deactivated most to find reason for slowdown

This commit is contained in:
Raphael Maenle 2019-04-17 16:16:45 +02:00
parent 6ae83f0db7
commit f4a17f8512
2 changed files with 123 additions and 50 deletions

View File

@ -157,12 +157,19 @@ struct Feature {
* *
*/ */
bool IrradianceOfAnchorPatch( bool estimate_FrameIrradiance(
const CAMState& cam_state, const CAMState& cam_state,
const StateIDType& cam_state_id, const StateIDType& cam_state_id,
const CameraCalibration& cam, const CameraCalibration& cam0,
const movingWindow& cam0_moving_window, const movingWindow& cam0_moving_window,
std::vector<uint8_t>& anchorPatch_measurement) const; std::vector<float>& anchorPatch_estimate) const;
bool FrameIrradiance(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const CameraCalibration& cam0,
const movingWindow& cam0_moving_window,
std::vector<float>& anchorPatch_measurement) const;
/* /*
* @brief projectPixelToPosition uses the calcualted pixels * @brief projectPixelToPosition uses the calcualted pixels
@ -175,7 +182,7 @@ inline Eigen::Vector3d projectPixelToPosition(cv::Point2f in_p,
* @brief Irradiance returns irradiance value of a pixel * @brief Irradiance returns irradiance value of a pixel
*/ */
inline uint8_t Irradiance(cv::Point2f pose, cv::Mat image) const; inline float PixelIrradiance(cv::Point2f pose, cv::Mat image) const;
// An unique identifier for the feature. // An unique identifier for the feature.
// In case of long time running, the variable // In case of long time running, the variable
@ -350,25 +357,56 @@ bool Feature::checkMotion(
else return false; else return false;
} }
bool Feature::IrradianceOfAnchorPatch( bool Feature::estimate_FrameIrradiance(
const CAMState& cam_state, const CAMState& cam_state,
const StateIDType& cam_state_id, const StateIDType& cam_state_id,
const CameraCalibration& cam, const CameraCalibration& cam0,
const movingWindow& cam0_moving_window, const movingWindow& cam0_moving_window,
std::vector<uint8_t>& anchorPatch_measurement) const std::vector<float>& anchorPatch_estimate) const
{
// get irradiance of patch in anchor frame
// subtract estimated b and divide by a of anchor frame
// muliply by a and add b of this frame
auto anchor = observations.begin();
if(cam0_moving_window.find(anchor->first) == cam0_moving_window.end())
return false;
double anchorExposureTime_ms = cam0_moving_window.find(anchor->first)->second.exposureTime_ms;
double frameExposureTime_ms = cam0_moving_window.find(cam_state_id)->second.exposureTime_ms;
double a_A = anchorExposureTime_ms;
double b_A = 0;
double a_l =frameExposureTime_ms;
double b_l = 0;
for (double anchorPixel : anchorPatch)
{
float irradiance = ((anchorPixel - b_A) / a_A ) * a_l - b_l;
anchorPatch_estimate.push_back(irradiance);
}
}
bool Feature::FrameIrradiance(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const CameraCalibration& cam0,
const movingWindow& cam0_moving_window,
std::vector<float>& anchorPatch_measurement) const
{ {
//project every point in anchorPatch_3d. //project every point in anchorPatch_3d.
for (auto point : anchorPatch_3d) for (auto point : anchorPatch_3d)
{ {
cv::Point2f p_in_c0 = projectPositionToCamera(cam_state, cam_state_id, cam, point); cv::Point2f p_in_c0 = projectPositionToCamera(cam_state, cam_state_id, cam0, point);
uint8_t irradiance = Irradiance(p_in_c0 , cam0_moving_window.find(cam_state_id)->second.image); float irradiance = PixelIrradiance(p_in_c0, cam0_moving_window.find(cam_state_id)->second.image);
anchorPatch_measurement.push_back(irradiance); anchorPatch_measurement.push_back(irradiance);
} }
} }
uint8_t Feature::Irradiance(cv::Point2f pose, cv::Mat image) const float Feature::PixelIrradiance(cv::Point2f pose, cv::Mat image) const
{ {
return image.at<uint8_t>(pose.x, pose.y); return (float)image.at<uint8_t>(pose.x, pose.y);
} }
cv::Point2f Feature::projectPositionToCamera( cv::Point2f Feature::projectPositionToCamera(
@ -389,7 +427,10 @@ cv::Point2f Feature::projectPositionToCamera(
out_p = cv::Point2f(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2)); out_p = cv::Point2f(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2));
std::vector<cv::Point2f> out_v; std::vector<cv::Point2f> out_v;
out_v.push_back(out_p); out_v.push_back(out_p);
std::vector<cv::Point2f> my_p = image_handler::distortPoints(out_v, cam.intrinsics, cam.distortion_model, cam.distortion_coeffs); std::vector<cv::Point2f> my_p = image_handler::distortPoints(out_v,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
// printf("truPosition: %f, %f, %f\n", position.x(), position.y(), position.z()); // printf("truPosition: %f, %f, %f\n", position.x(), position.y(), position.z());
// printf("camPosition: %f, %f, %f\n", p_c0(0), p_c0(1), p_c0(2)); // printf("camPosition: %f, %f, %f\n", p_c0(0), p_c0(1), p_c0(2));
@ -418,6 +459,8 @@ bool Feature::initializeAnchor(
const CameraCalibration& cam) const CameraCalibration& cam)
{ {
//initialize patch Size
//TODO make N size a ros parameter
int N = 3; int N = 3;
int n = (int)(N-1)/2; int n = (int)(N-1)/2;
@ -428,25 +471,32 @@ bool Feature::initializeAnchor(
cv::Mat anchorImage = cam0_moving_window.find(anchor->first)->second.image; cv::Mat anchorImage = cam0_moving_window.find(anchor->first)->second.image;
auto u = anchor->second(0)*cam.intrinsics[0] + cam.intrinsics[2]; auto u = anchor->second(0)*cam.intrinsics[0] + cam.intrinsics[2];
auto v = anchor->second(1)*cam.intrinsics[1] + cam.intrinsics[3]; auto v = anchor->second(1)*cam.intrinsics[1] + cam.intrinsics[3];
int count = 0;
//go through surrounding pixels //for NxN patch pixels around feature
for(double u_run = u - n; u_run <= u + n; u_run = u_run + 1) for(double u_run = u - n; u_run <= u + n; u_run = u_run + 1)
{ {
for(double v_run = v - n; v_run <= v + n; v_run = v_run + 1) for(double v_run = v - n; v_run <= v + n; v_run = v_run + 1)
{ {
anchorPatch.push_back(anchorImage.at<uint8_t>((int)u_run,(int)v_run)); // add irradiance information
cv::Point2f currentPoint((u_run-cam.intrinsics[2])/cam.intrinsics[0], (v_run-cam.intrinsics[3])/cam.intrinsics[1]); anchorPatch.push_back((double)anchorImage.at<uint8_t>((int)u_run,(int)v_run));
// project patch pixel to 3D space
auto intr = cam.intrinsics;
cv::Point2f currentPoint((u_run-intr[2])/intr[0], (v_run-intr[3])/intr[1]);
Eigen::Vector3d Npose = projectPixelToPosition(currentPoint, cam); Eigen::Vector3d Npose = projectPixelToPosition(currentPoint, cam);
//save position
anchorPatch_3d.push_back(Npose); anchorPatch_3d.push_back(Npose);
} }
} }
//TODO test if NxN patch can be selected
return true; return true;
} }
bool Feature::initializePosition( bool Feature::initializePosition(
const CamStateServer& cam_states) { const CamStateServer& cam_states) {
// Organize camera poses and feature observations properly. // Organize camera poses and feature observations properly.
std::vector<Eigen::Isometry3d, std::vector<Eigen::Isometry3d,
Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0); Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0);

View File

@ -344,7 +344,7 @@ void MsckfVio::imageCallback(
// Add new images to moving window // Add new images to moving window
start_time = ros::Time::now(); start_time = ros::Time::now();
manageMovingWindow(cam0_img, cam1_img, feature_msg); //manageMovingWindow(cam0_img, cam1_img, feature_msg);
double manage_moving_window_time = ( double manage_moving_window_time = (
ros::Time::now()-start_time).toSec(); ros::Time::now()-start_time).toSec();
@ -373,20 +373,20 @@ void MsckfVio::imageCallback(
processing_end_time - processing_start_time; processing_end_time - processing_start_time;
if (processing_time > 1.0/frame_rate) { if (processing_time > 1.0/frame_rate) {
++critical_time_cntr; ++critical_time_cntr;
//ROS_INFO("\033[1;31mTotal processing time %f/%d...\033[0m", ROS_INFO("\033[1;31mTotal processing time %f/%d...\033[0m",
// processing_time, critical_time_cntr); processing_time, critical_time_cntr);
//printf("IMU processing time: %f/%f\n", printf("IMU processing time: %f/%f\n",
// imu_processing_time, imu_processing_time/processing_time); imu_processing_time, imu_processing_time/processing_time);
//printf("State augmentation time: %f/%f\n", printf("State augmentation time: %f/%f\n",
// state_augmentation_time, state_augmentation_time/processing_time); state_augmentation_time, state_augmentation_time/processing_time);
//printf("Add observations time: %f/%f\n", printf("Add observations time: %f/%f\n",
// add_observations_time, add_observations_time/processing_time); add_observations_time, add_observations_time/processing_time);
//printf("Remove lost features time: %f/%f\n", printf("Remove lost features time: %f/%f\n",
// remove_lost_features_time, remove_lost_features_time/processing_time); remove_lost_features_time, remove_lost_features_time/processing_time);
//printf("Remove camera states time: %f/%f\n", printf("Remove camera states time: %f/%f\n",
// prune_cam_states_time, prune_cam_states_time/processing_time); prune_cam_states_time, prune_cam_states_time/processing_time);
//printf("Publish time: %f/%f\n", printf("Publish time: %f/%f\n",
// publish_time, publish_time/processing_time); publish_time, publish_time/processing_time);
} }
return; return;
@ -400,7 +400,15 @@ void MsckfVio::manageMovingWindow(
//save exposure Time into moving window //save exposure Time into moving window
cam0_moving_window[state_server.imu_state.id].exposureTime_ms = strtod(cam0_img->header.frame_id.data(), NULL) / 1000; cam0_moving_window[state_server.imu_state.id].exposureTime_ms = strtod(cam0_img->header.frame_id.data(), NULL) / 1000;
cam1_moving_window[state_server.imu_state.id].exposureTime_ms = strtod(cam1_img->header.frame_id.data(), NULL) / 1000; cam1_moving_window[state_server.imu_state.id].exposureTime_ms = strtod(cam1_img->header.frame_id.data(), NULL) / 1000;
printf("exposure: %f\n", cam0_moving_window[state_server.imu_state.id].exposureTime_ms); if(cam0_moving_window[state_server.imu_state.id].exposureTime_ms < 1)
cam0_moving_window[state_server.imu_state.id].exposureTime_ms = 1;
if(cam1_moving_window[state_server.imu_state.id].exposureTime_ms < 1)
cam1_moving_window[state_server.imu_state.id].exposureTime_ms = 1;
if(cam0_moving_window[state_server.imu_state.id].exposureTime_ms > 500)
cam0_moving_window[state_server.imu_state.id].exposureTime_ms = 500;
if(cam1_moving_window[state_server.imu_state.id].exposureTime_ms > 500)
cam1_moving_window[state_server.imu_state.id].exposureTime_ms = 500;
// Get the current image. // Get the current image.
cv_bridge::CvImageConstPtr cam0_img_ptr = cv_bridge::toCvShare(cam0_img, cv_bridge::CvImageConstPtr cam0_img_ptr = cv_bridge::toCvShare(cam0_img,
sensor_msgs::image_encodings::MONO8); sensor_msgs::image_encodings::MONO8);
@ -908,8 +916,8 @@ void MsckfVio::PhotometricMeasurementJacobian(
const Vector4d& z = feature.observations.find(cam_state_id)->second; const Vector4d& z = feature.observations.find(cam_state_id)->second;
//photometric observation //photometric observation
std::vector<uint8_t> photo_z; std::vector<float> photo_z;
feature.IrradianceOfAnchorPatch(cam_state, cam_state_id, cam0, cam0_moving_window, photo_z); //feature.FrameIrradiance(cam_state, cam_state_id, cam0, cam0_moving_window, photo_z);
// Convert the feature position from the world frame to // Convert the feature position from the world frame to
// the cam0 and cam1 frame. // the cam0 and cam1 frame.
@ -973,6 +981,20 @@ void MsckfVio::PhotometricMeasurementJacobian(
r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2), r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2),
p_c1(0)/p_c1(2), p_c1(1)/p_c1(2)); p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
//estimate photometric measurement
std::vector<float> estimate_photo_z;
//feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, cam0_moving_window, estimate_photo_z);
std::vector<float> photo_r;
//calculate photom. residual
//for(int i = 0; i < photo_z.size(); i++)
// photo_r.push_back(photo_z[i] - estimate_photo_z[i]);
// printf("-----\n");
// for(int i = 0; i < photo_z.size(); i++)
// printf("%.4f - %.4f\n", photo_z[i], estimate_photo_z[i]);
photo_z.clear();
return; return;
} }
@ -1002,6 +1024,7 @@ void MsckfVio::PhotometricFeatureJacobian(
VectorXd r_j = VectorXd::Zero(jacobian_row_size); VectorXd r_j = VectorXd::Zero(jacobian_row_size);
int stack_cntr = 0; int stack_cntr = 0;
for (const auto& cam_id : valid_cam_state_ids) { for (const auto& cam_id : valid_cam_state_ids) {
Matrix<double, 4, 6> H_xi = Matrix<double, 4, 6>::Zero(); Matrix<double, 4, 6> H_xi = Matrix<double, 4, 6>::Zero();
@ -1318,12 +1341,11 @@ void MsckfVio::removeLostFeatures() {
continue; continue;
} }
} }
} /*if(!feature.initializeAnchor(cam0_moving_window, cam0))
{
if(!feature.initializeAnchor(cam0_moving_window, cam0)) invalid_feature_ids.push_back(feature.id);
{ continue;
invalid_feature_ids.push_back(feature.id); }*/
continue;
} }
jacobian_row_size += 4*feature.observations.size() - 3; jacobian_row_size += 4*feature.observations.size() - 3;
@ -1472,13 +1494,12 @@ void MsckfVio::pruneCamStateBuffer() {
continue; continue;
} }
} }
} /*if(!feature.initializeAnchor(cam0_moving_window, cam0))
{
if(!feature.initializeAnchor(cam0_moving_window, cam0)) for (const auto& cam_id : involved_cam_state_ids)
{ feature.observations.erase(cam_id);
for (const auto& cam_id : involved_cam_state_ids) continue;
feature.observations.erase(cam_id); }*/
continue;
} }
jacobian_row_size += 4*involved_cam_state_ids.size() - 3; jacobian_row_size += 4*involved_cam_state_ids.size() - 3;
@ -1491,7 +1512,7 @@ void MsckfVio::pruneCamStateBuffer() {
21+6*state_server.cam_states.size()); 21+6*state_server.cam_states.size());
VectorXd r = VectorXd::Zero(jacobian_row_size); VectorXd r = VectorXd::Zero(jacobian_row_size);
int stack_cntr = 0; int stack_cntr = 0;
ros::Time start_time = ros::Time::now();
for (auto& item : map_server) { for (auto& item : map_server) {
auto& feature = item.second; auto& feature = item.second;
// Check how many camera states to be removed are associated // Check how many camera states to be removed are associated
@ -1507,8 +1528,8 @@ void MsckfVio::pruneCamStateBuffer() {
MatrixXd H_xj; MatrixXd H_xj;
VectorXd r_j; VectorXd r_j;
PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j); PhotometricFeatureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
if (gatingTest(H_xj, r_j, involved_cam_state_ids.size())) { if (gatingTest(H_xj, r_j, involved_cam_state_ids.size())) {
H_x.block(stack_cntr, 0, H_xj.rows(), H_xj.cols()) = H_xj; H_x.block(stack_cntr, 0, H_xj.rows(), H_xj.cols()) = H_xj;
r.segment(stack_cntr, r_j.rows()) = r_j; r.segment(stack_cntr, r_j.rows()) = r_j;
@ -1518,13 +1539,15 @@ void MsckfVio::pruneCamStateBuffer() {
for (const auto& cam_id : involved_cam_state_ids) for (const auto& cam_id : involved_cam_state_ids)
feature.observations.erase(cam_id); feature.observations.erase(cam_id);
} }
double anchorPrune_processing_time = (ros::Time::now()-start_time).toSec();
printf("FeatureJacobian Time: %f\n", anchorPrune_processing_time);
H_x.conservativeResize(stack_cntr, H_x.cols()); H_x.conservativeResize(stack_cntr, H_x.cols());
r.conservativeResize(stack_cntr); r.conservativeResize(stack_cntr);
// Perform measurement update. // Perform measurement update.
measurementUpdate(H_x, r); measurementUpdate(H_x, r);
for (const auto& cam_id : rm_cam_state_ids) { for (const auto& cam_id : rm_cam_state_ids) {
int cam_sequence = std::distance(state_server.cam_states.begin(), int cam_sequence = std::distance(state_server.cam_states.begin(),
state_server.cam_states.find(cam_id)); state_server.cam_states.find(cam_id));