state.orientation);
|
||||||
double dz = (error_delta_position[2]/delta_true_position[2]);
|
Eigen::Vector3d error_orientation = Eigen::Vector3d(error_orientation_q[0]*2, error_orientation_q[1]*2, error_orientation_q[2]*2);
|
||||||
cout << "relative pos error: " << sqrt(dx*dx + dy*dy + dz*dz) * 100 << "%" << endl;
|
|
||||||
|
|
||||||
|
double relerr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
|
||||||
|
sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
|
||||||
|
|
||||||
|
double relOerr = (sqrt(error_delta_orientation[0]*error_delta_orientation[0] + error_delta_orientation[1]*error_delta_orientation[1] + error_delta_orientation[2]*error_delta_orientation[2])/
|
||||||
|
sqrt(delta_smallangle_true_orientation[0]*delta_smallangle_true_orientation[0] + delta_smallangle_true_orientation[1]*delta_smallangle_true_orientation[1] + delta_smallangle_true_orientation[2]*delta_smallangle_true_orientation[2]));
|
||||||
|
|
||||||
|
double abserr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
|
||||||
|
sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
|
||||||
|
|
||||||
|
|
||||||
|
cout << "relative pos error: " << relerr * 100 << "%" << endl;
|
||||||
|
cout << "relative ori error: " << relOerr * 100 << "%" << endl;
|
||||||
|
//cout << "absolute pos error: " <<
|
||||||
|
*/
|
||||||
|
if (eval_time + 1 < ros::Time::now().toSec())
|
||||||
|
{
|
||||||
|
|
||||||
|
// calculate change
|
||||||
|
delta_position = state_server.imu_state.position - timed_old_imu_state.position;
|
||||||
|
Eigen::Vector4d delta_orientation_quaternion = quaternionMultiplication(quaternionConjugate(state_server.imu_state.orientation), timed_old_imu_state.orientation);
|
||||||
|
delta_orientation = Eigen::Vector3d(delta_orientation_quaternion[0]*2, delta_orientation_quaternion[1]*2, delta_orientation_quaternion[2]*2);
|
||||||
|
// calculate error in position
|
||||||
|
|
||||||
|
// calculate error in change
|
||||||
|
|
||||||
|
Eigen::Vector3d delta_true_position = true_state_server.imu_state.position - timed_old_true_state.position;
|
||||||
|
Eigen::Vector4d delta_true_orientation = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), timed_old_true_state.orientation);
|
||||||
|
Eigen::Vector3d delta_smallangle_true_orientation = Eigen::Vector3d(delta_true_orientation[0]*2, delta_true_orientation[1]*2, delta_true_orientation[2]*2);
|
||||||
|
Eigen::Vector3d error_delta_position = delta_true_position - delta_position;
|
||||||
|
Eigen::Vector3d error_delta_orientation = delta_smallangle_true_orientation - delta_orientation;
|
||||||
|
|
||||||
|
Eigen::Vector3d error_position = true_state_server.imu_state.position - state_server.imu_state.position;
|
||||||
|
Eigen::Vector4d error_orientation_q = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), state_server.imu_state.orientation);
|
||||||
|
Eigen::Vector3d error_orientation = Eigen::Vector3d(error_orientation_q[0]*2, error_orientation_q[1]*2, error_orientation_q[2]*2);
|
||||||
|
|
||||||
|
double relerr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
|
||||||
|
sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
|
||||||
|
|
||||||
|
double relOerr = (sqrt(error_delta_orientation[0]*error_delta_orientation[0] + error_delta_orientation[1]*error_delta_orientation[1] + error_delta_orientation[2]*error_delta_orientation[2])/
|
||||||
|
sqrt(delta_smallangle_true_orientation[0]*delta_smallangle_true_orientation[0] + delta_smallangle_true_orientation[1]*delta_smallangle_true_orientation[1] + delta_smallangle_true_orientation[2]*delta_smallangle_true_orientation[2]));
|
||||||
|
|
||||||
|
double abserr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
|
||||||
|
sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
|
||||||
|
|
||||||
|
// cout << "relative pos error: " << relerr * 100 << "%" << endl;
|
||||||
|
// cout << "relative ori error: " << relOerr * 100 << "%" << endl;
|
||||||
|
|
||||||
|
timed_old_imu_state = state_server.imu_state;
|
||||||
|
timed_old_true_state = true_state_server.imu_state;
|
||||||
|
eval_time = ros::Time::now().toSec();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void MsckfVio::processTruthtoIMU(const double& time,
|
void MsckfVio::processTruthtoIMU(const double& time,
|
||||||
@ -1477,17 +1523,60 @@ void MsckfVio::twodotFeatureJacobian(
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool MsckfVio::PhotometricPatchPointResidual(
|
||||||
|
const StateIDType& cam_state_id,
|
||||||
bool MsckfVio::PhotometricMeasurementJacobian(
|
const Feature& feature,
|
||||||
const StateIDType& cam_state_id,
|
VectorXd& r)
|
||||||
const FeatureIDType& feature_id,
|
|
||||||
MatrixXd& H_x, MatrixXd& H_y, VectorXd& r)
|
|
||||||
{
|
{
|
||||||
|
|
||||||
// Prepare all the required data.
|
VectorXd r_photo = VectorXd::Zero(N*N);
|
||||||
|
int count = 0;
|
||||||
|
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
|
||||||
|
|
||||||
const CAMState& cam_state = state_server.cam_states[cam_state_id];
|
const CAMState& cam_state = state_server.cam_states[cam_state_id];
|
||||||
const Feature& feature = map_server[feature_id];
|
|
||||||
|
//estimate photometric measurement
|
||||||
|
std::vector<double> estimate_irradiance;
|
||||||
|
std::vector<double> estimate_photo_z;
|
||||||
|
std::vector<double> photo_z;
|
||||||
|
|
||||||
|
IlluminationParameter estimated_illumination;
|
||||||
|
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
|
||||||
|
for (auto& estimate_irradiance_j : estimate_irradiance)
|
||||||
|
estimate_photo_z.push_back (estimate_irradiance_j *
|
||||||
|
estimated_illumination.frame_gain * estimated_illumination.feature_gain +
|
||||||
|
estimated_illumination.frame_bias + estimated_illumination.feature_bias);
|
||||||
|
|
||||||
|
|
||||||
|
for(auto point : feature.anchorPatch_3d)
|
||||||
|
{
|
||||||
|
|
||||||
|
|
||||||
|
cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
|
||||||
|
// test if projection is inside frame
|
||||||
|
if(p_in_c0.x < 0 or p_in_c0.x > frame.cols-1 or p_in_c0.y < 0 or p_in_c0.y > frame.rows-1)
|
||||||
|
return false;
|
||||||
|
//add observation
|
||||||
|
photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
|
||||||
|
|
||||||
|
//calculate photom. residual
|
||||||
|
r_photo(count) = photo_z[count] - estimate_photo_z[count];
|
||||||
|
count++;
|
||||||
|
}
|
||||||
|
r = r_photo;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// generates the jacobian of one patch point regarding rho, anchor and current frame
|
||||||
|
bool MsckfVio::PhotometricPatchPointJacobian(
|
||||||
|
const CAMState& cam_state,
|
||||||
|
const Feature& feature,
|
||||||
|
Eigen::Vector3d point,
|
||||||
|
int count,
|
||||||
|
Eigen::Matrix<double, 1, 1>& H_rhoj,
|
||||||
|
Eigen::Matrix<double, 1, 6>& H_plj,
|
||||||
|
Eigen::Matrix<double, 1, 6>& H_pAj)
|
||||||
|
{
|
||||||
|
|
||||||
const StateIDType anchor_state_id = feature.observations.begin()->first;
|
const StateIDType anchor_state_id = feature.observations.begin()->first;
|
||||||
const CAMState anchor_state = state_server.cam_states[anchor_state_id];
|
const CAMState anchor_state = state_server.cam_states[anchor_state_id];
|
||||||
@ -1502,9 +1591,6 @@ bool MsckfVio::PhotometricMeasurementJacobian(
|
|||||||
Vector3d t_c1_w = t_c0_w - R_w_c1.transpose()*CAMState::T_cam0_cam1.translation();
|
Vector3d t_c1_w = t_c0_w - R_w_c1.transpose()*CAMState::T_cam0_cam1.translation();
|
||||||
|
|
||||||
|
|
||||||
//photometric observation
|
|
||||||
std::vector<double> photo_z;
|
|
||||||
VectorXd r_photo = VectorXd::Zero(N*N);
|
|
||||||
// individual Jacobians
|
// individual Jacobians
|
||||||
Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
|
Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
|
||||||
Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
|
Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
|
||||||
@ -1517,6 +1603,69 @@ bool MsckfVio::PhotometricMeasurementJacobian(
|
|||||||
Matrix<double, 3, 3> dCpij_dCGtheta = Matrix<double, 3, 3>::Zero();
|
Matrix<double, 3, 3> dCpij_dCGtheta = Matrix<double, 3, 3>::Zero();
|
||||||
Matrix<double, 3, 3> dCpij_dGpC = Matrix<double, 3, 3>::Zero();
|
Matrix<double, 3, 3> dCpij_dGpC = Matrix<double, 3, 3>::Zero();
|
||||||
|
|
||||||
|
double dx, dy;
|
||||||
|
|
||||||
|
Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
|
||||||
|
cv::Point2f p_in_anchor = feature.projectPositionToCamera(anchor_state, anchor_state_id, cam0, point);
|
||||||
|
|
||||||
|
|
||||||
|
// calculate derivation for anchor frame, use position for derivation calculation
|
||||||
|
// frame derivative calculated convoluting with kernel [-1, 0, 1]
|
||||||
|
dx = feature.cvKernel(p_in_anchor, "Sobel_x");
|
||||||
|
dy = feature.cvKernel(p_in_anchor, "Sobel_y");
|
||||||
|
|
||||||
|
dI_dhj(0, 0) = dx * cam0.intrinsics[0];
|
||||||
|
dI_dhj(0, 1) = dy * cam0.intrinsics[1];
|
||||||
|
|
||||||
|
//dh / d{}^Cp_{ij}
|
||||||
|
dh_dCpij(0, 0) = 1 / p_c0(2);
|
||||||
|
dh_dCpij(1, 1) = 1 / p_c0(2);
|
||||||
|
dh_dCpij(0, 2) = -(p_c0(0))/(p_c0(2)*p_c0(2));
|
||||||
|
dh_dCpij(1, 2) = -(p_c0(1))/(p_c0(2)*p_c0(2));
|
||||||
|
|
||||||
|
dCpij_dGpij = quaternionToRotation(cam_state.orientation);
|
||||||
|
|
||||||
|
//orientation takes camera frame to world frame, we wa
|
||||||
|
dh_dGpij = dh_dCpij * dCpij_dGpij;
|
||||||
|
|
||||||
|
//dh / d X_{pl}
|
||||||
|
dCpij_dCGtheta = skewSymmetric(p_c0);
|
||||||
|
dCpij_dGpC = -quaternionToRotation(cam_state.orientation);
|
||||||
|
dh_dXplj.block<2, 3>(0, 0) = dh_dCpij * dCpij_dCGtheta;
|
||||||
|
dh_dXplj.block<2, 3>(0, 3) = dh_dCpij * dCpij_dGpC;
|
||||||
|
|
||||||
|
// d{}^Gp_P{ij} / \rho_i
|
||||||
|
double rho = feature.anchor_rho;
|
||||||
|
// Isometry T_anchor_w takes a vector in anchor frame to world frame
|
||||||
|
dGpj_drhoj = -feature.T_anchor_w.linear() * Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho*rho), feature.anchorPatch_ideal[count].y/(rho*rho), 1/(rho*rho));
|
||||||
|
|
||||||
|
dGpj_XpAj.block<3, 3>(0, 0) = - feature.T_anchor_w.linear()
|
||||||
|
* skewSymmetric(Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho),
|
||||||
|
feature.anchorPatch_ideal[count].y/(rho),
|
||||||
|
1/(rho)));
|
||||||
|
dGpj_XpAj.block<3, 3>(0, 3) = Matrix<double, 3, 3>::Identity();
|
||||||
|
|
||||||
|
// Intermediate Jakobians
|
||||||
|
H_rhoj = dI_dhj * dh_dGpij * dGpj_drhoj; // 1 x 1
|
||||||
|
H_plj = dI_dhj * dh_dXplj; // 1 x 6
|
||||||
|
H_pAj = dI_dhj * dh_dGpij * dGpj_XpAj; // 1 x 6
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool MsckfVio::PhotometricMeasurementJacobian(
|
||||||
|
const StateIDType& cam_state_id,
|
||||||
|
const FeatureIDType& feature_id,
|
||||||
|
MatrixXd& H_x, MatrixXd& H_y, VectorXd& r)
|
||||||
|
{
|
||||||
|
|
||||||
|
// Prepare all the required data.
|
||||||
|
const CAMState& cam_state = state_server.cam_states[cam_state_id];
|
||||||
|
const Feature& feature = map_server[feature_id];
|
||||||
|
|
||||||
|
//photometric observation
|
||||||
|
VectorXd r_photo = VectorXd::Zero(N*N);
|
||||||
|
|
||||||
// one line of the NxN Jacobians
|
// one line of the NxN Jacobians
|
||||||
Eigen::Matrix<double, 1, 1> H_rhoj;
|
Eigen::Matrix<double, 1, 1> H_rhoj;
|
||||||
Eigen::Matrix<double, 1, 6> H_plj;
|
Eigen::Matrix<double, 1, 6> H_plj;
|
||||||
@ -1528,89 +1677,18 @@ bool MsckfVio::PhotometricMeasurementJacobian(
|
|||||||
Eigen::MatrixXd H_pA(N*N, 6);
|
Eigen::MatrixXd H_pA(N*N, 6);
|
||||||
|
|
||||||
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
|
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
|
||||||
auto anchor_frame = cam0.moving_window.find(anchor_state_id)->second.image;
|
|
||||||
//observation
|
|
||||||
const Vector4d& z = feature.observations.find(cam_state_id)->second;
|
|
||||||
|
|
||||||
//estimate photometric measurement
|
// calcualte residual of patch
|
||||||
std::vector<double> estimate_irradiance;
|
PhotometricPatchPointResidual(cam_state_id, feature, r_photo);
|
||||||
std::vector<double> estimate_photo_z;
|
|
||||||
IlluminationParameter estimated_illumination;
|
|
||||||
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
|
|
||||||
|
|
||||||
// calculated here, because we need true 'estimate_irradiance' later for jacobi
|
|
||||||
for (auto& estimate_irradiance_j : estimate_irradiance)
|
|
||||||
estimate_photo_z.push_back (estimate_irradiance_j *
|
|
||||||
estimated_illumination.frame_gain * estimated_illumination.feature_gain +
|
|
||||||
estimated_illumination.frame_bias + estimated_illumination.feature_bias);
|
|
||||||
|
|
||||||
|
// calculate jacobian for patch
|
||||||
int count = 0;
|
int count = 0;
|
||||||
double dx, dy;
|
|
||||||
|
|
||||||
for (auto point : feature.anchorPatch_3d)
|
for (auto point : feature.anchorPatch_3d)
|
||||||
{
|
{
|
||||||
//cout << "____feature-measurement_____\n" << endl;
|
// get jacobi of single point in patch
|
||||||
Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
|
PhotometricPatchPointJacobian(cam_state, feature, point, count, H_rhoj, H_plj, H_pAj);
|
||||||
cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
|
|
||||||
cv::Point2f p_in_anchor = feature.projectPositionToCamera(anchor_state, anchor_state_id, cam0, point);
|
|
||||||
|
|
||||||
if(p_in_c0.x < 0 or p_in_c0.x > frame.cols-1 or p_in_c0.y < 0 or p_in_c0.y > frame.rows-1)
|
|
||||||
{
|
|
||||||
cout << "skipped" << endl;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
//add observation
|
|
||||||
photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
|
|
||||||
|
|
||||||
//calculate photom. residual
|
|
||||||
r_photo(count) = photo_z[count] - estimate_photo_z[count];
|
|
||||||
//cout << "residual: " << photo_r.back() << endl;
|
|
||||||
|
|
||||||
// calculate derivation for anchor frame, use position for derivation calculation
|
|
||||||
// frame derivative calculated convoluting with kernel [-1, 0, 1]
|
|
||||||
|
|
||||||
dx = feature.cvKernel(p_in_anchor, "Sobel_x");
|
|
||||||
dy = feature.cvKernel(p_in_anchor, "Sobel_y");
|
|
||||||
|
|
||||||
// dx = feature.PixelIrradiance(cv::Point2f(p_in_anchor.x+1, p_in_anchor.y), anchor_frame) - feature.PixelIrradiance(cv::Point2f(p_in_anchor.x-1, p_in_anchor.y), anchor_frame);
|
|
||||||
// dy = feature.PixelIrradiance(cv::Point2f(p_in_anchor.x, p_in_anchor.y+1), anchor_frame) - feature.PixelIrradiance(cv::Point2f(p_in_anchor.x, p_in_anchor.y-1), anchor_frame);
|
|
||||||
|
|
||||||
dI_dhj(0, 0) = dx * cam0.intrinsics[0];
|
|
||||||
dI_dhj(0, 1) = dy * cam0.intrinsics[1];
|
|
||||||
|
|
||||||
//dh / d{}^Cp_{ij}
|
|
||||||
dh_dCpij(0, 0) = 1 / p_c0(2);
|
|
||||||
dh_dCpij(1, 1) = 1 / p_c0(2);
|
|
||||||
dh_dCpij(0, 2) = -(p_c0(0))/(p_c0(2)*p_c0(2));
|
|
||||||
dh_dCpij(1, 2) = -(p_c0(1))/(p_c0(2)*p_c0(2));
|
|
||||||
|
|
||||||
dCpij_dGpij = quaternionToRotation(cam_state.orientation);
|
|
||||||
|
|
||||||
//orientation takes camera frame to world frame, we wa
|
|
||||||
dh_dGpij = dh_dCpij * dCpij_dGpij;
|
|
||||||
|
|
||||||
//dh / d X_{pl}
|
|
||||||
dCpij_dCGtheta = skewSymmetric(p_c0);
|
|
||||||
dCpij_dGpC = -quaternionToRotation(cam_state.orientation);
|
|
||||||
dh_dXplj.block<2, 3>(0, 0) = dh_dCpij * dCpij_dCGtheta;
|
|
||||||
dh_dXplj.block<2, 3>(0, 3) = dh_dCpij * dCpij_dGpC;
|
|
||||||
|
|
||||||
// d{}^Gp_P{ij} / \rho_i
|
|
||||||
double rho = feature.anchor_rho;
|
|
||||||
// Isometry T_anchor_w takes a vector in anchor frame to world frame
|
|
||||||
dGpj_drhoj = -feature.T_anchor_w.linear() * Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho*rho), feature.anchorPatch_ideal[count].y/(rho*rho), 1/(rho*rho));
|
|
||||||
|
|
||||||
dGpj_XpAj.block<3, 3>(0, 0) = - feature.T_anchor_w.linear()
|
|
||||||
* skewSymmetric(Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho),
|
|
||||||
feature.anchorPatch_ideal[count].y/(rho),
|
|
||||||
1/(rho)));
|
|
||||||
dGpj_XpAj.block<3, 3>(0, 3) = Matrix<double, 3, 3>::Identity();
|
|
||||||
|
|
||||||
// Intermediate Jakobians
|
|
||||||
H_rhoj = dI_dhj * dh_dGpij * dGpj_drhoj; // 1 x 1
|
|
||||||
H_plj = dI_dhj * dh_dXplj; // 1 x 6
|
|
||||||
H_pAj = dI_dhj * dh_dGpij * dGpj_XpAj; // 1 x 6
|
|
||||||
|
|
||||||
|
// stack point into entire jacobi
|
||||||
H_rho.block<1, 1>(count, 0) = H_rhoj;
|
H_rho.block<1, 1>(count, 0) = H_rhoj;
|
||||||
H_pl.block<1, 6>(count, 0) = H_plj;
|
H_pl.block<1, 6>(count, 0) = H_plj;
|
||||||
H_pA.block<1, 6>(count, 0) = H_pAj;
|
H_pA.block<1, 6>(count, 0) = H_pAj;
|
||||||
@ -1618,32 +1696,67 @@ bool MsckfVio::PhotometricMeasurementJacobian(
|
|||||||
count++;
|
count++;
|
||||||
}
|
}
|
||||||
|
|
||||||
cout << "done" << endl;
|
// construct the jacobian structure needed for nullspacing
|
||||||
MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
|
MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
|
||||||
MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+1);
|
MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+1);
|
||||||
|
|
||||||
// set anchor Jakobi
|
ConstructJacobians(H_rho, H_pl, H_pA, feature, cam_state_id, H_xl, H_yl);
|
||||||
// get position of anchor in cam states
|
|
||||||
|
|
||||||
|
|
||||||
|
// set to return values
|
||||||
|
H_x = H_xl;
|
||||||
|
H_y = H_yl;
|
||||||
|
r = r_photo;
|
||||||
|
|
||||||
|
if(PRINTIMAGES)
|
||||||
|
{
|
||||||
|
// pregenerating information for visualization
|
||||||
|
std::stringstream ss;
|
||||||
|
auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
|
||||||
|
int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
|
||||||
|
//get position of current frame in cam states
|
||||||
|
auto cam_state_iter = state_server.cam_states.find(cam_state_id);
|
||||||
|
int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
|
||||||
|
|
||||||
|
ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr;
|
||||||
|
|
||||||
|
// visualizing functions
|
||||||
|
feature.MarkerGeneration(marker_pub, state_server.cam_states);
|
||||||
|
feature.VisualizePatch(cam_state, cam_state_id, cam0, r_photo, ss);
|
||||||
|
//feature.VisualizeKernel(cam_state, cam_state_id, cam0);
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool MsckfVio::ConstructJacobians(Eigen::MatrixXd& H_rho,
|
||||||
|
Eigen::MatrixXd& H_pl,
|
||||||
|
Eigen::MatrixXd& H_pA,
|
||||||
|
const Feature& feature,
|
||||||
|
const StateIDType& cam_state_id,
|
||||||
|
Eigen::MatrixXd& H_xl,
|
||||||
|
Eigen::MatrixXd& H_yl)
|
||||||
|
{
|
||||||
|
// get position of anchor in cam states
|
||||||
auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
|
auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
|
||||||
int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
|
int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
|
||||||
|
// set anchor Jakobi
|
||||||
H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA;
|
H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA;
|
||||||
|
|
||||||
// set frame Jakobi
|
//get position of current frame in cam states
|
||||||
//get position of current frame in cam states
|
|
||||||
auto cam_state_iter = state_server.cam_states.find(cam_state_id);
|
auto cam_state_iter = state_server.cam_states.find(cam_state_id);
|
||||||
|
// set frame Jakobi
|
||||||
int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
|
int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
|
||||||
|
|
||||||
// set jakobi of state
|
// set jakobi of state
|
||||||
H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = -H_pl;
|
H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = -H_pl;
|
||||||
|
|
||||||
// set ones for irradiance bias
|
// set ones for irradiance bias
|
||||||
// H_xl.block(0, 21+cam_state_cntr*7+6, N*N, 1) = Eigen::ArrayXd::Ones(N*N);
|
// H_xl.block(0, 21+cam_state_cntr*7+6, N*N, 1) = Eigen::ArrayXd::Ones(N*N);
|
||||||
|
|
||||||
// set irradiance error Block
|
// set irradiance error Block
|
||||||
H_yl.block(0, 0,N*N, N*N) = /* estimated_illumination.feature_gain * estimated_illumination.frame_gain * */ Eigen::MatrixXd::Identity(N*N, N*N);
|
H_yl.block(0, 0,N*N, N*N) = /* estimated_illumination.feature_gain * estimated_illumination.frame_gain * */ Eigen::MatrixXd::Identity(N*N, N*N);
|
||||||
|
|
||||||
// TODO make this calculation more fluent
|
|
||||||
|
|
||||||
/*for(int i = 0; i< N*N; i++)
|
/*for(int i = 0; i< N*N; i++)
|
||||||
H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i];
|
H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i];
|
||||||
@ -1651,21 +1764,6 @@ bool MsckfVio::PhotometricMeasurementJacobian(
|
|||||||
|
|
||||||
H_yl.block(0, N*N, N*N, 1) = -H_rho;
|
H_yl.block(0, N*N, N*N, 1) = -H_rho;
|
||||||
|
|
||||||
H_x = H_xl;
|
|
||||||
H_y = H_yl;
|
|
||||||
|
|
||||||
r = r_photo;
|
|
||||||
|
|
||||||
std::stringstream ss;
|
|
||||||
ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr;
|
|
||||||
if(PRINTIMAGES)
|
|
||||||
{
|
|
||||||
feature.MarkerGeneration(marker_pub, state_server.cam_states);
|
|
||||||
feature.VisualizePatch(cam_state, cam_state_id, cam0, r_photo, ss);
|
|
||||||
//feature.VisualizeKernel(cam_state, cam_state_id, cam0);
|
|
||||||
}
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -1717,11 +1815,9 @@ bool MsckfVio::PhotometricFeatureJacobian(
|
|||||||
r_i.segment(stack_cntr, N*N) = r_l;
|
r_i.segment(stack_cntr, N*N) = r_l;
|
||||||
stack_cntr += N*N;
|
stack_cntr += N*N;
|
||||||
}
|
}
|
||||||
if(stack_cntr == 0)
|
if(stack_cntr < 2*N*N)
|
||||||
{
|
|
||||||
cout << "skip feature" << endl;
|
|
||||||
return false;
|
return false;
|
||||||
}
|
|
||||||
// Project the residual and Jacobians onto the nullspace
|
// Project the residual and Jacobians onto the nullspace
|
||||||
// of H_yj.
|
// of H_yj.
|
||||||
|
|
||||||
@ -2027,8 +2123,8 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
|
|||||||
VectorXd delta_x = K * r;
|
VectorXd delta_x = K * r;
|
||||||
|
|
||||||
|
|
||||||
cout << "reg rotate: " << delta_x[0] << ", " << delta_x[1] << ", " << delta_x[2] << endl;
|
// cout << "reg rotate: " << delta_x[0] << ", " << delta_x[1] << ", " << delta_x[2] << endl;
|
||||||
cout << "reg update: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
|
cout << "reg: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
|
||||||
|
|
||||||
if(FILTER != 0) return;
|
if(FILTER != 0) return;
|
||||||
|
|
||||||
@ -2053,9 +2149,6 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
|
|||||||
|
|
||||||
myfile.close();
|
myfile.close();
|
||||||
}
|
}
|
||||||
delta_position = Eigen::Vector3d(delta_x[12], delta_x[13], delta_x[14]);
|
|
||||||
delta_orientation = Eigen::Vector3d(delta_x[0], delta_x[1], delta_x[2]);
|
|
||||||
|
|
||||||
// Update the IMU state.
|
// Update the IMU state.
|
||||||
|
|
||||||
const VectorXd& delta_x_imu = delta_x.head<21>();
|
const VectorXd& delta_x_imu = delta_x.head<21>();
|
||||||
@ -2239,10 +2332,13 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
|
|||||||
// Perform QR decompostion on H_sparse.
|
// Perform QR decompostion on H_sparse.
|
||||||
SPQR<SparseMatrix<double> > spqr_helper;
|
SPQR<SparseMatrix<double> > spqr_helper;
|
||||||
spqr_helper.setSPQROrdering(SPQR_ORDERING_NATURAL);
|
spqr_helper.setSPQROrdering(SPQR_ORDERING_NATURAL);
|
||||||
spqr_helper.compute(H_sparse);
|
|
||||||
|
|
||||||
|
cout << "comp" << endl;
|
||||||
|
spqr_helper.compute(H_sparse);
|
||||||
|
cout << "done" << endl;
|
||||||
MatrixXd H_temp;
|
MatrixXd H_temp;
|
||||||
VectorXd r_temp;
|
VectorXd r_temp;
|
||||||
|
|
||||||
(spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);
|
(spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);
|
||||||
(spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);
|
(spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);
|
||||||
|
|
||||||
@ -2261,6 +2357,7 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
|
|||||||
Feature::observation_noise*MatrixXd::Identity(
|
Feature::observation_noise*MatrixXd::Identity(
|
||||||
H_thin.rows(), H_thin.rows());
|
H_thin.rows(), H_thin.rows());
|
||||||
//MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H*P);
|
//MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H*P);
|
||||||
|
|
||||||
MatrixXd K_transpose = S.ldlt().solve(H_thin*P);
|
MatrixXd K_transpose = S.ldlt().solve(H_thin*P);
|
||||||
MatrixXd K = K_transpose.transpose();
|
MatrixXd K = K_transpose.transpose();
|
||||||
// Compute the error of the state.
|
// Compute the error of the state.
|
||||||
@ -2271,28 +2368,27 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
|
|||||||
|
|
||||||
if(PRINTIMAGES)
|
if(PRINTIMAGES)
|
||||||
{
|
{
|
||||||
//octave
|
//octave
|
||||||
ofstream myfile;
|
ofstream myfile;
|
||||||
|
|
||||||
myfile.open("/home/raphael/dev/octave/measurement2octave");
|
myfile.open("/home/raphael/dev/octave/measurement2octave");
|
||||||
myfile << "# Created by Octave 3.8.1, Wed Jun 12 14:36:37 2019 CEST <raphael@raphael-desktop>\n"
|
myfile << "# Created by Octave 3.8.1, Wed Jun 12 14:36:37 2019 CEST <raphael@raphael-desktop>\n"
|
||||||
<< "# name: K\n"
|
<< "# name: K\n"
|
||||||
<< "# type: matrix\n"
|
<< "# type: matrix\n"
|
||||||
<< "# rows: " << K.rows() << "\n"
|
<< "# rows: " << K.rows() << "\n"
|
||||||
<< "# columns: " << K.cols() << "\n"
|
<< "# columns: " << K.cols() << "\n"
|
||||||
<< K << endl;
|
<< K << endl;
|
||||||
|
|
||||||
myfile << "# name: r\n"
|
myfile << "# name: r\n"
|
||||||
<< "# type: matrix\n"
|
<< "# type: matrix\n"
|
||||||
<< "# rows: " << r.rows() << "\n"
|
<< "# rows: " << r.rows() << "\n"
|
||||||
<< "# columns: " << r.cols() << "\n"
|
<< "# columns: " << r.cols() << "\n"
|
||||||
<< r << endl;
|
<< r << endl;
|
||||||
|
|
||||||
myfile.close();
|
myfile.close();
|
||||||
}
|
}
|
||||||
|
|
||||||
delta_position = Eigen::Vector3d(delta_x[12], delta_x[13], delta_x[14]);
|
cout << "pho: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
|
||||||
delta_orientation = Eigen::Vector3d(delta_x[0], delta_x[1], delta_x[2]);
|
|
||||||
|
|
||||||
const VectorXd& delta_x_imu = delta_x.head<21>();
|
const VectorXd& delta_x_imu = delta_x.head<21>();
|
||||||
|
|
||||||
@ -2349,8 +2445,8 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
|
|||||||
|
|
||||||
|
|
||||||
bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
|
bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
|
||||||
MatrixXd P1 = H * state_server.state_cov * H.transpose();
|
|
||||||
|
|
||||||
|
MatrixXd P1 = H * state_server.state_cov * H.transpose();
|
||||||
|
|
||||||
MatrixXd P2 = Feature::observation_noise *
|
MatrixXd P2 = Feature::observation_noise *
|
||||||
MatrixXd::Identity(H.rows(), H.rows());
|
MatrixXd::Identity(H.rows(), H.rows());
|
||||||
@ -2363,10 +2459,10 @@ bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof)
|
|||||||
if (chi_squared_test_table[dof] == 0)
|
if (chi_squared_test_table[dof] == 0)
|
||||||
return false;
|
return false;
|
||||||
if (gamma < chi_squared_test_table[dof]) {
|
if (gamma < chi_squared_test_table[dof]) {
|
||||||
//cout << "passed" << endl;
|
// cout << "passed" << endl;
|
||||||
return true;
|
return true;
|
||||||
} else {
|
} else {
|
||||||
//cout << "failed" << endl;
|
// cout << "failed" << endl;
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -2466,15 +2562,14 @@ void MsckfVio::removeLostFeatures() {
|
|||||||
MatrixXd twoH_xj;
|
MatrixXd twoH_xj;
|
||||||
VectorXd twor_j;
|
VectorXd twor_j;
|
||||||
|
|
||||||
/*
|
if(PhotometricFeatureJacobian(feature.id, cam_state_ids, pH_xj, pr_j) == true)
|
||||||
if(PhotometricFeatureJacobian(feature.id, cam_state_ids, pH_xj, pr_j) == true);
|
|
||||||
{
|
{
|
||||||
if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
|
if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
|
||||||
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
|
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
|
||||||
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
|
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
|
||||||
pstack_cntr += pH_xj.rows();
|
pstack_cntr += pH_xj.rows();
|
||||||
}
|
}
|
||||||
}*/
|
}
|
||||||
|
|
||||||
featureJacobian(feature.id, cam_state_ids, H_xj, r_j);
|
featureJacobian(feature.id, cam_state_ids, H_xj, r_j);
|
||||||
twodotFeatureJacobian(feature.id, cam_state_ids, twoH_xj, twor_j);
|
twodotFeatureJacobian(feature.id, cam_state_ids, twoH_xj, twor_j);
|
||||||
@ -2503,6 +2598,7 @@ void MsckfVio::removeLostFeatures() {
|
|||||||
photometricMeasurementUpdate(pH_x, pr);
|
photometricMeasurementUpdate(pH_x, pr);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
H_x.conservativeResize(stack_cntr, H_x.cols());
|
H_x.conservativeResize(stack_cntr, H_x.cols());
|
||||||
r.conservativeResize(stack_cntr);
|
r.conservativeResize(stack_cntr);
|
||||||
|
|
||||||
@ -2648,17 +2744,15 @@ void MsckfVio::pruneLastCamStateBuffer()
|
|||||||
for (const auto& cam_state : state_server.cam_states)
|
for (const auto& cam_state : state_server.cam_states)
|
||||||
involved_cam_state_ids.push_back(cam_state.first);
|
involved_cam_state_ids.push_back(cam_state.first);
|
||||||
|
|
||||||
/*
|
|
||||||
if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true);
|
|
||||||
{
|
|
||||||
|
|
||||||
|
if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true)
|
||||||
|
{
|
||||||
if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
|
if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
|
||||||
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
|
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
|
||||||
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
|
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
|
||||||
pstack_cntr += pH_xj.rows();
|
pstack_cntr += pH_xj.rows();
|
||||||
}
|
}
|
||||||
}*/
|
}
|
||||||
|
|
||||||
|
|
||||||
featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
|
featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
|
||||||
twodotFeatureJacobian(feature.id, involved_cam_state_ids, twoH_xj, twor_j);
|
twodotFeatureJacobian(feature.id, involved_cam_state_ids, twoH_xj, twor_j);
|
||||||
@ -2679,7 +2773,8 @@ void MsckfVio::pruneLastCamStateBuffer()
|
|||||||
feature.observations.erase(cam_id);
|
feature.observations.erase(cam_id);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (pstack_cntr)
|
|
||||||
|
if(pstack_cntr)
|
||||||
{
|
{
|
||||||
pH_x.conservativeResize(pstack_cntr, pH_x.cols());
|
pH_x.conservativeResize(pstack_cntr, pH_x.cols());
|
||||||
pr.conservativeResize(pstack_cntr);
|
pr.conservativeResize(pstack_cntr);
|
||||||
@ -2690,15 +2785,14 @@ void MsckfVio::pruneLastCamStateBuffer()
|
|||||||
|
|
||||||
H_x.conservativeResize(stack_cntr, H_x.cols());
|
H_x.conservativeResize(stack_cntr, H_x.cols());
|
||||||
r.conservativeResize(stack_cntr);
|
r.conservativeResize(stack_cntr);
|
||||||
// Perform measurement update.
|
|
||||||
|
|
||||||
twoH_x.conservativeResize(twostack_cntr, twoH_x.cols());
|
twoH_x.conservativeResize(twostack_cntr, twoH_x.cols());
|
||||||
twor.conservativeResize(twostack_cntr);
|
twor.conservativeResize(twostack_cntr);
|
||||||
// Perform measurement update.
|
|
||||||
|
|
||||||
|
|
||||||
|
// Perform the measurement update step.
|
||||||
measurementUpdate(H_x, r);
|
measurementUpdate(H_x, r);
|
||||||
twoMeasurementUpdate(twoH_x, twor);
|
twoMeasurementUpdate(twoH_x, twor);
|
||||||
|
|
||||||
//reduction
|
//reduction
|
||||||
int cam_sequence = std::distance(state_server.cam_states.begin(),
|
int cam_sequence = std::distance(state_server.cam_states.begin(),
|
||||||
state_server.cam_states.find(rm_cam_state_id));
|
state_server.cam_states.find(rm_cam_state_id));
|
||||||
@ -2831,7 +2925,7 @@ void MsckfVio::pruneCamStateBuffer() {
|
|||||||
|
|
||||||
if (involved_cam_state_ids.size() == 0) continue;
|
if (involved_cam_state_ids.size() == 0) continue;
|
||||||
|
|
||||||
/*
|
|
||||||
if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true)
|
if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true)
|
||||||
{
|
{
|
||||||
if (gatingTest(pH_xj, pr_j, pr_j.size())) {// involved_cam_state_ids.size())) {
|
if (gatingTest(pH_xj, pr_j, pr_j.size())) {// involved_cam_state_ids.size())) {
|
||||||
@ -2839,7 +2933,8 @@ void MsckfVio::pruneCamStateBuffer() {
|
|||||||
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
|
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
|
||||||
pstack_cntr += pH_xj.rows();
|
pstack_cntr += pH_xj.rows();
|
||||||
}
|
}
|
||||||
}*/
|
}
|
||||||
|
|
||||||
featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
|
featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
|
||||||
twodotFeatureJacobian(feature.id, involved_cam_state_ids, twoH_xj, twor_j);
|
twodotFeatureJacobian(feature.id, involved_cam_state_ids, twoH_xj, twor_j);
|
||||||
|
|
||||||
@ -2860,11 +2955,11 @@ void MsckfVio::pruneCamStateBuffer() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if(pstack_cntr > 0)
|
|
||||||
|
if(pstack_cntr)
|
||||||
{
|
{
|
||||||
pH_x.conservativeResize(pstack_cntr, pH_x.cols());
|
pH_x.conservativeResize(pstack_cntr, pH_x.cols());
|
||||||
pr.conservativeResize(pstack_cntr);
|
pr.conservativeResize(pstack_cntr);
|
||||||
|
|
||||||
photometricMeasurementUpdate(pH_x, pr);
|
photometricMeasurementUpdate(pH_x, pr);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2874,9 +2969,10 @@ void MsckfVio::pruneCamStateBuffer() {
|
|||||||
twoH_x.conservativeResize(twostack_cntr, twoH_x.cols());
|
twoH_x.conservativeResize(twostack_cntr, twoH_x.cols());
|
||||||
twor.conservativeResize(twostack_cntr);
|
twor.conservativeResize(twostack_cntr);
|
||||||
|
|
||||||
// Perform measurement update.
|
// Perform the measurement update step.
|
||||||
measurementUpdate(H_x, r);
|
measurementUpdate(H_x, r);
|
||||||
twoMeasurementUpdate(twoH_x, twor);
|
twoMeasurementUpdate(twoH_x, twor);
|
||||||
|
|
||||||
//reduction
|
//reduction
|
||||||
for (const auto& cam_id : rm_cam_state_ids) {
|
for (const auto& cam_id : rm_cam_state_ids) {
|
||||||
int cam_sequence = std::distance(state_server.cam_states.begin(),
|
int cam_sequence = std::distance(state_server.cam_states.begin(),
|
||||||
|
Loading…
Reference in New Issue
Block a user