restructured calcualtion of patches in code

This commit is contained in:
Raphael Maenle 2019-07-02 08:32:56 +02:00
parent 58fe991647
commit 737c23f32a
4 changed files with 365 additions and 238 deletions

View File

@ -202,7 +202,8 @@ class MsckfVio {
Eigen::Vector4d& r);
// This function computes the Jacobian of all measurements viewed
// in the given camera states of this feature.
void featureJacobian(const FeatureIDType& feature_id,
void featureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
@ -212,6 +213,29 @@ class MsckfVio {
const FeatureIDType& feature_id,
Eigen::MatrixXd& H_x, Eigen::MatrixXd& H_y, Eigen::VectorXd& r);
bool ConstructJacobians(
Eigen::MatrixXd& H_rho,
Eigen::MatrixXd& H_pl,
Eigen::MatrixXd& H_pA,
const Feature& feature,
const StateIDType& cam_state_id,
Eigen::MatrixXd& H_xl,
Eigen::MatrixXd& H_yl);
bool PhotometricPatchPointResidual(
const StateIDType& cam_state_id,
const Feature& feature,
Eigen::VectorXd& r);
bool PhotometricPatchPointJacobian(
const CAMState& cam_state,
const Feature& feature,
Eigen::Vector3d point,
int count,
Eigen::Matrix<double, 1, 1>& H_rhoj,
Eigen::Matrix<double, 1, 6>& H_plj,
Eigen::Matrix<double, 1, 6>& H_pAj);
bool PhotometricMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
@ -263,6 +287,13 @@ class MsckfVio {
// Chi squared test table.
static std::map<int, double> chi_squared_test_table;
double eval_time;
IMUState timed_old_imu_state;
IMUState timed_old_true_state;
IMUState old_imu_state;
IMUState old_true_state;
// change in position
Eigen::Vector3d delta_position;

View File

@ -18,14 +18,14 @@
output="screen">
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
<param name="FILTER" value="1"/>
<param name="FILTER" value="0"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="5"/>
<param name="patch_size_n" value="3"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>

View File

@ -223,8 +223,8 @@ void ImageProcessor::stereoCallback(
image_handler::undistortImage(cam0_curr_img_ptr->image, cam0_curr_img_ptr->image, cam0.distortion_model, cam0.intrinsics, cam0.distortion_coeffs);
image_handler::undistortImage(cam1_curr_img_ptr->image, cam1_curr_img_ptr->image, cam1.distortion_model, cam1.intrinsics, cam1.distortion_coeffs);
ROS_INFO("Publishing: %f",
(ros::Time::now()-start_time).toSec());
//ROS_INFO("Publishing: %f",
// (ros::Time::now()-start_time).toSec());
// Build the image pyramids once since they're used at multiple places
createImagePyramids();

View File

@ -260,6 +260,7 @@ bool MsckfVio::createRosIO() {
// activating bag playing parameter, for debugging
nh.setParam("/play_bag", true);
eval_time = 0;
odom_pub = nh.advertise<nav_msgs::Odometry>("odom", 10);
truth_odom_pub = nh.advertise<nav_msgs::Odometry>("true_odom", 10);
feature_pub = nh.advertise<sensor_msgs::PointCloud2>(
@ -412,6 +413,10 @@ void MsckfVio::imageCallback(
return;
}
old_imu_state = state_server.imu_state;
old_true_state = true_state_server.imu_state;
// Start the system if the first image is received.
// The frame where the first image is received will be
// the origin.
@ -419,7 +424,6 @@ void MsckfVio::imageCallback(
is_first_img = false;
state_server.imu_state.time = feature_msg->header.stamp.toSec();
}
static double max_processing_time = 0.0;
static int critical_time_cntr = 0;
double processing_start_time = ros::Time::now().toSec();
@ -428,23 +432,13 @@ void MsckfVio::imageCallback(
// that are received before the image feature_msg.
ros::Time start_time = ros::Time::now();
nh.param<int>("FILTER", FILTER, 0);
batchImuProcessing(feature_msg->header.stamp.toSec());
if(GROUNDTRUTH)
{
state_server.imu_state.position = true_state_server.imu_state.position;
state_server.imu_state.orientation = true_state_server.imu_state.orientation;
state_server.imu_state.position_null = true_state_server.imu_state.position_null;
state_server.imu_state.orientation_null = true_state_server.imu_state.orientation_null;
state_server.imu_state.R_imu_cam0 = true_state_server.imu_state.R_imu_cam0;
state_server.imu_state.t_cam0_imu = true_state_server.imu_state.t_cam0_imu;
}
double imu_processing_time = (
ros::Time::now()-start_time).toSec();
cout << "1" << endl;
// Augment the state vector.
start_time = ros::Time::now();
//truePhotometricStateAugmentation(feature_msg->header.stamp.toSec());
@ -453,7 +447,7 @@ void MsckfVio::imageCallback(
ros::Time::now()-start_time).toSec();
cout << "2" << endl;
// cout << "2" << endl;
// Add new observations for existing features or new
// features in the map server.
start_time = ros::Time::now();
@ -462,7 +456,7 @@ void MsckfVio::imageCallback(
ros::Time::now()-start_time).toSec();
cout << "3" << endl;
// cout << "3" << endl;
// Add new images to moving window
start_time = ros::Time::now();
manageMovingWindow(cam0_img, cam1_img, feature_msg);
@ -470,14 +464,14 @@ void MsckfVio::imageCallback(
ros::Time::now()-start_time).toSec();
cout << "4" << endl;
// cout << "4" << endl;
// Perform measurement update if necessary.
start_time = ros::Time::now();
removeLostFeatures();
double remove_lost_features_time = (
ros::Time::now()-start_time).toSec();
cout << "5" << endl;
// cout << "5" << endl;
start_time = ros::Time::now();
pruneLastCamStateBuffer();
double prune_cam_states_time = (
@ -487,7 +481,7 @@ void MsckfVio::imageCallback(
batchTruthProcessing(feature_msg->header.stamp.toSec());
cout << "6" << endl;
// cout << "6" << endl;
// Publish the odometry.
start_time = ros::Time::now();
publish(feature_msg->header.stamp);
@ -504,18 +498,18 @@ void MsckfVio::imageCallback(
++critical_time_cntr;
ROS_INFO("\033[1;31mTotal processing time %f/%d...\033[0m",
processing_time, critical_time_cntr);
printf("IMU processing time: %f/%f\n",
imu_processing_time, imu_processing_time/processing_time);
printf("State augmentation time: %f/%f\n",
state_augmentation_time, state_augmentation_time/processing_time);
printf("Add observations time: %f/%f\n",
add_observations_time, add_observations_time/processing_time);
printf("Remove lost features time: %f/%f\n",
remove_lost_features_time, remove_lost_features_time/processing_time);
printf("Remove camera states time: %f/%f\n",
prune_cam_states_time, prune_cam_states_time/processing_time);
printf("Publish time: %f/%f\n",
publish_time, publish_time/processing_time);
//printf("IMU processing time: %f/%f\n",
// imu_processing_time, imu_processing_time/processing_time);
//printf("State augmentation time: %f/%f\n",
// state_augmentation_time, state_augmentation_time/processing_time);
//printf("Add observations time: %f/%f\n",
// add_observations_time, add_observations_time/processing_time);
//printf("Remove lost features time: %f/%f\n",
// remove_lost_features_time, remove_lost_features_time/processing_time);
//printf("Remove camera states time: %f/%f\n",
// prune_cam_states_time, prune_cam_states_time/processing_time);
//printf("Publish time: %f/%f\n",
// publish_time, publish_time/processing_time);
}
if(STREAMPAUSE)
@ -806,8 +800,6 @@ void MsckfVio::batchTruthProcessing(const double& time_bound) {
// Counter how many IMU msgs in the buffer are used.
int used_truth_msg_cntr = 0;
const IMUState old_true_state = true_state_server.imu_state;
for (const auto& truth_msg : truth_msg_buffer) {
double truth_time = truth_msg.header.stamp.toSec();
if (truth_time < true_state_server.imu_state.time) {
@ -839,22 +831,76 @@ void MsckfVio::batchTruthProcessing(const double& time_bound) {
truth_msg_buffer.erase(truth_msg_buffer.begin(),
truth_msg_buffer.begin()+used_truth_msg_cntr);
/*
// calculate change
delta_position = state_server.imu_state.position - old_imu_state.position;
Eigen::Vector4d delta_orientation_quaternion = quaternionMultiplication(quaternionConjugate(state_server.imu_state.orientation), old_imu_state.orientation);
delta_orientation = Eigen::Vector3d(delta_orientation_quaternion[0]*2, delta_orientation_quaternion[1]*2, delta_orientation_quaternion[2]*2);
// calculate error in position
// calculate error in change
// calculate change
Eigen::Vector3d delta_true_position = true_state_server.imu_state.position - old_true_state.position;
Eigen::Vector4d delta_true_orientation = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), old_true_state.orientation);
Eigen::Vector3d delta_smallangle_true_orientation = Eigen::Vector3d(delta_true_orientation[0]*2, delta_true_orientation[1]*2, delta_true_orientation[2]*2);
Eigen::Vector3d error_delta_position = delta_true_position - delta_position;
Eigen::Vector3d error_delta_orientation = delta_smallangle_true_orientation - delta_orientation;
double dx = (error_delta_position[0]/delta_true_position[0]);
double dy = (error_delta_position[1]/delta_true_position[1]);
double dz = (error_delta_position[2]/delta_true_position[2]);
cout << "relative pos error: " << sqrt(dx*dx + dy*dy + dz*dz) * 100 << "%" << endl;
Eigen::Vector3d error_position = true_state_server.imu_state.position - state_server.imu_state.position;
Eigen::Vector4d error_orientation_q = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), state_server.imu_state.orientation);
Eigen::Vector3d error_orientation = Eigen::Vector3d(error_orientation_q[0]*2, error_orientation_q[1]*2, error_orientation_q[2]*2);
double relerr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
double relOerr = (sqrt(error_delta_orientation[0]*error_delta_orientation[0] + error_delta_orientation[1]*error_delta_orientation[1] + error_delta_orientation[2]*error_delta_orientation[2])/
sqrt(delta_smallangle_true_orientation[0]*delta_smallangle_true_orientation[0] + delta_smallangle_true_orientation[1]*delta_smallangle_true_orientation[1] + delta_smallangle_true_orientation[2]*delta_smallangle_true_orientation[2]));
double abserr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
cout << "relative pos error: " << relerr * 100 << "%" << endl;
cout << "relative ori error: " << relOerr * 100 << "%" << endl;
//cout << "absolute pos error: " <<
*/
if (eval_time + 1 < ros::Time::now().toSec())
{
// calculate change
delta_position = state_server.imu_state.position - timed_old_imu_state.position;
Eigen::Vector4d delta_orientation_quaternion = quaternionMultiplication(quaternionConjugate(state_server.imu_state.orientation), timed_old_imu_state.orientation);
delta_orientation = Eigen::Vector3d(delta_orientation_quaternion[0]*2, delta_orientation_quaternion[1]*2, delta_orientation_quaternion[2]*2);
// calculate error in position
// calculate error in change
Eigen::Vector3d delta_true_position = true_state_server.imu_state.position - timed_old_true_state.position;
Eigen::Vector4d delta_true_orientation = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), timed_old_true_state.orientation);
Eigen::Vector3d delta_smallangle_true_orientation = Eigen::Vector3d(delta_true_orientation[0]*2, delta_true_orientation[1]*2, delta_true_orientation[2]*2);
Eigen::Vector3d error_delta_position = delta_true_position - delta_position;
Eigen::Vector3d error_delta_orientation = delta_smallangle_true_orientation - delta_orientation;
Eigen::Vector3d error_position = true_state_server.imu_state.position - state_server.imu_state.position;
Eigen::Vector4d error_orientation_q = quaternionMultiplication(quaternionConjugate(true_state_server.imu_state.orientation), state_server.imu_state.orientation);
Eigen::Vector3d error_orientation = Eigen::Vector3d(error_orientation_q[0]*2, error_orientation_q[1]*2, error_orientation_q[2]*2);
double relerr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
double relOerr = (sqrt(error_delta_orientation[0]*error_delta_orientation[0] + error_delta_orientation[1]*error_delta_orientation[1] + error_delta_orientation[2]*error_delta_orientation[2])/
sqrt(delta_smallangle_true_orientation[0]*delta_smallangle_true_orientation[0] + delta_smallangle_true_orientation[1]*delta_smallangle_true_orientation[1] + delta_smallangle_true_orientation[2]*delta_smallangle_true_orientation[2]));
double abserr = (sqrt(error_delta_position[0]*error_delta_position[0] + error_delta_position[1]*error_delta_position[1] + error_delta_position[2]*error_delta_position[2])/
sqrt(delta_true_position[0]*delta_true_position[0] + delta_true_position[1]*delta_true_position[1] + delta_true_position[2]*delta_true_position[2]));
// cout << "relative pos error: " << relerr * 100 << "%" << endl;
// cout << "relative ori error: " << relOerr * 100 << "%" << endl;
timed_old_imu_state = state_server.imu_state;
timed_old_true_state = true_state_server.imu_state;
eval_time = ros::Time::now().toSec();
}
}
void MsckfVio::processTruthtoIMU(const double& time,
@ -1477,17 +1523,60 @@ void MsckfVio::twodotFeatureJacobian(
return;
}
bool MsckfVio::PhotometricMeasurementJacobian(
bool MsckfVio::PhotometricPatchPointResidual(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
MatrixXd& H_x, MatrixXd& H_y, VectorXd& r)
const Feature& feature,
VectorXd& r)
{
// Prepare all the required data.
VectorXd r_photo = VectorXd::Zero(N*N);
int count = 0;
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
const CAMState& cam_state = state_server.cam_states[cam_state_id];
const Feature& feature = map_server[feature_id];
//estimate photometric measurement
std::vector<double> estimate_irradiance;
std::vector<double> estimate_photo_z;
std::vector<double> photo_z;
IlluminationParameter estimated_illumination;
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
for (auto& estimate_irradiance_j : estimate_irradiance)
estimate_photo_z.push_back (estimate_irradiance_j *
estimated_illumination.frame_gain * estimated_illumination.feature_gain +
estimated_illumination.frame_bias + estimated_illumination.feature_bias);
for(auto point : feature.anchorPatch_3d)
{
cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
// test if projection is inside frame
if(p_in_c0.x < 0 or p_in_c0.x > frame.cols-1 or p_in_c0.y < 0 or p_in_c0.y > frame.rows-1)
return false;
//add observation
photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
//calculate photom. residual
r_photo(count) = photo_z[count] - estimate_photo_z[count];
count++;
}
r = r_photo;
return true;
}
// generates the jacobian of one patch point regarding rho, anchor and current frame
bool MsckfVio::PhotometricPatchPointJacobian(
const CAMState& cam_state,
const Feature& feature,
Eigen::Vector3d point,
int count,
Eigen::Matrix<double, 1, 1>& H_rhoj,
Eigen::Matrix<double, 1, 6>& H_plj,
Eigen::Matrix<double, 1, 6>& H_pAj)
{
const StateIDType anchor_state_id = feature.observations.begin()->first;
const CAMState anchor_state = state_server.cam_states[anchor_state_id];
@ -1502,9 +1591,6 @@ bool MsckfVio::PhotometricMeasurementJacobian(
Vector3d t_c1_w = t_c0_w - R_w_c1.transpose()*CAMState::T_cam0_cam1.translation();
//photometric observation
std::vector<double> photo_z;
VectorXd r_photo = VectorXd::Zero(N*N);
// individual Jacobians
Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
@ -1517,64 +1603,17 @@ bool MsckfVio::PhotometricMeasurementJacobian(
Matrix<double, 3, 3> dCpij_dCGtheta = Matrix<double, 3, 3>::Zero();
Matrix<double, 3, 3> dCpij_dGpC = Matrix<double, 3, 3>::Zero();
// one line of the NxN Jacobians
Eigen::Matrix<double, 1, 1> H_rhoj;
Eigen::Matrix<double, 1, 6> H_plj;
Eigen::Matrix<double, 1, 6> H_pAj;
// combined Jacobians
Eigen::MatrixXd H_rho(N*N, 1);
Eigen::MatrixXd H_pl(N*N, 6);
Eigen::MatrixXd H_pA(N*N, 6);
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
auto anchor_frame = cam0.moving_window.find(anchor_state_id)->second.image;
//observation
const Vector4d& z = feature.observations.find(cam_state_id)->second;
//estimate photometric measurement
std::vector<double> estimate_irradiance;
std::vector<double> estimate_photo_z;
IlluminationParameter estimated_illumination;
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
// calculated here, because we need true 'estimate_irradiance' later for jacobi
for (auto& estimate_irradiance_j : estimate_irradiance)
estimate_photo_z.push_back (estimate_irradiance_j *
estimated_illumination.frame_gain * estimated_illumination.feature_gain +
estimated_illumination.frame_bias + estimated_illumination.feature_bias);
int count = 0;
double dx, dy;
for (auto point : feature.anchorPatch_3d)
{
//cout << "____feature-measurement_____\n" << endl;
Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
cv::Point2f p_in_anchor = feature.projectPositionToCamera(anchor_state, anchor_state_id, cam0, point);
if(p_in_c0.x < 0 or p_in_c0.x > frame.cols-1 or p_in_c0.y < 0 or p_in_c0.y > frame.rows-1)
{
cout << "skipped" << endl;
return false;
}
//add observation
photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
//calculate photom. residual
r_photo(count) = photo_z[count] - estimate_photo_z[count];
//cout << "residual: " << photo_r.back() << endl;
// calculate derivation for anchor frame, use position for derivation calculation
// frame derivative calculated convoluting with kernel [-1, 0, 1]
dx = feature.cvKernel(p_in_anchor, "Sobel_x");
dy = feature.cvKernel(p_in_anchor, "Sobel_y");
// dx = feature.PixelIrradiance(cv::Point2f(p_in_anchor.x+1, p_in_anchor.y), anchor_frame) - feature.PixelIrradiance(cv::Point2f(p_in_anchor.x-1, p_in_anchor.y), anchor_frame);
// dy = feature.PixelIrradiance(cv::Point2f(p_in_anchor.x, p_in_anchor.y+1), anchor_frame) - feature.PixelIrradiance(cv::Point2f(p_in_anchor.x, p_in_anchor.y-1), anchor_frame);
dI_dhj(0, 0) = dx * cam0.intrinsics[0];
dI_dhj(0, 1) = dy * cam0.intrinsics[1];
@ -1611,6 +1650,45 @@ bool MsckfVio::PhotometricMeasurementJacobian(
H_plj = dI_dhj * dh_dXplj; // 1 x 6
H_pAj = dI_dhj * dh_dGpij * dGpj_XpAj; // 1 x 6
return true;
}
bool MsckfVio::PhotometricMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
MatrixXd& H_x, MatrixXd& H_y, VectorXd& r)
{
// Prepare all the required data.
const CAMState& cam_state = state_server.cam_states[cam_state_id];
const Feature& feature = map_server[feature_id];
//photometric observation
VectorXd r_photo = VectorXd::Zero(N*N);
// one line of the NxN Jacobians
Eigen::Matrix<double, 1, 1> H_rhoj;
Eigen::Matrix<double, 1, 6> H_plj;
Eigen::Matrix<double, 1, 6> H_pAj;
// combined Jacobians
Eigen::MatrixXd H_rho(N*N, 1);
Eigen::MatrixXd H_pl(N*N, 6);
Eigen::MatrixXd H_pA(N*N, 6);
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
// calcualte residual of patch
PhotometricPatchPointResidual(cam_state_id, feature, r_photo);
// calculate jacobian for patch
int count = 0;
for (auto point : feature.anchorPatch_3d)
{
// get jacobi of single point in patch
PhotometricPatchPointJacobian(cam_state, feature, point, count, H_rhoj, H_plj, H_pAj);
// stack point into entire jacobi
H_rho.block<1, 1>(count, 0) = H_rhoj;
H_pl.block<1, 6>(count, 0) = H_plj;
H_pA.block<1, 6>(count, 0) = H_pAj;
@ -1618,22 +1696,58 @@ bool MsckfVio::PhotometricMeasurementJacobian(
count++;
}
cout << "done" << endl;
// construct the jacobian structure needed for nullspacing
MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+1);
// set anchor Jakobi
// get position of anchor in cam states
ConstructJacobians(H_rho, H_pl, H_pA, feature, cam_state_id, H_xl, H_yl);
// set to return values
H_x = H_xl;
H_y = H_yl;
r = r_photo;
if(PRINTIMAGES)
{
// pregenerating information for visualization
std::stringstream ss;
auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA;
// set frame Jakobi
//get position of current frame in cam states
auto cam_state_iter = state_server.cam_states.find(cam_state_id);
int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr;
// visualizing functions
feature.MarkerGeneration(marker_pub, state_server.cam_states);
feature.VisualizePatch(cam_state, cam_state_id, cam0, r_photo, ss);
//feature.VisualizeKernel(cam_state, cam_state_id, cam0);
}
return true;
}
bool MsckfVio::ConstructJacobians(Eigen::MatrixXd& H_rho,
Eigen::MatrixXd& H_pl,
Eigen::MatrixXd& H_pA,
const Feature& feature,
const StateIDType& cam_state_id,
Eigen::MatrixXd& H_xl,
Eigen::MatrixXd& H_yl)
{
// get position of anchor in cam states
auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
// set anchor Jakobi
H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA;
//get position of current frame in cam states
auto cam_state_iter = state_server.cam_states.find(cam_state_id);
// set frame Jakobi
int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
// set jakobi of state
H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = -H_pl;
@ -1643,7 +1757,6 @@ bool MsckfVio::PhotometricMeasurementJacobian(
// set irradiance error Block
H_yl.block(0, 0,N*N, N*N) = /* estimated_illumination.feature_gain * estimated_illumination.frame_gain * */ Eigen::MatrixXd::Identity(N*N, N*N);
// TODO make this calculation more fluent
/*for(int i = 0; i< N*N; i++)
H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i];
@ -1651,21 +1764,6 @@ bool MsckfVio::PhotometricMeasurementJacobian(
H_yl.block(0, N*N, N*N, 1) = -H_rho;
H_x = H_xl;
H_y = H_yl;
r = r_photo;
std::stringstream ss;
ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr;
if(PRINTIMAGES)
{
feature.MarkerGeneration(marker_pub, state_server.cam_states);
feature.VisualizePatch(cam_state, cam_state_id, cam0, r_photo, ss);
//feature.VisualizeKernel(cam_state, cam_state_id, cam0);
}
return true;
}
@ -1717,11 +1815,9 @@ bool MsckfVio::PhotometricFeatureJacobian(
r_i.segment(stack_cntr, N*N) = r_l;
stack_cntr += N*N;
}
if(stack_cntr == 0)
{
cout << "skip feature" << endl;
if(stack_cntr < 2*N*N)
return false;
}
// Project the residual and Jacobians onto the nullspace
// of H_yj.
@ -2027,8 +2123,8 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
VectorXd delta_x = K * r;
cout << "reg rotate: " << delta_x[0] << ", " << delta_x[1] << ", " << delta_x[2] << endl;
cout << "reg update: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
// cout << "reg rotate: " << delta_x[0] << ", " << delta_x[1] << ", " << delta_x[2] << endl;
cout << "reg: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
if(FILTER != 0) return;
@ -2053,9 +2149,6 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
myfile.close();
}
delta_position = Eigen::Vector3d(delta_x[12], delta_x[13], delta_x[14]);
delta_orientation = Eigen::Vector3d(delta_x[0], delta_x[1], delta_x[2]);
// Update the IMU state.
const VectorXd& delta_x_imu = delta_x.head<21>();
@ -2239,10 +2332,13 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
// Perform QR decompostion on H_sparse.
SPQR<SparseMatrix<double> > spqr_helper;
spqr_helper.setSPQROrdering(SPQR_ORDERING_NATURAL);
spqr_helper.compute(H_sparse);
cout << "comp" << endl;
spqr_helper.compute(H_sparse);
cout << "done" << endl;
MatrixXd H_temp;
VectorXd r_temp;
(spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);
(spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);
@ -2261,6 +2357,7 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
Feature::observation_noise*MatrixXd::Identity(
H_thin.rows(), H_thin.rows());
//MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H*P);
MatrixXd K_transpose = S.ldlt().solve(H_thin*P);
MatrixXd K = K_transpose.transpose();
// Compute the error of the state.
@ -2291,8 +2388,7 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
myfile.close();
}
delta_position = Eigen::Vector3d(delta_x[12], delta_x[13], delta_x[14]);
delta_orientation = Eigen::Vector3d(delta_x[0], delta_x[1], delta_x[2]);
cout << "pho: " << delta_x[12] << ", " << delta_x[13] << ", " << delta_x[14] << endl;
const VectorXd& delta_x_imu = delta_x.head<21>();
@ -2349,8 +2445,8 @@ void MsckfVio::photometricMeasurementUpdate(const MatrixXd& H, const VectorXd& r
bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
MatrixXd P1 = H * state_server.state_cov * H.transpose();
MatrixXd P1 = H * state_server.state_cov * H.transpose();
MatrixXd P2 = Feature::observation_noise *
MatrixXd::Identity(H.rows(), H.rows());
@ -2466,15 +2562,14 @@ void MsckfVio::removeLostFeatures() {
MatrixXd twoH_xj;
VectorXd twor_j;
/*
if(PhotometricFeatureJacobian(feature.id, cam_state_ids, pH_xj, pr_j) == true);
if(PhotometricFeatureJacobian(feature.id, cam_state_ids, pH_xj, pr_j) == true)
{
if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
pstack_cntr += pH_xj.rows();
}
}*/
}
featureJacobian(feature.id, cam_state_ids, H_xj, r_j);
twodotFeatureJacobian(feature.id, cam_state_ids, twoH_xj, twor_j);
@ -2503,6 +2598,7 @@ void MsckfVio::removeLostFeatures() {
photometricMeasurementUpdate(pH_x, pr);
}
H_x.conservativeResize(stack_cntr, H_x.cols());
r.conservativeResize(stack_cntr);
@ -2648,17 +2744,15 @@ void MsckfVio::pruneLastCamStateBuffer()
for (const auto& cam_state : state_server.cam_states)
involved_cam_state_ids.push_back(cam_state.first);
/*
if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true);
{
if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true)
{
if (gatingTest(pH_xj, pr_j, pr_j.size())) { //, cam_state_ids.size()-1)) {
pH_x.block(pstack_cntr, 0, pH_xj.rows(), pH_xj.cols()) = pH_xj;
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
pstack_cntr += pH_xj.rows();
}
}*/
}
featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
twodotFeatureJacobian(feature.id, involved_cam_state_ids, twoH_xj, twor_j);
@ -2679,6 +2773,7 @@ void MsckfVio::pruneLastCamStateBuffer()
feature.observations.erase(cam_id);
}
if(pstack_cntr)
{
pH_x.conservativeResize(pstack_cntr, pH_x.cols());
@ -2690,15 +2785,14 @@ void MsckfVio::pruneLastCamStateBuffer()
H_x.conservativeResize(stack_cntr, H_x.cols());
r.conservativeResize(stack_cntr);
// Perform measurement update.
twoH_x.conservativeResize(twostack_cntr, twoH_x.cols());
twor.conservativeResize(twostack_cntr);
// Perform measurement update.
// Perform the measurement update step.
measurementUpdate(H_x, r);
twoMeasurementUpdate(twoH_x, twor);
//reduction
int cam_sequence = std::distance(state_server.cam_states.begin(),
state_server.cam_states.find(rm_cam_state_id));
@ -2831,7 +2925,7 @@ void MsckfVio::pruneCamStateBuffer() {
if (involved_cam_state_ids.size() == 0) continue;
/*
if(PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, pH_xj, pr_j) == true)
{
if (gatingTest(pH_xj, pr_j, pr_j.size())) {// involved_cam_state_ids.size())) {
@ -2839,7 +2933,8 @@ void MsckfVio::pruneCamStateBuffer() {
pr.segment(pstack_cntr, pr_j.rows()) = pr_j;
pstack_cntr += pH_xj.rows();
}
}*/
}
featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
twodotFeatureJacobian(feature.id, involved_cam_state_ids, twoH_xj, twor_j);
@ -2860,11 +2955,11 @@ void MsckfVio::pruneCamStateBuffer() {
}
if(pstack_cntr > 0)
if(pstack_cntr)
{
pH_x.conservativeResize(pstack_cntr, pH_x.cols());
pr.conservativeResize(pstack_cntr);
photometricMeasurementUpdate(pH_x, pr);
}
@ -2874,9 +2969,10 @@ void MsckfVio::pruneCamStateBuffer() {
twoH_x.conservativeResize(twostack_cntr, twoH_x.cols());
twor.conservativeResize(twostack_cntr);
// Perform measurement update.
// Perform the measurement update step.
measurementUpdate(H_x, r);
twoMeasurementUpdate(twoH_x, twor);
//reduction
for (const auto& cam_id : rm_cam_state_ids) {
int cam_sequence = std::distance(state_server.cam_states.begin(),