Compare commits
13 Commits
master
...
photometry
Author | SHA1 | Date | |
---|---|---|---|
2dac361ba2 | |||
0712a98c7f | |||
6b8dce9876 | |||
49374a4323 | |||
3e480560e8 | |||
b3df525060 | |||
a8d4580812 | |||
a0577dfb9d | |||
8cfbe06945 | |||
cab56d9494 | |||
5e9149eacc | |||
e4dbe2f060 | |||
6b208dbc44 |
@ -15,7 +15,7 @@
|
||||
#include <Eigen/Dense>
|
||||
#include <Eigen/Geometry>
|
||||
#include <Eigen/StdVector>
|
||||
|
||||
#include <math.h>
|
||||
#include <visualization_msgs/Marker.h>
|
||||
#include <visualization_msgs/MarkerArray.h>
|
||||
#include <geometry_msgs/Point.h>
|
||||
@ -70,6 +70,11 @@ struct Feature {
|
||||
position(Eigen::Vector3d::Zero()),
|
||||
is_initialized(false), is_anchored(false) {}
|
||||
|
||||
|
||||
void Rhocost(const Eigen::Isometry3d& T_c0_ci,
|
||||
const double x, const Eigen::Vector2d& z1, const Eigen::Vector2d& z2,
|
||||
double& e) const;
|
||||
|
||||
/*
|
||||
* @brief cost Compute the cost of the camera observations
|
||||
* @param T_c0_c1 A rigid body transformation takes
|
||||
@ -82,6 +87,13 @@ struct Feature {
|
||||
const Eigen::Vector3d& x, const Eigen::Vector2d& z,
|
||||
double& e) const;
|
||||
|
||||
bool initializeRho(const CamStateServer& cam_states);
|
||||
|
||||
inline void RhoJacobian(const Eigen::Isometry3d& T_c0_ci,
|
||||
const double x, const Eigen::Vector2d& z1, const Eigen::Vector2d& z2,
|
||||
Eigen::Matrix<double, 2, 1>& J, Eigen::Vector2d& r,
|
||||
double& w) const;
|
||||
|
||||
/*
|
||||
* @brief jacobian Compute the Jacobian of the camera observation
|
||||
* @param T_c0_c1 A rigid body transformation takes
|
||||
@ -97,6 +109,10 @@ struct Feature {
|
||||
Eigen::Matrix<double, 2, 3>& J, Eigen::Vector2d& r,
|
||||
double& w) const;
|
||||
|
||||
inline double generateInitialDepth(
|
||||
const Eigen::Isometry3d& T_c1_c2, const Eigen::Vector2d& z1,
|
||||
const Eigen::Vector2d& z2) const;
|
||||
|
||||
/*
|
||||
* @brief generateInitialGuess Compute the initial guess of
|
||||
* the feature's 3d position using only two views.
|
||||
@ -148,6 +164,14 @@ struct Feature {
|
||||
inline bool initializePosition(
|
||||
const CamStateServer& cam_states);
|
||||
|
||||
cv::Point2f pixelDistanceAt(
|
||||
const CAMState& cam_state,
|
||||
const StateIDType& cam_state_id,
|
||||
const CameraCalibration& cam,
|
||||
Eigen::Vector3d& in_p) const;
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* @brief project PositionToCamera Takes a 3d position in a world frame
|
||||
* and projects it into the passed camera frame using pinhole projection
|
||||
@ -160,6 +184,11 @@ struct Feature {
|
||||
const CameraCalibration& cam,
|
||||
Eigen::Vector3d& in_p) const;
|
||||
|
||||
double Kernel(
|
||||
const cv::Point2f pose,
|
||||
const cv::Mat frame,
|
||||
std::string type) const;
|
||||
|
||||
/*
|
||||
* @brief IrradianceAnchorPatch_Camera returns irradiance values
|
||||
* of the Anchor Patch position in a camera frame
|
||||
@ -181,13 +210,15 @@ bool MarkerGeneration(
|
||||
const CAMState& cam_state,
|
||||
const StateIDType& cam_state_id,
|
||||
CameraCalibration& cam0,
|
||||
const std::vector<double> photo_r,
|
||||
std::stringstream& ss) const;
|
||||
const Eigen::VectorXd& photo_r,
|
||||
std::stringstream& ss,
|
||||
cv::Point2f gradientVector,
|
||||
cv::Point2f residualVector) const;
|
||||
/*
|
||||
* @brief projectPixelToPosition uses the calcualted pixels
|
||||
* @brief AnchorPixelToPosition uses the calcualted pixels
|
||||
* of the anchor patch to generate 3D positions of all of em
|
||||
*/
|
||||
inline Eigen::Vector3d projectPixelToPosition(cv::Point2f in_p,
|
||||
inline Eigen::Vector3d AnchorPixelToPosition(cv::Point2f in_p,
|
||||
const CameraCalibration& cam);
|
||||
|
||||
/*
|
||||
@ -248,6 +279,26 @@ typedef std::map<FeatureIDType, Feature, std::less<int>,
|
||||
Eigen::aligned_allocator<
|
||||
std::pair<const FeatureIDType, Feature> > > MapServer;
|
||||
|
||||
void Feature::Rhocost(const Eigen::Isometry3d& T_c0_ci,
|
||||
const double x, const Eigen::Vector2d& z1, const Eigen::Vector2d& z2,
|
||||
double& e) const
|
||||
{
|
||||
// Compute hi1, hi2, and hi3 as Equation (37).
|
||||
const double& rho = x;
|
||||
|
||||
Eigen::Vector3d h = T_c0_ci.linear()*
|
||||
Eigen::Vector3d(z1(0), z1(1), 1.0) + rho*T_c0_ci.translation();
|
||||
double& h1 = h(0);
|
||||
double& h2 = h(1);
|
||||
double& h3 = h(2);
|
||||
|
||||
// Predict the feature observation in ci frame.
|
||||
Eigen::Vector2d z_hat(h1/h3, h2/h3);
|
||||
|
||||
// Compute the residual.
|
||||
e = (z_hat-z2).squaredNorm();
|
||||
return;
|
||||
}
|
||||
|
||||
void Feature::cost(const Eigen::Isometry3d& T_c0_ci,
|
||||
const Eigen::Vector3d& x, const Eigen::Vector2d& z,
|
||||
@ -260,9 +311,9 @@ void Feature::cost(const Eigen::Isometry3d& T_c0_ci,
|
||||
|
||||
Eigen::Vector3d h = T_c0_ci.linear()*
|
||||
Eigen::Vector3d(alpha, beta, 1.0) + rho*T_c0_ci.translation();
|
||||
double& h1 = h(0);
|
||||
double& h2 = h(1);
|
||||
double& h3 = h(2);
|
||||
double h1 = h(0);
|
||||
double h2 = h(1);
|
||||
double h3 = h(2);
|
||||
|
||||
// Predict the feature observation in ci frame.
|
||||
Eigen::Vector2d z_hat(h1/h3, h2/h3);
|
||||
@ -272,6 +323,42 @@ void Feature::cost(const Eigen::Isometry3d& T_c0_ci,
|
||||
return;
|
||||
}
|
||||
|
||||
void Feature::RhoJacobian(const Eigen::Isometry3d& T_c0_ci,
|
||||
const double x, const Eigen::Vector2d& z1, const Eigen::Vector2d& z2,
|
||||
Eigen::Matrix<double, 2, 1>& J, Eigen::Vector2d& r,
|
||||
double& w) const
|
||||
{
|
||||
|
||||
const double& rho = x;
|
||||
|
||||
Eigen::Vector3d h = T_c0_ci.linear()*
|
||||
Eigen::Vector3d(z1(0), z2(1), 1.0) + rho*T_c0_ci.translation();
|
||||
double& h1 = h(0);
|
||||
double& h2 = h(1);
|
||||
double& h3 = h(2);
|
||||
|
||||
// Compute the Jacobian.
|
||||
Eigen::Matrix3d W;
|
||||
W.leftCols<2>() = T_c0_ci.linear().leftCols<2>();
|
||||
W.rightCols<1>() = T_c0_ci.translation();
|
||||
|
||||
J(0,0) = -h1/(h3*h3);
|
||||
J(1,0) = -h2/(h3*h3);
|
||||
|
||||
// Compute the residual.
|
||||
Eigen::Vector2d z_hat(h1/h3, h2/h3);
|
||||
r = z_hat - z2;
|
||||
|
||||
// Compute the weight based on the residual.
|
||||
double e = r.norm();
|
||||
if (e <= optimization_config.huber_epsilon)
|
||||
w = 1.0;
|
||||
else
|
||||
w = optimization_config.huber_epsilon / (2*e);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void Feature::jacobian(const Eigen::Isometry3d& T_c0_ci,
|
||||
const Eigen::Vector3d& x, const Eigen::Vector2d& z,
|
||||
Eigen::Matrix<double, 2, 3>& J, Eigen::Vector2d& r,
|
||||
@ -311,9 +398,9 @@ void Feature::jacobian(const Eigen::Isometry3d& T_c0_ci,
|
||||
return;
|
||||
}
|
||||
|
||||
void Feature::generateInitialGuess(
|
||||
double Feature::generateInitialDepth(
|
||||
const Eigen::Isometry3d& T_c1_c2, const Eigen::Vector2d& z1,
|
||||
const Eigen::Vector2d& z2, Eigen::Vector3d& p) const
|
||||
const Eigen::Vector2d& z2) const
|
||||
{
|
||||
// Construct a least square problem to solve the depth.
|
||||
Eigen::Vector3d m = T_c1_c2.linear() * Eigen::Vector3d(z1(0), z1(1), 1.0);
|
||||
@ -328,6 +415,15 @@ void Feature::generateInitialGuess(
|
||||
|
||||
// Solve for the depth.
|
||||
double depth = (A.transpose() * A).inverse() * A.transpose() * b;
|
||||
return depth;
|
||||
}
|
||||
|
||||
|
||||
void Feature::generateInitialGuess(
|
||||
const Eigen::Isometry3d& T_c1_c2, const Eigen::Vector2d& z1,
|
||||
const Eigen::Vector2d& z2, Eigen::Vector3d& p) const
|
||||
{
|
||||
double depth = generateInitialDepth(T_c1_c2, z1, z2);
|
||||
p(0) = z1(0) * depth;
|
||||
p(1) = z1(1) * depth;
|
||||
p(2) = depth;
|
||||
@ -377,6 +473,26 @@ bool Feature::checkMotion(const CamStateServer& cam_states) const
|
||||
else return false;
|
||||
}
|
||||
|
||||
double Feature::Kernel(
|
||||
const cv::Point2f pose,
|
||||
const cv::Mat frame,
|
||||
std::string type) const
|
||||
{
|
||||
Eigen::Matrix<double, 3, 3> kernel = Eigen::Matrix<double, 3, 3>::Zero();
|
||||
if(type == "Sobel_x")
|
||||
kernel << -1., 0., 1.,-2., 0., 2. , -1., 0., 1.;
|
||||
else if(type == "Sobel_y")
|
||||
kernel << -1., -2., -1., 0., 0., 0., 1., 2., 1.;
|
||||
|
||||
double delta = 0;
|
||||
int offs = (int)(kernel.rows()-1)/2;
|
||||
|
||||
for(int i = 0; i < kernel.rows(); i++)
|
||||
for(int j = 0; j < kernel.cols(); j++)
|
||||
delta += ((float)frame.at<uint8_t>(pose.y+j-offs , pose.x+i-offs))/255 * (float)kernel(j,i);
|
||||
|
||||
return delta;
|
||||
}
|
||||
bool Feature::estimate_FrameIrradiance(
|
||||
const CAMState& cam_state,
|
||||
const StateIDType& cam_state_id,
|
||||
@ -532,8 +648,10 @@ bool Feature::VisualizePatch(
|
||||
const CAMState& cam_state,
|
||||
const StateIDType& cam_state_id,
|
||||
CameraCalibration& cam0,
|
||||
const std::vector<double> photo_r,
|
||||
std::stringstream& ss) const
|
||||
const Eigen::VectorXd& photo_r,
|
||||
std::stringstream& ss,
|
||||
cv::Point2f gradientVector,
|
||||
cv::Point2f residualVector) const
|
||||
{
|
||||
|
||||
double rescale = 1;
|
||||
@ -573,45 +691,107 @@ bool Feature::VisualizePatch(
|
||||
|
||||
cv::hconcat(cam0.featureVisu, dottedFrame, cam0.featureVisu);
|
||||
|
||||
// irradiance grid anchor
|
||||
|
||||
// patches visualization
|
||||
int N = sqrt(anchorPatch_3d.size());
|
||||
int scale = 20;
|
||||
int scale = 30;
|
||||
cv::Mat irradianceFrame(anchorImage.size(), CV_8UC3, cv::Scalar(255, 240, 255));
|
||||
cv::resize(irradianceFrame, irradianceFrame, cv::Size(), rescale, rescale);
|
||||
|
||||
// irradiance grid anchor
|
||||
std::stringstream namer;
|
||||
namer << "anchor";
|
||||
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 25),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
|
||||
|
||||
|
||||
for(int i = 0; i<N; i++)
|
||||
for(int j = 0; j<N; j++)
|
||||
cv::rectangle(irradianceFrame,
|
||||
cv::Point(10+scale*(i+1), 10+scale*j),
|
||||
cv::Point(10+scale*i, 10+scale*(j+1)),
|
||||
cv::Point(30+scale*(i+1), 30+scale*j),
|
||||
cv::Point(30+scale*i, 30+scale*(j+1)),
|
||||
cv::Scalar(anchorPatch[i*N+j]*255, anchorPatch[i*N+j]*255, anchorPatch[i*N+j]*255),
|
||||
CV_FILLED);
|
||||
|
||||
// irradiance grid projection
|
||||
|
||||
namer.str(std::string());
|
||||
namer << "projection";
|
||||
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 45+scale*N),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
|
||||
|
||||
for(int i = 0; i<N; i++)
|
||||
for(int j = 0; j<N ; j++)
|
||||
cv::rectangle(irradianceFrame,
|
||||
cv::Point(10+scale*(i+1), 20+scale*(N+j)),
|
||||
cv::Point(10+scale*(i), 20+scale*(N+j+1)),
|
||||
cv::Point(30+scale*(i+1), 50+scale*(N+j)),
|
||||
cv::Point(30+scale*(i), 50+scale*(N+j+1)),
|
||||
cv::Scalar(projectionPatch[i*N+j]*255, projectionPatch[i*N+j]*255, projectionPatch[i*N+j]*255),
|
||||
CV_FILLED);
|
||||
|
||||
// true irradiance at feature
|
||||
// get current observation
|
||||
|
||||
namer.str(std::string());
|
||||
namer << "feature";
|
||||
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 65+scale*2*N),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
|
||||
|
||||
cv::Point2f p_f(observations.find(cam_state_id)->second(0),observations.find(cam_state_id)->second(1));
|
||||
// move to real pixels
|
||||
p_f = image_handler::distortPoint(p_f, cam0.intrinsics, cam0.distortion_model, cam0.distortion_coeffs);
|
||||
|
||||
for(int i = 0; i<N; i++)
|
||||
{
|
||||
for(int j = 0; j<N ; j++)
|
||||
{
|
||||
float irr = PixelIrradiance(cv::Point2f(p_f.x + (i-(N-1)/2), p_f.y + (j-(N-1)/2)), current_image);
|
||||
cv::rectangle(irradianceFrame,
|
||||
cv::Point(30+scale*(i+1), 70+scale*(2*N+j)),
|
||||
cv::Point(30+scale*(i), 70+scale*(2*N+j+1)),
|
||||
cv::Scalar(irr*255, irr*255, irr*255),
|
||||
CV_FILLED);
|
||||
}
|
||||
}
|
||||
|
||||
// residual grid projection, positive - red, negative - blue colored
|
||||
namer.str(std::string());
|
||||
namer << "residual";
|
||||
cv::putText(irradianceFrame, namer.str() , cvPoint(30+scale*N, scale*N/2-5),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
|
||||
|
||||
for(int i = 0; i<N; i++)
|
||||
for(int j = 0; j<N; j++)
|
||||
if(photo_r[i*N+j]>0)
|
||||
if(photo_r(i*N+j)>0)
|
||||
cv::rectangle(irradianceFrame,
|
||||
cv::Point(20+scale*(N+i+1), 15+scale*(N/2+j)),
|
||||
cv::Point(20+scale*(N+i), 15+scale*(N/2+j+1)),
|
||||
cv::Scalar(255 - photo_r[i*N+j]*255, 255 - photo_r[i*N+j]*255, 255),
|
||||
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
|
||||
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
|
||||
cv::Scalar(255 - photo_r(i*N+j)*255, 255 - photo_r(i*N+j)*255, 255),
|
||||
CV_FILLED);
|
||||
else
|
||||
cv::rectangle(irradianceFrame,
|
||||
cv::Point(20+scale*(N+i+1), 15+scale*(N/2+j)),
|
||||
cv::Point(20+scale*(N+i), 15+scale*(N/2+j+1)),
|
||||
cv::Scalar(255, 255 + photo_r[i*N+j]*255, 255 + photo_r[i*N+j]*255),
|
||||
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
|
||||
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
|
||||
cv::Scalar(255, 255 + photo_r(i*N+j)*255, 255 + photo_r(i*N+j)*255),
|
||||
CV_FILLED);
|
||||
|
||||
cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
|
||||
// gradient arrow
|
||||
/*
|
||||
cv::arrowedLine(irradianceFrame,
|
||||
cv::Point(30+scale*(N/2 +0.5), 50+scale*(N+(N/2)+0.5)),
|
||||
cv::Point(30+scale*(N/2+0.5)+scale*gradientVector.x, 50+scale*(N+(N/2)+0.5)+scale*gradientVector.y),
|
||||
cv::Scalar(100, 0, 255),
|
||||
1);
|
||||
*/
|
||||
|
||||
// residual gradient direction
|
||||
cv::arrowedLine(irradianceFrame,
|
||||
cv::Point(40+scale*(N+N/2+0.5), 15+scale*((N-0.5))),
|
||||
cv::Point(40+scale*(N+N/2+0.5)+scale*residualVector.x, 15+scale*(N-0.5)+scale*residualVector.y),
|
||||
cv::Scalar(0, 255, 175),
|
||||
3);
|
||||
|
||||
|
||||
cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
|
||||
|
||||
/*
|
||||
// visualize position of used observations and resulting feature position
|
||||
@ -671,6 +851,37 @@ float Feature::PixelIrradiance(cv::Point2f pose, cv::Mat image) const
|
||||
return ((float)image.at<uint8_t>(pose.y, pose.x))/255;
|
||||
}
|
||||
|
||||
cv::Point2f Feature::pixelDistanceAt(
|
||||
const CAMState& cam_state,
|
||||
const StateIDType& cam_state_id,
|
||||
const CameraCalibration& cam,
|
||||
Eigen::Vector3d& in_p) const
|
||||
{
|
||||
|
||||
cv::Point2f cam_p = projectPositionToCamera(cam_state, cam_state_id, cam, in_p);
|
||||
|
||||
// create vector of patch in pixel plane
|
||||
std::vector<cv::Point2f> surroundingPoints;
|
||||
surroundingPoints.push_back(cv::Point2f(cam_p.x+1, cam_p.y));
|
||||
surroundingPoints.push_back(cv::Point2f(cam_p.x-1, cam_p.y));
|
||||
surroundingPoints.push_back(cv::Point2f(cam_p.x, cam_p.y+1));
|
||||
surroundingPoints.push_back(cv::Point2f(cam_p.x, cam_p.y-1));
|
||||
|
||||
std::vector<cv::Point2f> pure;
|
||||
image_handler::undistortPoints(surroundingPoints,
|
||||
cam.intrinsics,
|
||||
cam.distortion_model,
|
||||
cam.distortion_coeffs,
|
||||
pure);
|
||||
|
||||
// returns the absolute pixel distance at pixels one metres away
|
||||
cv::Point2f distance(fabs(pure[0].x - pure[1].x), fabs(pure[2].y - pure[3].y));
|
||||
|
||||
return distance;
|
||||
}
|
||||
|
||||
|
||||
|
||||
cv::Point2f Feature::projectPositionToCamera(
|
||||
const CAMState& cam_state,
|
||||
const StateIDType& cam_state_id,
|
||||
@ -703,7 +914,7 @@ cv::Point2f Feature::projectPositionToCamera(
|
||||
return my_p;
|
||||
}
|
||||
|
||||
Eigen::Vector3d Feature::projectPixelToPosition(cv::Point2f in_p, const CameraCalibration& cam)
|
||||
Eigen::Vector3d Feature::AnchorPixelToPosition(cv::Point2f in_p, const CameraCalibration& cam)
|
||||
{
|
||||
// use undistorted position of point of interest
|
||||
// project it back into 3D space using pinhole model
|
||||
@ -742,27 +953,19 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
|
||||
cv::Point2f und_pix_p = image_handler::distortPoint(cv::Point2f(u, v),
|
||||
cam.intrinsics,
|
||||
cam.distortion_model,
|
||||
0);
|
||||
cam.distortion_coeffs);
|
||||
// create vector of patch in pixel plane
|
||||
std::vector<cv::Point2f>und_pix_v;
|
||||
for(double u_run = -n; u_run <= n; u_run++)
|
||||
for(double v_run = -n; v_run <= n; v_run++)
|
||||
und_pix_v.push_back(cv::Point2f(und_pix_p.x+u_run, und_pix_p.y+v_run));
|
||||
anchorPatch_real.push_back(cv::Point2f(und_pix_p.x+u_run, und_pix_p.y+v_run));
|
||||
|
||||
|
||||
//create undistorted pure points
|
||||
std::vector<cv::Point2f> und_v;
|
||||
image_handler::undistortPoints(und_pix_v,
|
||||
image_handler::undistortPoints(anchorPatch_real,
|
||||
cam.intrinsics,
|
||||
cam.distortion_model,
|
||||
0,
|
||||
und_v);
|
||||
|
||||
//create distorted pixel points
|
||||
anchorPatch_real = image_handler::distortPoints(und_v,
|
||||
cam.intrinsics,
|
||||
cam.distortion_model,
|
||||
cam.distortion_coeffs);
|
||||
cam.distortion_coeffs,
|
||||
anchorPatch_ideal);
|
||||
|
||||
|
||||
// save anchor position for later visualisaztion
|
||||
@ -770,26 +973,170 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
|
||||
|
||||
// save true pixel Patch position
|
||||
for(auto point : anchorPatch_real)
|
||||
{
|
||||
if(point.x - n < 0 || point.x + n >= cam.resolution(0) || point.y - n < 0 || point.y + n >= cam.resolution(1))
|
||||
return false;
|
||||
}
|
||||
|
||||
for(auto point : anchorPatch_real)
|
||||
anchorPatch.push_back(PixelIrradiance(point, anchorImage));
|
||||
|
||||
// project patch pixel to 3D space in camera coordinate system
|
||||
for(auto point : und_v)
|
||||
{
|
||||
anchorPatch_ideal.push_back(point);
|
||||
anchorPatch_3d.push_back(projectPixelToPosition(point, cam));
|
||||
}
|
||||
for(auto point : anchorPatch_ideal)
|
||||
anchorPatch_3d.push_back(AnchorPixelToPosition(point, cam));
|
||||
|
||||
is_anchored = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Feature::initializeRho(const CamStateServer& cam_states) {
|
||||
|
||||
// Organize camera poses and feature observations properly.
|
||||
std::vector<Eigen::Isometry3d,
|
||||
Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0);
|
||||
std::vector<Eigen::Vector2d,
|
||||
Eigen::aligned_allocator<Eigen::Vector2d> > measurements(0);
|
||||
|
||||
for (auto& m : observations) {
|
||||
auto cam_state_iter = cam_states.find(m.first);
|
||||
if (cam_state_iter == cam_states.end()) continue;
|
||||
|
||||
// Add the measurement.
|
||||
measurements.push_back(m.second.head<2>());
|
||||
measurements.push_back(m.second.tail<2>());
|
||||
|
||||
// This camera pose will take a vector from this camera frame
|
||||
// to the world frame.
|
||||
Eigen::Isometry3d cam0_pose;
|
||||
cam0_pose.linear() = quaternionToRotation(
|
||||
cam_state_iter->second.orientation).transpose();
|
||||
cam0_pose.translation() = cam_state_iter->second.position;
|
||||
|
||||
Eigen::Isometry3d cam1_pose;
|
||||
cam1_pose = cam0_pose * CAMState::T_cam0_cam1.inverse();
|
||||
|
||||
cam_poses.push_back(cam0_pose);
|
||||
cam_poses.push_back(cam1_pose);
|
||||
}
|
||||
|
||||
// All camera poses should be modified such that it takes a
|
||||
// vector from the first camera frame in the buffer to this
|
||||
// camera frame.
|
||||
Eigen::Isometry3d T_c0_w = cam_poses[0];
|
||||
T_anchor_w = T_c0_w;
|
||||
for (auto& pose : cam_poses)
|
||||
pose = pose.inverse() * T_c0_w;
|
||||
|
||||
// Generate initial guess
|
||||
double initial_depth = 0;
|
||||
initial_depth = generateInitialDepth(cam_poses[cam_poses.size()-1], measurements[0],
|
||||
measurements[measurements.size()-1]);
|
||||
|
||||
double solution = 1.0/initial_depth;
|
||||
|
||||
// Apply Levenberg-Marquart method to solve for the 3d position.
|
||||
double lambda = optimization_config.initial_damping;
|
||||
int inner_loop_cntr = 0;
|
||||
int outer_loop_cntr = 0;
|
||||
bool is_cost_reduced = false;
|
||||
double delta_norm = 0;
|
||||
|
||||
// Compute the initial cost.
|
||||
double total_cost = 0.0;
|
||||
for (int i = 0; i < cam_poses.size(); ++i) {
|
||||
double this_cost = 0.0;
|
||||
Rhocost(cam_poses[i], solution, measurements[0], measurements[i], this_cost);
|
||||
total_cost += this_cost;
|
||||
}
|
||||
|
||||
// Outer loop.
|
||||
do {
|
||||
Eigen::Matrix<double, 1, 1> A = Eigen::Matrix<double, 1, 1>::Zero();
|
||||
Eigen::Matrix<double, 1, 1> b = Eigen::Matrix<double, 1, 1>::Zero();
|
||||
|
||||
for (int i = 0; i < cam_poses.size(); ++i) {
|
||||
Eigen::Matrix<double, 2, 1> J;
|
||||
Eigen::Vector2d r;
|
||||
double w;
|
||||
|
||||
RhoJacobian(cam_poses[i], solution, measurements[0], measurements[i], J, r, w);
|
||||
|
||||
if (w == 1) {
|
||||
A += J.transpose() * J;
|
||||
b += J.transpose() * r;
|
||||
} else {
|
||||
double w_square = w * w;
|
||||
A += w_square * J.transpose() * J;
|
||||
b += w_square * J.transpose() * r;
|
||||
}
|
||||
}
|
||||
|
||||
// Inner loop.
|
||||
// Solve for the delta that can reduce the total cost.
|
||||
do {
|
||||
Eigen::Matrix<double, 1, 1> damper = lambda*Eigen::Matrix<double, 1, 1>::Identity();
|
||||
Eigen::Matrix<double, 1, 1> delta = (A+damper).ldlt().solve(b);
|
||||
double new_solution = solution - delta(0,0);
|
||||
delta_norm = delta.norm();
|
||||
|
||||
double new_cost = 0.0;
|
||||
for (int i = 0; i < cam_poses.size(); ++i) {
|
||||
double this_cost = 0.0;
|
||||
Rhocost(cam_poses[i], new_solution, measurements[0], measurements[i], this_cost);
|
||||
new_cost += this_cost;
|
||||
}
|
||||
|
||||
if (new_cost < total_cost) {
|
||||
is_cost_reduced = true;
|
||||
solution = new_solution;
|
||||
total_cost = new_cost;
|
||||
lambda = lambda/10 > 1e-10 ? lambda/10 : 1e-10;
|
||||
} else {
|
||||
is_cost_reduced = false;
|
||||
lambda = lambda*10 < 1e12 ? lambda*10 : 1e12;
|
||||
}
|
||||
|
||||
} while (inner_loop_cntr++ <
|
||||
optimization_config.inner_loop_max_iteration && !is_cost_reduced);
|
||||
|
||||
inner_loop_cntr = 0;
|
||||
|
||||
} while (outer_loop_cntr++ <
|
||||
optimization_config.outer_loop_max_iteration &&
|
||||
delta_norm > optimization_config.estimation_precision);
|
||||
|
||||
// Covert the feature position from inverse depth
|
||||
// representation to its 3d coordinate.
|
||||
Eigen::Vector3d final_position(measurements[0](0)/solution,
|
||||
measurements[0](1)/solution, 1.0/solution);
|
||||
|
||||
// Check if the solution is valid. Make sure the feature
|
||||
// is in front of every camera frame observing it.
|
||||
bool is_valid_solution = true;
|
||||
for (const auto& pose : cam_poses) {
|
||||
Eigen::Vector3d position =
|
||||
pose.linear()*final_position + pose.translation();
|
||||
if (position(2) <= 0) {
|
||||
is_valid_solution = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//save inverse depth distance from camera
|
||||
anchor_rho = solution;
|
||||
|
||||
// Convert the feature position to the world frame.
|
||||
position = T_c0_w.linear()*final_position + T_c0_w.translation();
|
||||
|
||||
if (is_valid_solution)
|
||||
is_initialized = true;
|
||||
|
||||
return is_valid_solution;
|
||||
}
|
||||
|
||||
|
||||
bool Feature::initializePosition(const CamStateServer& cam_states) {
|
||||
|
||||
// Organize camera poses and feature observations properly.
|
||||
|
||||
std::vector<Eigen::Isometry3d,
|
||||
Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0);
|
||||
std::vector<Eigen::Vector2d,
|
||||
@ -927,6 +1274,7 @@ bool Feature::initializePosition(const CamStateServer& cam_states) {
|
||||
|
||||
//save inverse depth distance from camera
|
||||
anchor_rho = solution(2);
|
||||
std::cout << "from feature: " << anchor_rho << std::endl;
|
||||
|
||||
// Convert the feature position to the world frame.
|
||||
position = T_c0_w.linear()*final_position + T_c0_w.translation();
|
||||
|
@ -36,6 +36,15 @@ cv::Point2f distortPoint(
|
||||
const cv::Vec4d& intrinsics,
|
||||
const std::string& distortion_model,
|
||||
const cv::Vec4d& distortion_coeffs);
|
||||
|
||||
void undistortPoint(
|
||||
const cv::Point2f& pt_in,
|
||||
const cv::Vec4d& intrinsics,
|
||||
const std::string& distortion_model,
|
||||
const cv::Vec4d& distortion_coeffs,
|
||||
cv::Point2f& pt_out,
|
||||
const cv::Matx33d &rectification_matrix = cv::Matx33d::eye(),
|
||||
const cv::Vec4d &new_intrinsics = cv::Vec4d(1,1,0,0));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -195,9 +195,9 @@ class MsckfVio {
|
||||
// for a single feature observed at a single camera frame.
|
||||
void measurementJacobian(const StateIDType& cam_state_id,
|
||||
const FeatureIDType& feature_id,
|
||||
Eigen::Matrix<double, 4, 6>& H_x,
|
||||
Eigen::Matrix<double, 4, 3>& H_f,
|
||||
Eigen::Vector4d& r);
|
||||
Eigen::Matrix<double, 2, 6>& H_x,
|
||||
Eigen::Matrix<double, 2, 3>& H_f,
|
||||
Eigen::Vector2d& r);
|
||||
// This function computes the Jacobian of all measurements viewed
|
||||
// in the given camera states of this feature.
|
||||
void featureJacobian(const FeatureIDType& feature_id,
|
||||
|
@ -22,7 +22,7 @@
|
||||
<param name="PHOTOMETRIC" value="true"/>
|
||||
|
||||
<!-- Debugging Flaggs -->
|
||||
<param name="PrintImages" value="false"/>
|
||||
<param name="PrintImages" value="true"/>
|
||||
<param name="GroundTruth" value="false"/>
|
||||
|
||||
<param name="patch_size_n" value="7"/>
|
||||
|
@ -21,10 +21,10 @@
|
||||
<param name="PHOTOMETRIC" value="true"/>
|
||||
|
||||
<!-- Debugging Flaggs -->
|
||||
<param name="PrintImages" value="false"/>
|
||||
<param name="PrintImages" value="true"/>
|
||||
<param name="GroundTruth" value="false"/>
|
||||
|
||||
<param name="patch_size_n" value="7"/>
|
||||
<param name="patch_size_n" value="1"/>
|
||||
<!-- Calibration parameters -->
|
||||
<rosparam command="load" file="$(arg calibration_file)"/>
|
||||
|
||||
|
@ -14,6 +14,48 @@ namespace msckf_vio {
|
||||
namespace image_handler {
|
||||
|
||||
|
||||
|
||||
void undistortPoint(
|
||||
const cv::Point2f& pt_in,
|
||||
const cv::Vec4d& intrinsics,
|
||||
const std::string& distortion_model,
|
||||
const cv::Vec4d& distortion_coeffs,
|
||||
cv::Point2f& pt_out,
|
||||
const cv::Matx33d &rectification_matrix,
|
||||
const cv::Vec4d &new_intrinsics) {
|
||||
|
||||
|
||||
std::vector<cv::Point2f> pts_in;
|
||||
std::vector<cv::Point2f> pts_out;
|
||||
pts_in.push_back(pt_in);
|
||||
if (pts_in.size() == 0) return;
|
||||
|
||||
const cv::Matx33d K(
|
||||
intrinsics[0], 0.0, intrinsics[2],
|
||||
0.0, intrinsics[1], intrinsics[3],
|
||||
0.0, 0.0, 1.0);
|
||||
|
||||
const cv::Matx33d K_new(
|
||||
new_intrinsics[0], 0.0, new_intrinsics[2],
|
||||
0.0, new_intrinsics[1], new_intrinsics[3],
|
||||
0.0, 0.0, 1.0);
|
||||
|
||||
if (distortion_model == "radtan") {
|
||||
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
|
||||
rectification_matrix, K_new);
|
||||
} else if (distortion_model == "equidistant") {
|
||||
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
|
||||
rectification_matrix, K_new);
|
||||
} else {
|
||||
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
|
||||
distortion_model.c_str());
|
||||
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
|
||||
rectification_matrix, K_new);
|
||||
}
|
||||
pt_out = pts_out[0];
|
||||
return;
|
||||
}
|
||||
|
||||
void undistortPoints(
|
||||
const std::vector<cv::Point2f>& pts_in,
|
||||
const cv::Vec4d& intrinsics,
|
||||
|
@ -404,8 +404,18 @@ void MsckfVio::imageCallback(
|
||||
const sensor_msgs::ImageConstPtr& cam1_img,
|
||||
const CameraMeasurementConstPtr& feature_msg)
|
||||
{
|
||||
|
||||
if(PRINTIMAGES)
|
||||
{
|
||||
std::cout << "stopped playpack" << std::endl;
|
||||
nh.setParam("/play_bag", false);
|
||||
}
|
||||
// Return if the gravity vector has not been set.
|
||||
if (!is_gravity_set) return;
|
||||
if (!is_gravity_set)
|
||||
{
|
||||
nh.setParam("/play_bag", true);
|
||||
return;
|
||||
}
|
||||
|
||||
// Start the system if the first image is received.
|
||||
// The frame where the first image is received will be
|
||||
@ -430,7 +440,7 @@ void MsckfVio::imageCallback(
|
||||
|
||||
//if(ErrState)
|
||||
//{
|
||||
batchTruthProcessing(feature_msg->header.stamp.toSec());
|
||||
//batchTruthProcessing(feature_msg->header.stamp.toSec());
|
||||
|
||||
if(GROUNDTRUTH)
|
||||
{
|
||||
@ -454,7 +464,7 @@ void MsckfVio::imageCallback(
|
||||
PhotometricStateAugmentation(feature_msg->header.stamp.toSec());
|
||||
}
|
||||
else
|
||||
stateAugmentation(feature_msg->header.stamp.toSec());
|
||||
PhotometricStateAugmentation(feature_msg->header.stamp.toSec());
|
||||
double state_augmentation_time = (
|
||||
ros::Time::now()-start_time).toSec();
|
||||
|
||||
@ -512,6 +522,13 @@ void MsckfVio::imageCallback(
|
||||
publish_time, publish_time/processing_time);
|
||||
}
|
||||
|
||||
|
||||
if(PRINTIMAGES)
|
||||
{
|
||||
std::cout << "stopped playpack" << std::endl;
|
||||
nh.setParam("/play_bag", true);
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1175,7 +1192,7 @@ void MsckfVio::PhotometricStateAugmentation(const double& time)
|
||||
J * P11 * J.transpose();
|
||||
|
||||
// Add photometry P_eta and surrounding Zeros
|
||||
state_server.state_cov(old_rows+6, old_cols+6) = irradiance_frame_bias;
|
||||
state_server.state_cov(old_rows+6, old_cols+6) = 0;
|
||||
|
||||
// Fix the covariance to be symmetric
|
||||
MatrixXd state_cov_fixed = (state_server.state_cov +
|
||||
@ -1232,17 +1249,10 @@ void MsckfVio::PhotometricMeasurementJacobian(
|
||||
Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
|
||||
const Vector3d& t_c0_w = cam_state.position;
|
||||
|
||||
// Cam1 pose.
|
||||
Matrix3d R_c0_c1 = CAMState::T_cam0_cam1.linear();
|
||||
Matrix3d R_w_c1 = CAMState::T_cam0_cam1.linear() * R_w_c0;
|
||||
Vector3d t_c1_w = t_c0_w - R_w_c1.transpose()*CAMState::T_cam0_cam1.translation();
|
||||
|
||||
|
||||
//photometric observation
|
||||
std::vector<double> photo_z;
|
||||
|
||||
// individual Jacobians
|
||||
Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
|
||||
Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
|
||||
Matrix<double, 2, 3> dh_dGpij = Matrix<double, 2, 3>::Zero();
|
||||
Matrix<double, 2, 6> dh_dXplj = Matrix<double, 2, 6>::Zero();
|
||||
@ -1254,107 +1264,77 @@ void MsckfVio::PhotometricMeasurementJacobian(
|
||||
Matrix<double, 3, 3> dCpij_dGpC = Matrix<double, 3, 3>::Zero();
|
||||
|
||||
// one line of the NxN Jacobians
|
||||
Eigen::Matrix<double, 1, 1> H_rhoj;
|
||||
Eigen::Matrix<double, 1, 6> H_plj;
|
||||
Eigen::Matrix<double, 1, 6> H_pAj;
|
||||
|
||||
// combined Jacobians
|
||||
Eigen::MatrixXd H_rho(N*N, 1);
|
||||
Eigen::MatrixXd H_pl(N*N, 6);
|
||||
Eigen::MatrixXd H_pA(N*N, 6);
|
||||
Eigen::Matrix<double, 2, 1> H_rho;
|
||||
Eigen::Matrix<double, 2, 6> H_plj;
|
||||
Eigen::Matrix<double, 2, 6> H_pAj;
|
||||
|
||||
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
|
||||
|
||||
int count = 0;
|
||||
double dx, dy;
|
||||
|
||||
for (auto point : feature.anchorPatch_3d)
|
||||
{
|
||||
Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
|
||||
cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
|
||||
auto point = feature.anchorPatch_3d[0];
|
||||
|
||||
//add observation
|
||||
photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
|
||||
Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
|
||||
// add jacobian
|
||||
|
||||
// add jacobian
|
||||
//dh / d{}^Cp_{ij}
|
||||
dh_dCpij(0, 0) = 1 / p_c0(2);
|
||||
dh_dCpij(1, 1) = 1 / p_c0(2);
|
||||
dh_dCpij(0, 2) = -(p_c0(0))/(p_c0(2)*p_c0(2));
|
||||
dh_dCpij(1, 2) = -(p_c0(1))/(p_c0(2)*p_c0(2));
|
||||
|
||||
// frame derivative calculated convoluting with kernel [-1, 0, 1]
|
||||
dx = feature.PixelIrradiance(cv::Point2f(p_in_c0.x+1, p_in_c0.y), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x-1, p_in_c0.y), frame);
|
||||
dy = feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y+1), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y-1), frame);
|
||||
dI_dhj(0, 0) = dx;
|
||||
dI_dhj(0, 1) = dy;
|
||||
dCpij_dGpij = quaternionToRotation(cam_state.orientation);
|
||||
|
||||
//dh / d{}^Cp_{ij}
|
||||
dh_dCpij(0, 0) = 1 / p_c0(2);
|
||||
dh_dCpij(1, 1) = 1 / p_c0(2);
|
||||
dh_dCpij(0, 2) = -(p_c0(0))/(p_c0(2)*p_c0(2));
|
||||
dh_dCpij(1, 2) = -(p_c0(1))/(p_c0(2)*p_c0(2));
|
||||
//orientation takes camera frame to world frame
|
||||
dh_dGpij = dh_dCpij * dCpij_dGpij;
|
||||
|
||||
dCpij_dGpij = quaternionToRotation(cam_state.orientation);
|
||||
//dh / d X_{pl}
|
||||
dCpij_dCGtheta = skewSymmetric(p_c0);
|
||||
dCpij_dGpC = -quaternionToRotation(cam_state.orientation);
|
||||
dh_dXplj.block<2, 3>(0, 0) = dh_dCpij * dCpij_dCGtheta;
|
||||
dh_dXplj.block<2, 3>(0, 3) = dh_dCpij * dCpij_dGpC;
|
||||
|
||||
//orientation takes camera frame to world frame, we wa
|
||||
dh_dGpij = dh_dCpij * dCpij_dGpij;
|
||||
//d{}^Gp_P{ij} / \rho_i
|
||||
double rho = feature.anchor_rho;
|
||||
// Isometry T_anchor_w takes a vector in anchor frame to world frame
|
||||
dGpj_drhoj = -feature.T_anchor_w.linear() * Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho*rho), feature.anchorPatch_ideal[count].y/(rho*rho), 1/(rho*rho));
|
||||
|
||||
//dh / d X_{pl}
|
||||
dCpij_dCGtheta = skewSymmetric(p_c0);
|
||||
dCpij_dGpC = -quaternionToRotation(cam_state.orientation);
|
||||
dh_dXplj.block<2, 3>(0, 0) = dh_dCpij * dCpij_dCGtheta;
|
||||
dh_dXplj.block<2, 3>(0, 3) = dh_dCpij * dCpij_dGpC;
|
||||
|
||||
//d{}^Gp_P{ij} / \rho_i
|
||||
double rho = feature.anchor_rho;
|
||||
// Isometry T_anchor_w takes a vector in anchor frame to world frame
|
||||
dGpj_drhoj = -feature.T_anchor_w.linear() * Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho*rho), feature.anchorPatch_ideal[count].y/(rho*rho), 1/(rho*rho));
|
||||
|
||||
dGpj_XpAj.block<3, 3>(0, 0) = - feature.T_anchor_w.linear()
|
||||
* skewSymmetric(Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho),
|
||||
feature.anchorPatch_ideal[count].y/(rho),
|
||||
1/(rho)));
|
||||
dGpj_XpAj.block<3, 3>(0, 3) = Matrix<double, 3, 3>::Identity();
|
||||
// alternative derivation towards feature
|
||||
Matrix3d dCpc0_dpg = R_w_c0;
|
||||
dGpj_XpAj.block<3, 3>(0, 0) = - feature.T_anchor_w.linear()
|
||||
* skewSymmetric(Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho),
|
||||
feature.anchorPatch_ideal[count].y/(rho),
|
||||
1/(rho)));
|
||||
dGpj_XpAj.block<3, 3>(0, 3) = Matrix<double, 3, 3>::Identity();
|
||||
|
||||
// Intermediate Jakobians
|
||||
H_rhoj = dI_dhj * dh_dGpij * dGpj_drhoj; // 1 x 1
|
||||
H_plj = dI_dhj * dh_dXplj; // 1 x 6
|
||||
H_pAj = dI_dhj * dh_dGpij * dGpj_XpAj; // 1 x 6
|
||||
// Intermediate Jakobians
|
||||
H_rho = dh_dGpij * dGpj_drhoj; // 2 x 1
|
||||
H_plj = dh_dXplj; // 2 x 6
|
||||
H_pAj = dh_dGpij * dGpj_XpAj; // 2 x 6
|
||||
|
||||
H_rho.block<1, 1>(count, 0) = H_rhoj;
|
||||
H_pl.block<1, 6>(count, 0) = H_plj;
|
||||
H_pA.block<1, 6>(count, 0) = H_pAj;
|
||||
|
||||
count++;
|
||||
}
|
||||
// calculate residual
|
||||
|
||||
//observation
|
||||
const Vector4d& z = feature.observations.find(cam_state_id)->second;
|
||||
const Vector4d& total_z = feature.observations.find(cam_state_id)->second;
|
||||
const Vector2d z = Vector2d(total_z[0], total_z[1]);
|
||||
|
||||
//estimate photometric measurement
|
||||
std::vector<double> estimate_irradiance;
|
||||
std::vector<double> estimate_photo_z;
|
||||
IlluminationParameter estimated_illumination;
|
||||
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
|
||||
VectorXd r_i = VectorXd::Zero(2);
|
||||
|
||||
// calculated here, because we need true 'estimate_irradiance' later for jacobi
|
||||
for (auto& estimate_irradiance_j : estimate_irradiance)
|
||||
estimate_photo_z.push_back (estimate_irradiance_j *
|
||||
estimated_illumination.frame_gain * estimated_illumination.feature_gain +
|
||||
estimated_illumination.frame_bias + estimated_illumination.feature_bias);
|
||||
//calculate residual
|
||||
|
||||
std::vector<double> photo_r;
|
||||
r_i[0] = z[0] - p_c0(0)/p_c0(2);
|
||||
r_i[1] = z[1] - p_c0(1)/p_c0(2);
|
||||
|
||||
//calculate photom. residual
|
||||
for(int i = 0; i < photo_z.size(); i++)
|
||||
photo_r.push_back(photo_z[i] - estimate_photo_z[i]);
|
||||
|
||||
MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
|
||||
MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+state_server.cam_states.size()+1);
|
||||
MatrixXd H_xl = MatrixXd::Zero(2, 21+state_server.cam_states.size()*7);
|
||||
|
||||
// set anchor Jakobi
|
||||
// get position of anchor in cam states
|
||||
|
||||
auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
|
||||
int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
|
||||
H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA;
|
||||
H_xl.block(0, 21+cam_state_cntr_anchor*7, 2, 6) = H_pAj;
|
||||
|
||||
// set frame Jakobi
|
||||
//get position of current frame in cam states
|
||||
@ -1362,32 +1342,19 @@ void MsckfVio::PhotometricMeasurementJacobian(
|
||||
int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
|
||||
|
||||
// set jakobi of state
|
||||
H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = -H_pl;
|
||||
|
||||
// set ones for irradiance bias
|
||||
H_xl.block(0, 21+cam_state_cntr*7+6, N*N, 1) = Eigen::ArrayXd::Ones(N*N);
|
||||
|
||||
// set irradiance error Block
|
||||
H_yl.block(0, 0,N*N, N*N) = estimated_illumination.feature_gain * estimated_illumination.frame_gain * Eigen::MatrixXd::Identity(N*N, N*N);
|
||||
|
||||
// TODO make this calculation more fluent
|
||||
for(int i = 0; i< N*N; i++)
|
||||
H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i];
|
||||
H_yl.block(0, N*N+state_server.cam_states.size(), N*N, 1) = -H_rho;
|
||||
H_xl.block(0, 21+cam_state_cntr*7, 2, 6) = H_plj;
|
||||
|
||||
H_x = H_xl;
|
||||
H_y = H_yl;
|
||||
H_y = H_rho;
|
||||
r = r_i;
|
||||
|
||||
//TODO make this more fluent as well
|
||||
count = 0;
|
||||
for(auto data : photo_r)
|
||||
r[count++] = data;
|
||||
std::stringstream ss;
|
||||
ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr;
|
||||
if(PRINTIMAGES)
|
||||
{
|
||||
feature.MarkerGeneration(marker_pub, state_server.cam_states);
|
||||
feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss);
|
||||
//std::stringstream ss;
|
||||
//ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr;
|
||||
//feature.MarkerGeneration(marker_pub, state_server.cam_states);
|
||||
//feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss);
|
||||
}
|
||||
|
||||
return;
|
||||
@ -1400,28 +1367,6 @@ void MsckfVio::PhotometricFeatureJacobian(
|
||||
{
|
||||
|
||||
// stop playing bagfile if printing images
|
||||
if(PRINTIMAGES)
|
||||
{
|
||||
std::cout << "stopped playpack" << std::endl;
|
||||
nh.setParam("/play_bag", false);
|
||||
}
|
||||
|
||||
|
||||
// Errstate
|
||||
calcErrorState();
|
||||
/*
|
||||
std::cout << "--- error state: ---\n " << std::endl;
|
||||
std::cout << "imu orientation:\n " << err_state_server.imu_state.orientation << std::endl;
|
||||
std::cout << "imu position\n" << err_state_server.imu_state.position << std::endl;
|
||||
|
||||
int count = 0;
|
||||
for(auto cam_state : err_state_server.cam_states)
|
||||
{
|
||||
std::cout << " - cam " << count++ << " - \n" << std::endl;
|
||||
std::cout << "orientation: " << cam_state.second.orientation(0) << cam_state.second.orientation(1) << " " << cam_state.second.orientation(2) << " " << std::endl;
|
||||
std::cout << "position:" << cam_state.second.position(0) << " " << cam_state.second.position(1) << " " << cam_state.second.position(2) << std::endl;
|
||||
}
|
||||
*/
|
||||
|
||||
const auto& feature = map_server[feature_id];
|
||||
|
||||
@ -1433,15 +1378,17 @@ void MsckfVio::PhotometricFeatureJacobian(
|
||||
if (feature.observations.find(cam_id) ==
|
||||
feature.observations.end()) continue;
|
||||
|
||||
if (feature.observations.find(cam_id) ==
|
||||
feature.observations.begin()) continue;
|
||||
valid_cam_state_ids.push_back(cam_id);
|
||||
}
|
||||
|
||||
int jacobian_row_size = 0;
|
||||
jacobian_row_size = N * N * valid_cam_state_ids.size();
|
||||
jacobian_row_size = 2 * valid_cam_state_ids.size();
|
||||
|
||||
MatrixXd H_xi = MatrixXd::Zero(jacobian_row_size,
|
||||
21+state_server.cam_states.size()*7);
|
||||
MatrixXd H_yi = MatrixXd::Zero(jacobian_row_size, N*N+state_server.cam_states.size()+1);
|
||||
MatrixXd H_yi = MatrixXd::Zero(jacobian_row_size, 1);
|
||||
VectorXd r_i = VectorXd::Zero(jacobian_row_size);
|
||||
int stack_cntr = 0;
|
||||
|
||||
@ -1449,10 +1396,9 @@ void MsckfVio::PhotometricFeatureJacobian(
|
||||
|
||||
MatrixXd H_xl;
|
||||
MatrixXd H_yl;
|
||||
Eigen::VectorXd r_l = VectorXd::Zero(N*N);
|
||||
Eigen::VectorXd r_l = VectorXd::Zero(2);
|
||||
|
||||
PhotometricMeasurementJacobian(cam_id, feature.id, H_xl, H_yl, r_l);
|
||||
|
||||
auto cam_state_iter = state_server.cam_states.find(cam_id);
|
||||
int cam_state_cntr = std::distance(
|
||||
state_server.cam_states.begin(), cam_state_iter);
|
||||
@ -1460,8 +1406,8 @@ void MsckfVio::PhotometricFeatureJacobian(
|
||||
// Stack the Jacobians.
|
||||
H_xi.block(stack_cntr, 0, H_xl.rows(), H_xl.cols()) = H_xl;
|
||||
H_yi.block(stack_cntr, 0, H_yl.rows(), H_yl.cols()) = H_yl;
|
||||
r_i.segment(stack_cntr, N*N) = r_l;
|
||||
stack_cntr += N*N;
|
||||
r_i.segment(stack_cntr, 2) = r_l;
|
||||
stack_cntr += 2;
|
||||
}
|
||||
|
||||
// Project the residual and Jacobians onto the nullspace
|
||||
@ -1470,32 +1416,47 @@ void MsckfVio::PhotometricFeatureJacobian(
|
||||
// get Nullspace
|
||||
FullPivLU<MatrixXd> lu(H_yi.transpose());
|
||||
MatrixXd A_null_space = lu.kernel();
|
||||
/*
|
||||
JacobiSVD<MatrixXd> svd_helper(H_yi, ComputeFullU | ComputeThinV);
|
||||
|
||||
int sv_size = 0;
|
||||
Eigen::VectorXd singularValues = svd_helper.singularValues();
|
||||
for(int i = 0; i < singularValues.size(); i++)
|
||||
if(singularValues[i] > 1e-12)
|
||||
sv_size++;
|
||||
|
||||
MatrixXd A = svd_helper.matrixU().rightCols(jacobian_row_size - singularValues.size());
|
||||
*/
|
||||
H_x = A_null_space.transpose() * H_xi;
|
||||
r = A_null_space.transpose() * r_i;
|
||||
|
||||
/*
|
||||
if(PRINTIMAGES)
|
||||
{
|
||||
|
||||
ofstream myfile;
|
||||
myfile.open("/home/raphael/dev/octave/log2octave");
|
||||
myfile << "# Created by Octave 3.8.1, Wed Jun 12 14:36:37 2019 CEST <raphael@raphael-desktop>\n"
|
||||
<< "# name: Hx\n"
|
||||
<< "# type: matrix\n"
|
||||
<< "# rows: " << H_xi.rows() << "\n"
|
||||
<< "# columns: " << H_xi.cols() << "\n"
|
||||
<< H_xi << endl;
|
||||
|
||||
myfile << "# name: Hy\n"
|
||||
<< "# type: matrix\n"
|
||||
<< "# rows: " << H_yi.rows() << "\n"
|
||||
<< "# columns: " << H_yi.cols() << "\n"
|
||||
<< H_yi << endl;
|
||||
|
||||
|
||||
myfile << "# name: r\n"
|
||||
<< "# type: matrix\n"
|
||||
<< "# rows: " << r_i.rows() << "\n"
|
||||
<< "# columns: " << 1 << "\n"
|
||||
<< r_i << endl;
|
||||
|
||||
myfile.close();
|
||||
std::cout << "resume playback" << std::endl;
|
||||
nh.setParam("/play_bag", true);
|
||||
}
|
||||
}*/
|
||||
return;
|
||||
}
|
||||
|
||||
void MsckfVio::measurementJacobian(
|
||||
const StateIDType& cam_state_id,
|
||||
const FeatureIDType& feature_id,
|
||||
Matrix<double, 4, 6>& H_x, Matrix<double, 4, 3>& H_f, Vector4d& r)
|
||||
Matrix<double, 2, 6>& H_x, Matrix<double, 2, 3>& H_f, Vector2d& r)
|
||||
{
|
||||
|
||||
// Prepare all the required data.
|
||||
@ -1514,48 +1475,42 @@ void MsckfVio::measurementJacobian(
|
||||
// 3d feature position in the world frame.
|
||||
// And its observation with the stereo cameras.
|
||||
const Vector3d& p_w = feature.position;
|
||||
const Vector4d& z = feature.observations.find(cam_state_id)->second;
|
||||
const Vector2d& z = feature.observations.find(cam_state_id)->second.topRows(2);
|
||||
|
||||
// Convert the feature position from the world frame to
|
||||
// the cam0 and cam1 frame.
|
||||
Vector3d p_c0 = R_w_c0 * (p_w-t_c0_w);
|
||||
Vector3d p_c1 = R_w_c1 * (p_w-t_c1_w);
|
||||
//Vector3d p_c1 = R_w_c1 * (p_w-t_c1_w);
|
||||
|
||||
// Compute the Jacobians.
|
||||
Matrix<double, 4, 3> dz_dpc0 = Matrix<double, 4, 3>::Zero();
|
||||
Matrix<double, 2, 3> dz_dpc0 = Matrix<double, 2, 3>::Zero();
|
||||
dz_dpc0(0, 0) = 1 / p_c0(2);
|
||||
dz_dpc0(1, 1) = 1 / p_c0(2);
|
||||
dz_dpc0(0, 2) = -p_c0(0) / (p_c0(2)*p_c0(2));
|
||||
dz_dpc0(1, 2) = -p_c0(1) / (p_c0(2)*p_c0(2));
|
||||
|
||||
/*
|
||||
Matrix<double, 4, 3> dz_dpc1 = Matrix<double, 4, 3>::Zero();
|
||||
dz_dpc1(2, 0) = 1 / p_c1(2);
|
||||
dz_dpc1(3, 1) = 1 / p_c1(2);
|
||||
dz_dpc1(2, 2) = -p_c1(0) / (p_c1(2)*p_c1(2));
|
||||
dz_dpc1(3, 2) = -p_c1(1) / (p_c1(2)*p_c1(2));
|
||||
|
||||
*/
|
||||
Matrix<double, 3, 6> dpc0_dxc = Matrix<double, 3, 6>::Zero();
|
||||
|
||||
// original jacobi
|
||||
//dpc0_dxc.leftCols(3) = skewSymmetric(p_c0);
|
||||
// my version of calculation
|
||||
dpc0_dxc.leftCols(3) = skewSymmetric(p_c0);
|
||||
//dpc0_dxc.leftCols(3) = - skewSymmetric(R_w_c0.transpose() * (t_c0_w - p_w)) * R_w_c0;
|
||||
dpc0_dxc.rightCols(3) = -R_w_c0;
|
||||
|
||||
Matrix<double, 3, 6> dpc1_dxc = Matrix<double, 3, 6>::Zero();
|
||||
dpc1_dxc.leftCols(3) = R_c0_c1 * skewSymmetric(p_c0);
|
||||
dpc1_dxc.rightCols(3) = -R_w_c1;
|
||||
|
||||
Matrix3d dpc0_dpg = R_w_c0;
|
||||
Matrix3d dpc1_dpg = R_w_c1;
|
||||
|
||||
H_x = dz_dpc0*dpc0_dxc + dz_dpc1*dpc1_dxc;
|
||||
H_f = dz_dpc0*dpc0_dpg + dz_dpc1*dpc1_dpg;
|
||||
H_x = dz_dpc0*dpc0_dxc; //+ dz_dpc1*dpc1_dxc;
|
||||
H_f = dz_dpc0*dpc0_dpg; // + dz_dpc1*dpc1_dpg;
|
||||
|
||||
// Compute the residual.
|
||||
r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2),
|
||||
p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
|
||||
r = z - Vector2d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2));//,
|
||||
//p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
|
||||
|
||||
return;
|
||||
}
|
||||
@ -1579,19 +1534,19 @@ void MsckfVio::featureJacobian(
|
||||
}
|
||||
|
||||
int jacobian_row_size = 0;
|
||||
jacobian_row_size = 4 * valid_cam_state_ids.size();
|
||||
jacobian_row_size = 2 * valid_cam_state_ids.size();
|
||||
|
||||
MatrixXd H_xj = MatrixXd::Zero(jacobian_row_size,
|
||||
21+state_server.cam_states.size()*6);
|
||||
21+state_server.cam_states.size()*7);
|
||||
MatrixXd H_fj = MatrixXd::Zero(jacobian_row_size, 3);
|
||||
VectorXd r_j = VectorXd::Zero(jacobian_row_size);
|
||||
int stack_cntr = 0;
|
||||
|
||||
for (const auto& cam_id : valid_cam_state_ids) {
|
||||
|
||||
Matrix<double, 4, 6> H_xi = Matrix<double, 4, 6>::Zero();
|
||||
Matrix<double, 4, 3> H_fi = Matrix<double, 4, 3>::Zero();
|
||||
Vector4d r_i = Vector4d::Zero();
|
||||
Matrix<double, 2, 6> H_xi = Matrix<double, 2, 6>::Zero();
|
||||
Matrix<double, 2, 3> H_fi = Matrix<double, 2, 3>::Zero();
|
||||
Vector2d r_i = Vector2d::Zero();
|
||||
measurementJacobian(cam_id, feature.id, H_xi, H_fi, r_i);
|
||||
|
||||
auto cam_state_iter = state_server.cam_states.find(cam_id);
|
||||
@ -1599,10 +1554,10 @@ void MsckfVio::featureJacobian(
|
||||
state_server.cam_states.begin(), cam_state_iter);
|
||||
|
||||
// Stack the Jacobians.
|
||||
H_xj.block<4, 6>(stack_cntr, 21+6*cam_state_cntr) = H_xi;
|
||||
H_fj.block<4, 3>(stack_cntr, 0) = H_fi;
|
||||
r_j.segment<4>(stack_cntr) = r_i;
|
||||
stack_cntr += 4;
|
||||
H_xj.block<2, 6>(stack_cntr, 21+7*cam_state_cntr) = H_xi;
|
||||
H_fj.block<2, 3>(stack_cntr, 0) = H_fi;
|
||||
r_j.segment<2>(stack_cntr) = r_i;
|
||||
stack_cntr += 2;
|
||||
}
|
||||
|
||||
// Project the residual and Jacobians onto the nullspace
|
||||
@ -1623,18 +1578,18 @@ void MsckfVio::featureJacobian(
|
||||
FullPivLU<MatrixXd> lu(H_fj.transpose());
|
||||
MatrixXd A = lu.kernel();
|
||||
|
||||
H_x = A.transpose() * H_xj;
|
||||
r = A.transpose() * r_j;
|
||||
H_x = A.transpose() * H_xj;
|
||||
r = A.transpose() * r_j;
|
||||
|
||||
/*
|
||||
ofstream myfile;
|
||||
myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
|
||||
myfile << "-- residual -- \n" << r << "\n---- H ----\n" << H_x << "\n---- state cov ----\n" << state_server.state_cov <<endl;
|
||||
myfile << "Hx\n" << H_x << "r\n" << r << "from residual estimated error state: " << H_x.colPivHouseholderQr().solve(r) << endl;
|
||||
myfile.close();
|
||||
cout << "---------- LOGGED -------- " << endl;
|
||||
*/
|
||||
nh.setParam("/play_bag", false);
|
||||
|
||||
cout << "---------- LOGGED -------- " << endl;
|
||||
nh.setParam("/play_bag", false);
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1646,7 +1601,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
|
||||
// complexity as in Equation (28), (29).
|
||||
MatrixXd H_thin;
|
||||
VectorXd r_thin;
|
||||
|
||||
/*
|
||||
if (H.rows() > H.cols()) {
|
||||
// Convert H to a sparse matrix.
|
||||
SparseMatrix<double> H_sparse = H.sparseView();
|
||||
@ -1661,8 +1616,8 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
|
||||
(spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);
|
||||
(spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);
|
||||
|
||||
H_thin = H_temp.topRows(21+state_server.cam_states.size()*6);
|
||||
r_thin = r_temp.head(21+state_server.cam_states.size()*6);
|
||||
H_thin = H_temp.topRows(21+state_server.cam_states.size()*7);
|
||||
r_thin = r_temp.head(21+state_server.cam_states.size()*7);
|
||||
|
||||
//HouseholderQR<MatrixXd> qr_helper(H);
|
||||
//MatrixXd Q = qr_helper.householderQ();
|
||||
@ -1670,10 +1625,10 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
|
||||
|
||||
//H_thin = Q1.transpose() * H;
|
||||
//r_thin = Q1.transpose() * r;
|
||||
} else {
|
||||
} else {*/
|
||||
H_thin = H;
|
||||
r_thin = r;
|
||||
}
|
||||
//}
|
||||
|
||||
// Compute the Kalman gain.
|
||||
const MatrixXd& P = state_server.state_cov;
|
||||
@ -1720,7 +1675,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
|
||||
auto cam_state_iter = state_server.cam_states.begin();
|
||||
for (int i = 0; i < state_server.cam_states.size();
|
||||
++i, ++cam_state_iter) {
|
||||
const VectorXd& delta_x_cam = delta_x.segment<6>(21+i*6);
|
||||
const VectorXd& delta_x_cam = delta_x.segment<6>(21+i*7);
|
||||
const Vector4d dq_cam = smallAngleQuaternion(delta_x_cam.head<3>());
|
||||
cam_state_iter->second.orientation = quaternionMultiplication(
|
||||
dq_cam, cam_state_iter->second.orientation);
|
||||
@ -1795,7 +1750,7 @@ void MsckfVio::removeLostFeatures() {
|
||||
invalid_feature_ids.push_back(feature.id);
|
||||
continue;
|
||||
} else {
|
||||
if(!feature.initializePosition(state_server.cam_states)) {
|
||||
if(!feature.initializeRho(state_server.cam_states)) {
|
||||
invalid_feature_ids.push_back(feature.id);
|
||||
continue;
|
||||
}
|
||||
@ -1812,9 +1767,9 @@ void MsckfVio::removeLostFeatures() {
|
||||
|
||||
if(PHOTOMETRIC)
|
||||
//just use max. size, as gets shrunken down after anyway
|
||||
jacobian_row_size += N*N*feature.observations.size();
|
||||
jacobian_row_size += 2*feature.observations.size();
|
||||
else
|
||||
jacobian_row_size += 4*feature.observations.size() - 3;
|
||||
jacobian_row_size += 2*feature.observations.size() - 3;
|
||||
processed_feature_ids.push_back(feature.id);
|
||||
}
|
||||
|
||||
@ -1831,7 +1786,7 @@ void MsckfVio::removeLostFeatures() {
|
||||
if (processed_feature_ids.size() == 0) return;
|
||||
|
||||
MatrixXd H_x = MatrixXd::Zero(jacobian_row_size,
|
||||
21+augmentationSize*state_server.cam_states.size());
|
||||
21+7*state_server.cam_states.size());
|
||||
VectorXd r = VectorXd::Zero(jacobian_row_size);
|
||||
int stack_cntr = 0;
|
||||
|
||||
@ -1965,7 +1920,7 @@ void MsckfVio::pruneCamStateBuffer() {
|
||||
feature.observations.erase(cam_id);
|
||||
continue;
|
||||
} else {
|
||||
if(!feature.initializePosition(state_server.cam_states)) {
|
||||
if(!feature.initializeRho(state_server.cam_states)) {
|
||||
for (const auto& cam_id : involved_cam_state_ids)
|
||||
feature.observations.erase(cam_id);
|
||||
continue;
|
||||
@ -1982,9 +1937,9 @@ void MsckfVio::pruneCamStateBuffer() {
|
||||
}
|
||||
}
|
||||
if(PHOTOMETRIC)
|
||||
jacobian_row_size += N*N*involved_cam_state_ids.size();
|
||||
jacobian_row_size += 2*involved_cam_state_ids.size();
|
||||
else
|
||||
jacobian_row_size += 4*involved_cam_state_ids.size() - 3;
|
||||
jacobian_row_size += 2*involved_cam_state_ids.size() - 3;
|
||||
}
|
||||
|
||||
//cout << "jacobian row #: " << jacobian_row_size << endl;
|
||||
@ -1992,7 +1947,7 @@ void MsckfVio::pruneCamStateBuffer() {
|
||||
// Compute the Jacobian and residual.
|
||||
MatrixXd H_xj;
|
||||
VectorXd r_j;
|
||||
MatrixXd H_x = MatrixXd::Zero(jacobian_row_size, 21+augmentationSize*state_server.cam_states.size());
|
||||
MatrixXd H_x = MatrixXd::Zero(jacobian_row_size, 21+7*state_server.cam_states.size());
|
||||
VectorXd r = VectorXd::Zero(jacobian_row_size);
|
||||
int stack_cntr = 0;
|
||||
for (auto& item : map_server) {
|
||||
@ -2037,8 +1992,8 @@ void MsckfVio::pruneCamStateBuffer() {
|
||||
for (const auto& cam_id : rm_cam_state_ids) {
|
||||
int cam_sequence = std::distance(state_server.cam_states.begin(),
|
||||
state_server.cam_states.find(cam_id));
|
||||
int cam_state_start = 21 + augmentationSize*cam_sequence;
|
||||
int cam_state_end = cam_state_start + augmentationSize;
|
||||
int cam_state_start = 21 + 7*cam_sequence;
|
||||
int cam_state_end = cam_state_start + 7;
|
||||
|
||||
|
||||
// Remove the corresponding rows and columns in the state
|
||||
@ -2059,10 +2014,10 @@ void MsckfVio::pruneCamStateBuffer() {
|
||||
state_server.state_cov.cols()-cam_state_end);
|
||||
|
||||
state_server.state_cov.conservativeResize(
|
||||
state_server.state_cov.rows()-augmentationSize, state_server.state_cov.cols()-augmentationSize);
|
||||
state_server.state_cov.rows()-7, state_server.state_cov.cols()-7);
|
||||
} else {
|
||||
state_server.state_cov.conservativeResize(
|
||||
state_server.state_cov.rows()-augmentationSize, state_server.state_cov.cols()-augmentationSize);
|
||||
state_server.state_cov.rows()-7, state_server.state_cov.cols()-7);
|
||||
}
|
||||
|
||||
// Remove this camera state in the state vector.
|
||||
|
Loading…
Reference in New Issue
Block a user