Compare commits
	
		
			8 Commits
		
	
	
		
			master
			...
			photometry
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 6e151510cf | |||
| 8bebf99c37 | |||
| 82cd2c6771 | |||
| 0be7047928 | |||
| 2f130685c8 | |||
| 8ff0e9d816 | |||
| 976108bffe | |||
| 05d277c4f4 | 
@@ -121,6 +121,15 @@ struct Feature {
 | 
				
			|||||||
  inline bool checkMotion(
 | 
					  inline bool checkMotion(
 | 
				
			||||||
      const CamStateServer& cam_states) const;
 | 
					      const CamStateServer& cam_states) const;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  /*
 | 
				
			||||||
 | 
					   * @brief AnchorPixelToPosition projects an undistorted point in the
 | 
				
			||||||
 | 
					   *        anchor frame back into the real world using the rho calculated 
 | 
				
			||||||
 | 
					   *        based on featur position
 | 
				
			||||||
 | 
					   */
 | 
				
			||||||
 | 
					  inline Eigen::Vector3d AnchorPixelToPosition(cv::Point2f in_p, const CameraCalibration& cam);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /*
 | 
					  /*
 | 
				
			||||||
   * @brief InitializeAnchor generates the NxN patch around the
 | 
					   * @brief InitializeAnchor generates the NxN patch around the
 | 
				
			||||||
   *        feature in the Anchor image
 | 
					   *        feature in the Anchor image
 | 
				
			||||||
@@ -148,6 +157,14 @@ struct Feature {
 | 
				
			|||||||
  inline bool initializePosition(
 | 
					  inline bool initializePosition(
 | 
				
			||||||
      const CamStateServer& cam_states);
 | 
					      const CamStateServer& cam_states);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					cv::Point2f pixelDistanceAt(
 | 
				
			||||||
 | 
					                  const CAMState& cam_state,
 | 
				
			||||||
 | 
					                  const StateIDType& cam_state_id,
 | 
				
			||||||
 | 
					                  const CameraCalibration& cam,
 | 
				
			||||||
 | 
					                  Eigen::Vector3d& in_p) const;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
*  @brief project PositionToCamera Takes a 3d position in a world frame
 | 
					*  @brief project PositionToCamera Takes a 3d position in a world frame
 | 
				
			||||||
*         and projects it into the passed camera frame using pinhole projection
 | 
					*         and projects it into the passed camera frame using pinhole projection
 | 
				
			||||||
@@ -173,7 +190,7 @@ struct Feature {
 | 
				
			|||||||
                  std::vector<double>& anchorPatch_estimate,
 | 
					                  std::vector<double>& anchorPatch_estimate,
 | 
				
			||||||
                  IlluminationParameter& estimatedIllumination) const;
 | 
					                  IlluminationParameter& estimatedIllumination) const;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
bool MarkerGeneration(
 | 
					  bool MarkerGeneration(
 | 
				
			||||||
                  ros::Publisher& marker_pub,
 | 
					                  ros::Publisher& marker_pub,
 | 
				
			||||||
                  const CamStateServer& cam_states) const;
 | 
					                  const CamStateServer& cam_states) const;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -182,15 +199,19 @@ bool MarkerGeneration(
 | 
				
			|||||||
                  const StateIDType& cam_state_id,
 | 
					                  const StateIDType& cam_state_id,
 | 
				
			||||||
                  CameraCalibration& cam0,
 | 
					                  CameraCalibration& cam0,
 | 
				
			||||||
                  const std::vector<double> photo_r,
 | 
					                  const std::vector<double> photo_r,
 | 
				
			||||||
                  std::stringstream& ss,
 | 
					                  std::stringstream& ss) const;
 | 
				
			||||||
                  cv::Point2f gradientVector,
 | 
					
 | 
				
			||||||
                  cv::Point2f residualVector) const;
 | 
					
 | 
				
			||||||
  /*
 | 
					  /* @brief takes a pure pixel position (1m from image)
 | 
				
			||||||
  * @brief AnchorPixelToPosition uses the calcualted pixels
 | 
					  * converts to actual pixel value and returns patch irradiance
 | 
				
			||||||
  *     of the anchor patch to generate 3D positions of all of em
 | 
					  * around this pixel
 | 
				
			||||||
  */
 | 
					  */
 | 
				
			||||||
inline Eigen::Vector3d AnchorPixelToPosition(cv::Point2f in_p,
 | 
					  void PatchAroundPurePixel(cv::Point2f p, 
 | 
				
			||||||
          const CameraCalibration& cam);
 | 
					                               int N,
 | 
				
			||||||
 | 
					                               const CameraCalibration& cam, 
 | 
				
			||||||
 | 
					                               const StateIDType& cam_state_id,
 | 
				
			||||||
 | 
					                               std::vector<float>& return_i) const;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  /*
 | 
					  /*
 | 
				
			||||||
  * @brief Irradiance returns irradiance value of a pixel
 | 
					  * @brief Irradiance returns irradiance value of a pixel
 | 
				
			||||||
@@ -392,7 +413,10 @@ bool Feature::estimate_FrameIrradiance(
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  auto anchor = observations.begin();
 | 
					  auto anchor = observations.begin();
 | 
				
			||||||
  if(cam0.moving_window.find(anchor->first) == cam0.moving_window.end())
 | 
					  if(cam0.moving_window.find(anchor->first) == cam0.moving_window.end())
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    std::cout << "anchor not in buffer anymore!" << std::endl;
 | 
				
			||||||
    return false;
 | 
					    return false;
 | 
				
			||||||
 | 
					  } 
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  double anchorExposureTime_ms = cam0.moving_window.find(anchor->first)->second.exposureTime_ms;
 | 
					  double anchorExposureTime_ms = cam0.moving_window.find(anchor->first)->second.exposureTime_ms;
 | 
				
			||||||
  double frameExposureTime_ms = cam0.moving_window.find(cam_state_id)->second.exposureTime_ms;
 | 
					  double frameExposureTime_ms = cam0.moving_window.find(cam_state_id)->second.exposureTime_ms;
 | 
				
			||||||
@@ -535,9 +559,7 @@ bool Feature::VisualizePatch(
 | 
				
			|||||||
                  const StateIDType& cam_state_id,
 | 
					                  const StateIDType& cam_state_id,
 | 
				
			||||||
                  CameraCalibration& cam0,
 | 
					                  CameraCalibration& cam0,
 | 
				
			||||||
                  const std::vector<double> photo_r,
 | 
					                  const std::vector<double> photo_r,
 | 
				
			||||||
                  std::stringstream& ss,
 | 
					                  std::stringstream& ss) const
 | 
				
			||||||
                  cv::Point2f gradientVector,
 | 
					 | 
				
			||||||
                  cv::Point2f residualVector) const
 | 
					 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  double rescale = 1;
 | 
					  double rescale = 1;
 | 
				
			||||||
@@ -600,10 +622,9 @@ bool Feature::VisualizePatch(
 | 
				
			|||||||
                    CV_FILLED);
 | 
					                    CV_FILLED);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // irradiance grid projection
 | 
					  // irradiance grid projection
 | 
				
			||||||
 | 
					 | 
				
			||||||
  namer.str(std::string());
 | 
					  namer.str(std::string());
 | 
				
			||||||
  namer << "projection";
 | 
					  namer << "projection";
 | 
				
			||||||
  cv::putText(irradianceFrame, namer.str() , cvPoint(30, 45+scale*N), 
 | 
					  cv::putText(irradianceFrame, namer.str(), cvPoint(30, 45+scale*N), 
 | 
				
			||||||
    cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
 | 
					    cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  for(int i = 0; i<N; i++)
 | 
					  for(int i = 0; i<N; i++)
 | 
				
			||||||
@@ -667,7 +688,6 @@ bool Feature::VisualizePatch(
 | 
				
			|||||||
                  cv::Point(30+scale*(N/2+0.5)+scale*gradientVector.x, 50+scale*(N+(N/2)+0.5)+scale*gradientVector.y),
 | 
					                  cv::Point(30+scale*(N/2+0.5)+scale*gradientVector.x, 50+scale*(N+(N/2)+0.5)+scale*gradientVector.y),
 | 
				
			||||||
                  cv::Scalar(100, 0, 255),
 | 
					                  cv::Scalar(100, 0, 255),
 | 
				
			||||||
                  1);
 | 
					                  1);
 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  // residual gradient direction
 | 
					  // residual gradient direction
 | 
				
			||||||
  cv::arrowedLine(irradianceFrame,
 | 
					  cv::arrowedLine(irradianceFrame,
 | 
				
			||||||
@@ -676,11 +696,14 @@ bool Feature::VisualizePatch(
 | 
				
			|||||||
                  cv::Scalar(0, 255, 175),
 | 
					                  cv::Scalar(0, 255, 175),
 | 
				
			||||||
                  3);
 | 
					                  3);
 | 
				
			||||||
                  
 | 
					                  
 | 
				
			||||||
 | 
					  */
 | 
				
			||||||
  cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
 | 
					  cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
/*
 | 
					    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // visualize position of used observations and resulting feature position
 | 
					  // visualize position of used observations and resulting feature position
 | 
				
			||||||
 | 
					  /*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  cv::Mat positionFrame(anchorImage.size(), CV_8UC3, cv::Scalar(255, 240, 255));
 | 
					  cv::Mat positionFrame(anchorImage.size(), CV_8UC3, cv::Scalar(255, 240, 255));
 | 
				
			||||||
  cv::resize(positionFrame, positionFrame, cv::Size(), rescale, rescale);
 | 
					  cv::resize(positionFrame, positionFrame, cv::Size(), rescale, rescale);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -713,7 +736,9 @@ bool Feature::VisualizePatch(
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  cv::hconcat(cam0.featureVisu, positionFrame, cam0.featureVisu);
 | 
					  cv::hconcat(cam0.featureVisu, positionFrame, cam0.featureVisu);
 | 
				
			||||||
*/
 | 
					
 | 
				
			||||||
 | 
					  */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // write feature position
 | 
					  // write feature position
 | 
				
			||||||
  std::stringstream pos_s;
 | 
					  std::stringstream pos_s;
 | 
				
			||||||
  pos_s << "u: " << observations.begin()->second(0) << " v: " << observations.begin()->second(1);
 | 
					  pos_s << "u: " << observations.begin()->second(0) << " v: " << observations.begin()->second(1);
 | 
				
			||||||
@@ -731,12 +756,61 @@ bool Feature::VisualizePatch(
 | 
				
			|||||||
  cvWaitKey(0);
 | 
					  cvWaitKey(0);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void Feature::PatchAroundPurePixel(cv::Point2f p, 
 | 
				
			||||||
 | 
					                               int N,
 | 
				
			||||||
 | 
					                               const CameraCalibration& cam, 
 | 
				
			||||||
 | 
					                               const StateIDType& cam_state_id,
 | 
				
			||||||
 | 
					                               std::vector<float>& return_i) const
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int n = (int)(N-1)/2;
 | 
				
			||||||
 | 
					  cv::Mat image = cam.moving_window.find(cam_state_id)->second.image;
 | 
				
			||||||
 | 
					  cv::Point2f img_p = image_handler::distortPoint(p, 
 | 
				
			||||||
 | 
					                                                cam.intrinsics, 
 | 
				
			||||||
 | 
					                                                cam.distortion_model, 
 | 
				
			||||||
 | 
					                                                cam.distortion_coeffs);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for(double u_run = -n; u_run <= n; u_run++)
 | 
				
			||||||
 | 
					    for(double v_run = -n; v_run <= n; v_run++)
 | 
				
			||||||
 | 
					      return_i.push_back(PixelIrradiance(cv::Point2f(img_p.x+u_run, img_p.y+v_run), image));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
float Feature::PixelIrradiance(cv::Point2f pose, cv::Mat image) const
 | 
					float Feature::PixelIrradiance(cv::Point2f pose, cv::Mat image) const
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  return ((float)image.at<uint8_t>(pose.y, pose.x))/255;
 | 
					  return ((float)image.at<uint8_t>(pose.y, pose.x))/255;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					cv::Point2f Feature::pixelDistanceAt(
 | 
				
			||||||
 | 
					                  const CAMState& cam_state,
 | 
				
			||||||
 | 
					                  const StateIDType& cam_state_id,
 | 
				
			||||||
 | 
					                  const CameraCalibration& cam,
 | 
				
			||||||
 | 
					                  Eigen::Vector3d& in_p) const
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  cv::Point2f cam_p = projectPositionToCamera(cam_state, cam_state_id, cam, in_p);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // create vector of patch in pixel plane
 | 
				
			||||||
 | 
					  std::vector<cv::Point2f> surroundingPoints;
 | 
				
			||||||
 | 
					  surroundingPoints.push_back(cv::Point2f(cam_p.x+1, cam_p.y));
 | 
				
			||||||
 | 
					  surroundingPoints.push_back(cv::Point2f(cam_p.x-1, cam_p.y));
 | 
				
			||||||
 | 
					  surroundingPoints.push_back(cv::Point2f(cam_p.x, cam_p.y+1));
 | 
				
			||||||
 | 
					  surroundingPoints.push_back(cv::Point2f(cam_p.x, cam_p.y-1));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::vector<cv::Point2f> pure;
 | 
				
			||||||
 | 
					  image_handler::undistortPoints(surroundingPoints, 
 | 
				
			||||||
 | 
					                                cam.intrinsics, 
 | 
				
			||||||
 | 
					                                cam.distortion_model, 
 | 
				
			||||||
 | 
					                                cam.distortion_coeffs, 
 | 
				
			||||||
 | 
					                                pure); 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // returns the absolute pixel distance at pixels one metres away
 | 
				
			||||||
 | 
					  cv::Point2f distance(fabs(pure[0].x - pure[1].x), fabs(pure[2].y - pure[3].y));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return distance;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
cv::Point2f Feature::projectPositionToCamera(
 | 
					cv::Point2f Feature::projectPositionToCamera(
 | 
				
			||||||
                  const CAMState& cam_state,
 | 
					                  const CAMState& cam_state,
 | 
				
			||||||
                  const StateIDType& cam_state_id,
 | 
					                  const StateIDType& cam_state_id,
 | 
				
			||||||
@@ -841,7 +915,157 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
 | 
				
			|||||||
  is_anchored = true;
 | 
					  is_anchored = true;
 | 
				
			||||||
  return true;
 | 
					  return true;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					bool Feature::initializeRho(const CamStateServer& cam_states) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Organize camera poses and feature observations properly.
 | 
				
			||||||
 | 
					  std::vector<Eigen::Isometry3d,
 | 
				
			||||||
 | 
					    Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0);
 | 
				
			||||||
 | 
					  std::vector<Eigen::Vector2d,
 | 
				
			||||||
 | 
					    Eigen::aligned_allocator<Eigen::Vector2d> > measurements(0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for (auto& m : observations) {
 | 
				
			||||||
 | 
					    // TODO: This should be handled properly. Normally, the
 | 
				
			||||||
 | 
					    //    required camera states should all be available in
 | 
				
			||||||
 | 
					    //    the input cam_states buffer.
 | 
				
			||||||
 | 
					    auto cam_state_iter = cam_states.find(m.first);
 | 
				
			||||||
 | 
					    if (cam_state_iter == cam_states.end()) continue;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // Add the measurement.
 | 
				
			||||||
 | 
					    measurements.push_back(m.second.head<2>());
 | 
				
			||||||
 | 
					    measurements.push_back(m.second.tail<2>());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // This camera pose will take a vector from this camera frame
 | 
				
			||||||
 | 
					    // to the world frame.
 | 
				
			||||||
 | 
					    Eigen::Isometry3d cam0_pose;
 | 
				
			||||||
 | 
					    cam0_pose.linear() = quaternionToRotation(
 | 
				
			||||||
 | 
					        cam_state_iter->second.orientation).transpose();
 | 
				
			||||||
 | 
					    cam0_pose.translation() = cam_state_iter->second.position;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Eigen::Isometry3d cam1_pose;
 | 
				
			||||||
 | 
					    cam1_pose = cam0_pose * CAMState::T_cam0_cam1.inverse();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    cam_poses.push_back(cam0_pose);
 | 
				
			||||||
 | 
					    cam_poses.push_back(cam1_pose);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // All camera poses should be modified such that it takes a
 | 
				
			||||||
 | 
					  // vector from the first camera frame in the buffer to this
 | 
				
			||||||
 | 
					  // camera frame.
 | 
				
			||||||
 | 
					  Eigen::Isometry3d T_c0_w = cam_poses[0];
 | 
				
			||||||
 | 
					  T_anchor_w = T_c0_w;
 | 
				
			||||||
 | 
					  for (auto& pose : cam_poses)
 | 
				
			||||||
 | 
					    pose = pose.inverse() * T_c0_w;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Generate initial guess
 | 
				
			||||||
 | 
					  Eigen::Vector3d initial_position(0.0, 0.0, 0.0);
 | 
				
			||||||
 | 
					  generateInitialGuess(cam_poses[cam_poses.size()-1], measurements[0],
 | 
				
			||||||
 | 
					      measurements[measurements.size()-1], initial_position);
 | 
				
			||||||
 | 
					  Eigen::Vector3d solution(
 | 
				
			||||||
 | 
					      initial_position(0)/initial_position(2),
 | 
				
			||||||
 | 
					      initial_position(1)/initial_position(2),
 | 
				
			||||||
 | 
					      1.0/initial_position(2));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Apply Levenberg-Marquart method to solve for the 3d position.
 | 
				
			||||||
 | 
					  double lambda = optimization_config.initial_damping;
 | 
				
			||||||
 | 
					  int inner_loop_cntr = 0;
 | 
				
			||||||
 | 
					  int outer_loop_cntr = 0;
 | 
				
			||||||
 | 
					  bool is_cost_reduced = false;
 | 
				
			||||||
 | 
					  double delta_norm = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Compute the initial cost.
 | 
				
			||||||
 | 
					  double total_cost = 0.0;
 | 
				
			||||||
 | 
					  for (int i = 0; i < cam_poses.size(); ++i) {
 | 
				
			||||||
 | 
					    double this_cost = 0.0;
 | 
				
			||||||
 | 
					    cost(cam_poses[i], solution, measurements[i], this_cost);
 | 
				
			||||||
 | 
					    total_cost += this_cost;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Outer loop.
 | 
				
			||||||
 | 
					  do {
 | 
				
			||||||
 | 
					    Eigen::Matrix3d A = Eigen::Matrix3d::Zero();
 | 
				
			||||||
 | 
					    Eigen::Vector3d b = Eigen::Vector3d::Zero();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for (int i = 0; i < cam_poses.size(); ++i) {
 | 
				
			||||||
 | 
					      Eigen::Matrix<double, 2, 3> J;
 | 
				
			||||||
 | 
					      Eigen::Vector2d r;
 | 
				
			||||||
 | 
					      double w;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      jacobian(cam_poses[i], solution, measurements[i], J, r, w);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if (w == 1) {
 | 
				
			||||||
 | 
					        A += J.transpose() * J;
 | 
				
			||||||
 | 
					        b += J.transpose() * r;
 | 
				
			||||||
 | 
					      } else {
 | 
				
			||||||
 | 
					        double w_square = w * w;
 | 
				
			||||||
 | 
					        A += w_square * J.transpose() * J;
 | 
				
			||||||
 | 
					        b += w_square * J.transpose() * r;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // Inner loop.
 | 
				
			||||||
 | 
					    // Solve for the delta that can reduce the total cost.
 | 
				
			||||||
 | 
					    do {
 | 
				
			||||||
 | 
					      Eigen::Matrix3d damper = lambda * Eigen::Matrix3d::Identity();
 | 
				
			||||||
 | 
					      Eigen::Vector3d delta = (A+damper).ldlt().solve(b);
 | 
				
			||||||
 | 
					      Eigen::Vector3d new_solution = solution - delta;
 | 
				
			||||||
 | 
					      delta_norm = delta.norm();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      double new_cost = 0.0;
 | 
				
			||||||
 | 
					      for (int i = 0; i < cam_poses.size(); ++i) {
 | 
				
			||||||
 | 
					        double this_cost = 0.0;
 | 
				
			||||||
 | 
					        cost(cam_poses[i], new_solution, measurements[i], this_cost);
 | 
				
			||||||
 | 
					        new_cost += this_cost;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if (new_cost < total_cost) {
 | 
				
			||||||
 | 
					        is_cost_reduced = true;
 | 
				
			||||||
 | 
					        solution = new_solution;
 | 
				
			||||||
 | 
					        total_cost = new_cost;
 | 
				
			||||||
 | 
					        lambda = lambda/10 > 1e-10 ? lambda/10 : 1e-10;
 | 
				
			||||||
 | 
					      } else {
 | 
				
			||||||
 | 
					        is_cost_reduced = false;
 | 
				
			||||||
 | 
					        lambda = lambda*10 < 1e12 ? lambda*10 : 1e12;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    } while (inner_loop_cntr++ <
 | 
				
			||||||
 | 
					        optimization_config.inner_loop_max_iteration && !is_cost_reduced);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    inner_loop_cntr = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  } while (outer_loop_cntr++ <
 | 
				
			||||||
 | 
					      optimization_config.outer_loop_max_iteration &&
 | 
				
			||||||
 | 
					      delta_norm > optimization_config.estimation_precision);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Covert the feature position from inverse depth
 | 
				
			||||||
 | 
					  // representation to its 3d coordinate.
 | 
				
			||||||
 | 
					  Eigen::Vector3d final_position(solution(0)/solution(2),
 | 
				
			||||||
 | 
					      solution(1)/solution(2), 1.0/solution(2));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Check if the solution is valid. Make sure the feature
 | 
				
			||||||
 | 
					  // is in front of every camera frame observing it.
 | 
				
			||||||
 | 
					  bool is_valid_solution = true;
 | 
				
			||||||
 | 
					  for (const auto& pose : cam_poses) {
 | 
				
			||||||
 | 
					    Eigen::Vector3d position =
 | 
				
			||||||
 | 
					      pose.linear()*final_position + pose.translation();
 | 
				
			||||||
 | 
					    if (position(2) <= 0) {
 | 
				
			||||||
 | 
					      is_valid_solution = false;
 | 
				
			||||||
 | 
					      break;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //save inverse depth distance from camera
 | 
				
			||||||
 | 
					  anchor_rho = solution(2);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Convert the feature position to the world frame.
 | 
				
			||||||
 | 
					  position = T_c0_w.linear()*final_position + T_c0_w.translation();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if (is_valid_solution)
 | 
				
			||||||
 | 
					    is_initialized = true;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return is_valid_solution;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
bool Feature::initializePosition(const CamStateServer& cam_states) {
 | 
					bool Feature::initializePosition(const CamStateServer& cam_states) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Organize camera poses and feature observations properly.
 | 
					  // Organize camera poses and feature observations properly.
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -13,6 +13,13 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
namespace msckf_vio {
 | 
					namespace msckf_vio {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					inline double absoluted(double a){
 | 
				
			||||||
 | 
					  if(a>0)
 | 
				
			||||||
 | 
					    return a;
 | 
				
			||||||
 | 
					  else return -a;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/*
 | 
					/*
 | 
				
			||||||
 *  @brief Create a skew-symmetric matrix from a 3-element vector.
 | 
					 *  @brief Create a skew-symmetric matrix from a 3-element vector.
 | 
				
			||||||
 *  @note Performs the operation:
 | 
					 *  @note Performs the operation:
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -24,7 +24,7 @@
 | 
				
			|||||||
      <param name="PrintImages" value="true"/>
 | 
					      <param name="PrintImages" value="true"/>
 | 
				
			||||||
      <param name="GroundTruth" value="false"/>
 | 
					      <param name="GroundTruth" value="false"/>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      <param name="patch_size_n" value="5"/>
 | 
					      <param name="patch_size_n" value="7"/>
 | 
				
			||||||
      <!-- Calibration parameters -->
 | 
					      <!-- Calibration parameters -->
 | 
				
			||||||
      <rosparam command="load" file="$(arg calibration_file)"/>
 | 
					      <rosparam command="load" file="$(arg calibration_file)"/>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1225,63 +1225,32 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
				
			|||||||
  const CAMState& cam_state = state_server.cam_states[cam_state_id];
 | 
					  const CAMState& cam_state = state_server.cam_states[cam_state_id];
 | 
				
			||||||
  const Feature& feature = map_server[feature_id];
 | 
					  const Feature& feature = map_server[feature_id];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  const StateIDType anchor_state_id = feature.observations.begin()->first;
 | 
				
			||||||
 | 
					  const CAMState anchor_state = state_server.cam_states[anchor_state_id];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Cam0 pose.
 | 
					  // Cam0 pose.
 | 
				
			||||||
  Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
 | 
					  Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
 | 
				
			||||||
  const Vector3d& t_c0_w = cam_state.position;
 | 
					  const Vector3d& t_c0_w = cam_state.position;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Cam1 pose.
 | 
					 | 
				
			||||||
  Matrix3d R_c0_c1 = CAMState::T_cam0_cam1.linear();
 | 
					 | 
				
			||||||
  Matrix3d R_w_c1 = CAMState::T_cam0_cam1.linear() * R_w_c0;
 | 
					 | 
				
			||||||
  Vector3d t_c1_w = t_c0_w - R_w_c1.transpose()*CAMState::T_cam0_cam1.translation();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //photometric observation
 | 
					 | 
				
			||||||
  std::vector<double> photo_z;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  std::vector<double> photo_r;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // individual Jacobians
 | 
					 | 
				
			||||||
  Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
 | 
					 | 
				
			||||||
  Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
 | 
					 | 
				
			||||||
  Matrix<double, 2, 3> dh_dGpij = Matrix<double, 2, 3>::Zero();
 | 
					 | 
				
			||||||
  Matrix<double, 2, 6> dh_dXplj = Matrix<double, 2, 6>::Zero();
 | 
					 | 
				
			||||||
  Matrix<double, 3, 1> dGpj_drhoj = Matrix<double, 3, 1>::Zero();
 | 
					 | 
				
			||||||
  Matrix<double, 3, 6> dGpj_XpAj = Matrix<double, 3, 6>::Zero();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  Matrix<double, 3, 3> dCpij_dGpij = Matrix<double, 3, 3>::Zero();
 | 
					 | 
				
			||||||
  Matrix<double, 3, 3> dCpij_dCGtheta = Matrix<double, 3, 3>::Zero();
 | 
					 | 
				
			||||||
  Matrix<double, 3, 3> dCpij_dGpC = Matrix<double, 3, 3>::Zero();
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // one line of the NxN Jacobians
 | 
					  // one line of the NxN Jacobians
 | 
				
			||||||
  Eigen::Matrix<double, 1, 1> H_rhoj;
 | 
					  Matrix<double, 1, 1> H_rho;
 | 
				
			||||||
  Eigen::Matrix<double, 1, 6> H_plj;
 | 
					  Matrix<double, 1, 6> H_xi;
 | 
				
			||||||
  Eigen::Matrix<double, 1, 6> H_pAj;
 | 
					  Matrix<double, 1, 6> H_xA;
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
  // combined Jacobians
 | 
					  MatrixXd H_xl = MatrixXd::Zero(feature.anchorPatch_3d.size(), 6);
 | 
				
			||||||
  Eigen::MatrixXd H_rho(N*N, 1);
 | 
					  MatrixXd H_xAl = MatrixXd::Zero(feature.anchorPatch_3d.size(), 6);
 | 
				
			||||||
  Eigen::MatrixXd H_pl(N*N, 6);
 | 
					  MatrixXd H_rhol = MatrixXd::Zero(feature.anchorPatch_3d.size(), 1);
 | 
				
			||||||
  Eigen::MatrixXd H_pA(N*N, 6);
 | 
					*/
 | 
				
			||||||
 | 
					  MatrixXd H_xl = MatrixXd::Zero(1, 6);
 | 
				
			||||||
 | 
					  MatrixXd H_xAl = MatrixXd::Zero(1, 6);
 | 
				
			||||||
 | 
					  MatrixXd H_rhol = MatrixXd::Zero(1, 1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  auto frame = cam0.moving_window.find(cam_state_id)->second.image;
 | 
					  auto frame = cam0.moving_window.find(cam_state_id)->second.image;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  //observation
 | 
					 | 
				
			||||||
  const Vector4d& z = feature.observations.find(cam_state_id)->second;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //estimate photometric measurement
 | 
					 | 
				
			||||||
  std::vector<double> estimate_irradiance;
 | 
					 | 
				
			||||||
  std::vector<double> estimate_photo_z;
 | 
					 | 
				
			||||||
  IlluminationParameter estimated_illumination;
 | 
					 | 
				
			||||||
  feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // calculated here, because we need true 'estimate_irradiance' later for jacobi
 | 
					 | 
				
			||||||
  for (auto& estimate_irradiance_j : estimate_irradiance)
 | 
					 | 
				
			||||||
            estimate_photo_z.push_back (estimate_irradiance_j * 
 | 
					 | 
				
			||||||
                    estimated_illumination.frame_gain * estimated_illumination.feature_gain +
 | 
					 | 
				
			||||||
                    estimated_illumination.frame_bias + estimated_illumination.feature_bias);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  int count = 0;
 | 
					  int count = 0;
 | 
				
			||||||
  double dx, dy;
 | 
					  double dx, dy;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::vector<float> z_irr_est;
 | 
				
			||||||
  // gradient visualization parameters
 | 
					  // gradient visualization parameters
 | 
				
			||||||
  cv::Point2f gradientVector(0,0);
 | 
					  cv::Point2f gradientVector(0,0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1289,53 +1258,57 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
				
			|||||||
  cv::Point2f residualVector(0,0);
 | 
					  cv::Point2f residualVector(0,0);
 | 
				
			||||||
  double res_sum = 0;
 | 
					  double res_sum = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // get patch around feature in current image
 | 
				
			||||||
 | 
					  cv::Point2f p_f(feature.observations.find(cam_state_id)->second(0),feature.observations.find(cam_state_id)->second(1));
 | 
				
			||||||
 | 
					  // move to real pixels
 | 
				
			||||||
 | 
					  p_f = image_handler::distortPoint(p_f, cam0.intrinsics, cam0.distortion_model, cam0.distortion_coeffs);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::vector<double> cur_image_irr;
 | 
				
			||||||
 | 
					  std::vector<cv::Point2f> cur_image_p;
 | 
				
			||||||
 | 
					  for(int i = 0; i<N; i++)
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for(int j = 0; j<N ; j++)
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      cur_image_p.push_back(cv::Point2f(p_f.x + (i-(N-1)/2), p_f.y + (j-(N-1)/2)));
 | 
				
			||||||
 | 
					      cur_image_irr.push_back(feature.PixelIrradiance(cv::Point2f(p_f.x + (i-(N-1)/2), p_f.y + (j-(N-1)/2)), frame));
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
  for (auto point : feature.anchorPatch_3d)
 | 
					  for (auto point : feature.anchorPatch_3d)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
    Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
 | 
					    Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
 | 
				
			||||||
    cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //add observation
 | 
					 | 
				
			||||||
    photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
      //calculate photom. residual
 | 
					 | 
				
			||||||
    photo_r.push_back(photo_z[count] - estimate_photo_z[count]);
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    // add jacobians
 | 
					    // add jacobians
 | 
				
			||||||
 | 
					    cv::Point2f pixelDistance = feature.pixelDistanceAt(cam_state, cam_state_id, cam0, point);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // calculate derivation for anchor frame, use position for derivation calculation
 | 
				
			||||||
    // frame derivative calculated convoluting with kernel [-1, 0, 1]
 | 
					    // frame derivative calculated convoluting with kernel [-1, 0, 1]
 | 
				
			||||||
    dx = feature.PixelIrradiance(cv::Point2f(p_in_c0.x+1, p_in_c0.y), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x-1, p_in_c0.y), frame);
 | 
					    Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
 | 
				
			||||||
    dy = feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y+1), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y-1), frame);
 | 
					    dx = feature.PixelIrradiance(cv::Point2f(cur_image_p[count].x+1, cur_image_p[count].y), frame) - feature.PixelIrradiance(cv::Point2f(cur_image_p[count].x-1, cur_image_p[count].y), frame);
 | 
				
			||||||
    dI_dhj(0, 0) = dx;
 | 
					    dy = feature.PixelIrradiance(cv::Point2f(cur_image_p[count].x, cur_image_p[count].y+1), frame) - feature.PixelIrradiance(cv::Point2f(cur_image_p[count].x, cur_image_p[count].y-1), frame);
 | 
				
			||||||
    dI_dhj(0, 1) = dy;
 | 
					    dI_dhj(0, 0) = (double)dx/pixelDistance.x;
 | 
				
			||||||
 | 
					    dI_dhj(0, 1) = (double)dy/pixelDistance.y;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    gradientVector.x += dx;
 | 
					    // Compute the Jacobians.
 | 
				
			||||||
    gradientVector.y += dy; 
 | 
					    Matrix<double, 2, 3> dz_dpc0 = Matrix<double, 2, 3>::Zero();
 | 
				
			||||||
 | 
					    dz_dpc0(0, 0) = 1 / p_c0(2);
 | 
				
			||||||
 | 
					    dz_dpc0(1, 1) = 1 / p_c0(2);
 | 
				
			||||||
 | 
					    dz_dpc0(0, 2) = -p_c0(0) / (p_c0(2)*p_c0(2));
 | 
				
			||||||
 | 
					    dz_dpc0(1, 2) = -p_c0(1) / (p_c0(2)*p_c0(2));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    residualVector.x += dx * photo_r[count];
 | 
					    Matrix<double, 3, 6> dpc0_dxc = Matrix<double, 3, 6>::Zero();
 | 
				
			||||||
    residualVector.y += dy * photo_r[count];
 | 
					 | 
				
			||||||
    res_sum += photo_r[count];
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    //dh / d{}^Cp_{ij}
 | 
					    // original jacobi
 | 
				
			||||||
    dh_dCpij(0, 0) = 1 / p_c0(2);
 | 
					    dpc0_dxc.leftCols(3) = skewSymmetric(p_c0);
 | 
				
			||||||
    dh_dCpij(1, 1) = 1 / p_c0(2);
 | 
					    dpc0_dxc.rightCols(3) = -R_w_c0;
 | 
				
			||||||
    dh_dCpij(0, 2) = -(p_c0(0))/(p_c0(2)*p_c0(2));
 | 
					 | 
				
			||||||
    dh_dCpij(1, 2) = -(p_c0(1))/(p_c0(2)*p_c0(2));
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    dCpij_dGpij = quaternionToRotation(cam_state.orientation);
 | 
					    Matrix3d dCpij_dGpij = quaternionToRotation(cam_state.orientation);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //orientation takes camera frame to world frame, we wa
 | 
					    //orientation takes camera frame to world frame, we wa
 | 
				
			||||||
    dh_dGpij = dh_dCpij * dCpij_dGpij;
 | 
					    Matrix<double, 2, 3> dh_dGpij = dz_dpc0 * dCpij_dGpij;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    //dh / d X_{pl}
 | 
					 | 
				
			||||||
    dCpij_dCGtheta = skewSymmetric(p_c0);
 | 
					 | 
				
			||||||
    dCpij_dGpC = -quaternionToRotation(cam_state.orientation);
 | 
					 | 
				
			||||||
    dh_dXplj.block<2, 3>(0, 0) = dh_dCpij * dCpij_dCGtheta;
 | 
					 | 
				
			||||||
    dh_dXplj.block<2, 3>(0, 3) = dh_dCpij * dCpij_dGpC;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    //d{}^Gp_P{ij} / \rho_i
 | 
					 | 
				
			||||||
    double rho = feature.anchor_rho;
 | 
					    double rho = feature.anchor_rho;
 | 
				
			||||||
    // Isometry T_anchor_w takes a vector in anchor frame to world frame
 | 
					
 | 
				
			||||||
    dGpj_drhoj = -feature.T_anchor_w.linear() * Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho*rho), feature.anchorPatch_ideal[count].y/(rho*rho), 1/(rho*rho));
 | 
					    Matrix<double, 3, 6> dGpj_XpAj = Matrix<double, 3, 6>::Zero();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    dGpj_XpAj.block<3, 3>(0, 0) = - feature.T_anchor_w.linear()
 | 
					    dGpj_XpAj.block<3, 3>(0, 0) = - feature.T_anchor_w.linear()
 | 
				
			||||||
                                 * skewSymmetric(Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho), 
 | 
					                                 * skewSymmetric(Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho), 
 | 
				
			||||||
@@ -1343,61 +1316,85 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
				
			|||||||
                                                   1/(rho)));
 | 
					                                                   1/(rho)));
 | 
				
			||||||
    dGpj_XpAj.block<3, 3>(0, 3) = Matrix<double, 3, 3>::Identity();
 | 
					    dGpj_XpAj.block<3, 3>(0, 3) = Matrix<double, 3, 3>::Identity();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Intermediate Jakobians
 | 
					 | 
				
			||||||
    H_rhoj = dI_dhj * dh_dGpij * dGpj_drhoj; // 1 x 1
 | 
					 | 
				
			||||||
    H_plj = dI_dhj * dh_dXplj; // 1 x 6
 | 
					 | 
				
			||||||
    H_pAj = dI_dhj * dh_dGpij * dGpj_XpAj; // 1 x 6
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    H_rho.block<1, 1>(count, 0) = H_rhoj;
 | 
					    // Isometry T_anchor_w takes a vector in anchor frame to world frame
 | 
				
			||||||
    H_pl.block<1, 6>(count, 0) = H_plj;
 | 
					    Matrix<double, 3, 1> dGpj_drhoj = Matrix<double, 3, 1>::Zero();
 | 
				
			||||||
    H_pA.block<1, 6>(count, 0) = H_pAj;
 | 
					    dGpj_drhoj = -feature.T_anchor_w.linear() * Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho*rho), feature.anchorPatch_ideal[count].y/(rho*rho), 1/(rho*rho));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    H_xi = dI_dhj * dz_dpc0 * dpc0_dxc;
 | 
				
			||||||
 | 
					    H_xA = dI_dhj * dh_dGpij * dGpj_XpAj;
 | 
				
			||||||
 | 
					    H_rho = dI_dhj * dh_dGpij * dGpj_drhoj; // 1 x 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					    H_xl.block<1, 6>(count, 0) = H_xi;
 | 
				
			||||||
 | 
					    H_xAl.block<1, 6>(count, 0) = H_xA;
 | 
				
			||||||
 | 
					    H_rhol.block<1, 1>(count, 0) = H_rho;
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					    H_xl += H_xi;
 | 
				
			||||||
 | 
					    H_xAl += H_xA;
 | 
				
			||||||
 | 
					    H_rhol += H_rho;
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    count++;
 | 
					    count++;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
 | 
					  // calculate projected irradiance
 | 
				
			||||||
  MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+state_server.cam_states.size()+1);
 | 
					  std::vector<double> projectionPatch;
 | 
				
			||||||
 | 
					  for(auto point : feature.anchorPatch_3d)
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
 | 
				
			||||||
 | 
					    projectionPatch.push_back(feature.PixelIrradiance(p_in_c0, frame));
 | 
				
			||||||
 | 
					  }  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					  //Eigen::VectorXd r_l = Eigen::VectorXd::Zero(count);
 | 
				
			||||||
 | 
					Eigen::VectorXd r_l = Eigen::VectorXd::Zero(1);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::vector<double> residual_v;
 | 
				
			||||||
 | 
					  double residual_v_sum = 0;
 | 
				
			||||||
 | 
					  for(int i = 0; i < N*N; i++)
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    residual_v_sum += cur_image_irr[i] - projectionPatch[i];
 | 
				
			||||||
 | 
					    residual_v.push_back(cur_image_irr[i] - projectionPatch[i]);
 | 
				
			||||||
 | 
					    //r_l(i) = cur_image_irr[i] - projectionPatch[i];
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  r_l(0) = residual_v_sum/(N*N);
 | 
				
			||||||
 | 
					  H_xl /=(N*N);
 | 
				
			||||||
 | 
					  H_xAl /= (N*N);
 | 
				
			||||||
 | 
					  H_rhol /= (N*N);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  cout << "dI/dxl\n" << H_xl << endl;
 | 
				
			||||||
 | 
					  cout << "dI/dAl\n" << H_xAl << endl;
 | 
				
			||||||
 | 
					  cout << "dI/drhol\n" << H_rhol << endl;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  r = r_l;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  MatrixXd H_xt = MatrixXd::Zero(1, 21+state_server.cam_states.size()*7);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // set anchor Jakobi
 | 
					  // set anchor Jakobi
 | 
				
			||||||
  // get position of anchor in cam states
 | 
					  // get position of anchor in cam states
 | 
				
			||||||
 | 
					 | 
				
			||||||
  auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
 | 
					  auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
 | 
				
			||||||
  int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
 | 
					  int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
 | 
				
			||||||
  H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA; 
 | 
					  //H_xt.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = H_xAl; 
 | 
				
			||||||
 | 
					  H_xt.block(0, 21+cam_state_cntr_anchor*7, 1, 6) = H_xAl; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // set frame Jakobi
 | 
					  // set frame Jakobi
 | 
				
			||||||
  //get position of current frame in cam states
 | 
					  //get position of current frame in cam states
 | 
				
			||||||
  auto cam_state_iter = state_server.cam_states.find(cam_state_id);
 | 
					  auto cam_state_iter = state_server.cam_states.find(cam_state_id);
 | 
				
			||||||
  int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
 | 
					  int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter);
 | 
				
			||||||
 | 
					  //H_xt.block(0, 21+cam_state_cntr*7, N*N, 6) = H_xl;
 | 
				
			||||||
 | 
					  H_xt.block(0, 21+cam_state_cntr*7, 1, 6) = H_xl;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    // set jakobi of state
 | 
					  H_x = H_xt;
 | 
				
			||||||
  H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = -H_pl;
 | 
					  H_y = H_rhol;
 | 
				
			||||||
 | 
					 | 
				
			||||||
    // set ones for irradiance bias
 | 
					 | 
				
			||||||
  H_xl.block(0, 21+cam_state_cntr*7+6, N*N, 1) = Eigen::ArrayXd::Ones(N*N);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // set irradiance error Block
 | 
					 | 
				
			||||||
  H_yl.block(0, 0,N*N, N*N) = estimated_illumination.feature_gain * estimated_illumination.frame_gain * Eigen::MatrixXd::Identity(N*N, N*N);
 | 
					 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // TODO make this calculation more fluent
 | 
					 | 
				
			||||||
  for(int i = 0; i< N*N; i++)
 | 
					 | 
				
			||||||
    H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i];
 | 
					 | 
				
			||||||
  H_yl.block(0, N*N+state_server.cam_states.size(), N*N, 1) = -H_rho;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  H_x = H_xl;
 | 
					 | 
				
			||||||
  H_y = H_yl;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  //TODO make this more fluent as well
 | 
					 | 
				
			||||||
  count = 0; 
 | 
					 | 
				
			||||||
  for(auto data : photo_r)
 | 
					 | 
				
			||||||
    r[count++] = data;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  std::stringstream ss;
 | 
					  std::stringstream ss;
 | 
				
			||||||
  ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << "  frame: " << cam_state_cntr;
 | 
					  ss << "INFO:"; // << " anchor: " << cam_state_cntr_anchor << "  frame: " << cam_state_cntr;
 | 
				
			||||||
  if(PRINTIMAGES)
 | 
					  if(PRINTIMAGES)
 | 
				
			||||||
  {  
 | 
					  {  
 | 
				
			||||||
    feature.MarkerGeneration(marker_pub, state_server.cam_states);
 | 
					    feature.MarkerGeneration(marker_pub, state_server.cam_states);
 | 
				
			||||||
    feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss, gradientVector, residualVector);
 | 
					    feature.VisualizePatch(cam_state, cam_state_id, cam0, residual_v, ss);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
@@ -1443,15 +1440,18 @@ void MsckfVio::PhotometricFeatureJacobian(
 | 
				
			|||||||
    if (feature.observations.find(cam_id) ==
 | 
					    if (feature.observations.find(cam_id) ==
 | 
				
			||||||
        feature.observations.end()) continue;
 | 
					        feature.observations.end()) continue;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // if not anchor frame
 | 
				
			||||||
 | 
					    if (cam_id != feature.observations.begin()->first)
 | 
				
			||||||
      valid_cam_state_ids.push_back(cam_id);
 | 
					      valid_cam_state_ids.push_back(cam_id);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  int jacobian_row_size = 0;
 | 
					  int jacobian_row_size = 0;
 | 
				
			||||||
  jacobian_row_size = N * N * valid_cam_state_ids.size();
 | 
					  //jacobian_row_size = N * N * valid_cam_state_ids.size();
 | 
				
			||||||
 | 
					jacobian_row_size = valid_cam_state_ids.size();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  MatrixXd H_xi = MatrixXd::Zero(jacobian_row_size,
 | 
					  MatrixXd H_xi = MatrixXd::Zero(jacobian_row_size,
 | 
				
			||||||
      21+state_server.cam_states.size()*7);
 | 
					      21+state_server.cam_states.size()*7);
 | 
				
			||||||
  MatrixXd H_yi = MatrixXd::Zero(jacobian_row_size, N*N+state_server.cam_states.size()+1);
 | 
					  MatrixXd H_yi = MatrixXd::Zero(jacobian_row_size, 1);
 | 
				
			||||||
  VectorXd r_i = VectorXd::Zero(jacobian_row_size);
 | 
					  VectorXd r_i = VectorXd::Zero(jacobian_row_size);
 | 
				
			||||||
  int stack_cntr = 0;
 | 
					  int stack_cntr = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1467,41 +1467,34 @@ void MsckfVio::PhotometricFeatureJacobian(
 | 
				
			|||||||
    int cam_state_cntr = std::distance(
 | 
					    int cam_state_cntr = std::distance(
 | 
				
			||||||
        state_server.cam_states.begin(), cam_state_iter);
 | 
					        state_server.cam_states.begin(), cam_state_iter);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first);
 | 
				
			||||||
 | 
					    int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Stack the Jacobians.
 | 
					    // Stack the Jacobians.
 | 
				
			||||||
    H_xi.block(stack_cntr, 0, H_xl.rows(), H_xl.cols()) = H_xl;
 | 
					    H_xi.block(stack_cntr, 0, H_xl.rows(), H_xl.cols()) = H_xl;
 | 
				
			||||||
    H_yi.block(stack_cntr, 0, H_yl.rows(), H_yl.cols()) = H_yl;
 | 
					    H_yi.block(stack_cntr,0, H_yl.rows(), H_yl.cols()) = H_yl;
 | 
				
			||||||
    r_i.segment(stack_cntr, N*N) = r_l;
 | 
					
 | 
				
			||||||
    stack_cntr += N*N;
 | 
					
 | 
				
			||||||
 | 
					    //r_i.segment(stack_cntr, N*N) = r_l;
 | 
				
			||||||
 | 
					    //stack_cntr += N*N;
 | 
				
			||||||
 | 
					    r_i.segment(stack_cntr, 1) = r_l;
 | 
				
			||||||
 | 
					    stack_cntr += 1;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Project the residual and Jacobians onto the nullspace
 | 
					 | 
				
			||||||
  // of H_yj.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // get Nullspace
 | 
					 | 
				
			||||||
  FullPivLU<MatrixXd> lu(H_yi.transpose());
 | 
					  FullPivLU<MatrixXd> lu(H_yi.transpose());
 | 
				
			||||||
  MatrixXd A_null_space = lu.kernel();
 | 
					  MatrixXd A = lu.kernel();
 | 
				
			||||||
  /*
 | 
					  H_x = A.transpose() * H_xi;
 | 
				
			||||||
  JacobiSVD<MatrixXd> svd_helper(H_yi, ComputeFullU | ComputeThinV);
 | 
					  r = A.transpose() * r_i;
 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  int sv_size = 0;
 | 
					 | 
				
			||||||
  Eigen::VectorXd singularValues = svd_helper.singularValues();
 | 
					 | 
				
			||||||
  for(int i = 0; i < singularValues.size(); i++)
 | 
					 | 
				
			||||||
    if(singularValues[i] > 1e-12)
 | 
					 | 
				
			||||||
      sv_size++;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  MatrixXd A = svd_helper.matrixU().rightCols(jacobian_row_size - singularValues.size());
 | 
					 | 
				
			||||||
  */
 | 
					 | 
				
			||||||
  H_x = A_null_space.transpose() * H_xi;
 | 
					 | 
				
			||||||
  r = A_null_space.transpose() * r_i;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  ofstream myfile;
 | 
					 | 
				
			||||||
  myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
 | 
					 | 
				
			||||||
  myfile << "Hx\n" << H_x << "r\n" << r << "from residual estimated error state: " << H_x. * r << endl;
 | 
					 | 
				
			||||||
  myfile.close();
 | 
					 | 
				
			||||||
  cout << "---------- LOGGED -------- " << endl; 
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  if(PRINTIMAGES)
 | 
					  if(PRINTIMAGES)
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
 | 
					    ofstream myfile;
 | 
				
			||||||
 | 
					    myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
 | 
				
			||||||
 | 
					    myfile << "Hyi\n" << H_yi << "Hxi\n" << H_xi << "Hx\n" << H_x << "r\n" << r << "\n x\n" << H_x.colPivHouseholderQr().solve(r) << endl;
 | 
				
			||||||
 | 
					    myfile.close();
 | 
				
			||||||
 | 
					    cout << "---------- LOGGED -------- " << endl; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::cout << "resume playback" << std::endl;
 | 
					    std::cout << "resume playback" << std::endl;
 | 
				
			||||||
    nh.setParam("/play_bag", true);
 | 
					    nh.setParam("/play_bag", true);
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -1511,8 +1504,7 @@ void MsckfVio::PhotometricFeatureJacobian(
 | 
				
			|||||||
void MsckfVio::measurementJacobian(
 | 
					void MsckfVio::measurementJacobian(
 | 
				
			||||||
    const StateIDType& cam_state_id,
 | 
					    const StateIDType& cam_state_id,
 | 
				
			||||||
    const FeatureIDType& feature_id,
 | 
					    const FeatureIDType& feature_id,
 | 
				
			||||||
    Matrix<double, 4, 6>& H_x, Matrix<double, 4, 3>& H_f, Vector4d& r)
 | 
					    Matrix<double, 4, 6>& H_x, Matrix<double, 4, 3>& H_f, Vector4d& r) {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Prepare all the required data.
 | 
					  // Prepare all the required data.
 | 
				
			||||||
  const CAMState& cam_state = state_server.cam_states[cam_state_id];
 | 
					  const CAMState& cam_state = state_server.cam_states[cam_state_id];
 | 
				
			||||||
@@ -1551,8 +1543,6 @@ void MsckfVio::measurementJacobian(
 | 
				
			|||||||
  dz_dpc1(3, 2) = -p_c1(1) / (p_c1(2)*p_c1(2));
 | 
					  dz_dpc1(3, 2) = -p_c1(1) / (p_c1(2)*p_c1(2));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Matrix<double, 3, 6> dpc0_dxc = Matrix<double, 3, 6>::Zero();
 | 
					  Matrix<double, 3, 6> dpc0_dxc = Matrix<double, 3, 6>::Zero();
 | 
				
			||||||
  
 | 
					 | 
				
			||||||
  // original jacobi
 | 
					 | 
				
			||||||
  dpc0_dxc.leftCols(3) = skewSymmetric(p_c0);
 | 
					  dpc0_dxc.leftCols(3) = skewSymmetric(p_c0);
 | 
				
			||||||
  dpc0_dxc.rightCols(3) = -R_w_c0;
 | 
					  dpc0_dxc.rightCols(3) = -R_w_c0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1566,6 +1556,17 @@ void MsckfVio::measurementJacobian(
 | 
				
			|||||||
  H_x = dz_dpc0*dpc0_dxc + dz_dpc1*dpc1_dxc;
 | 
					  H_x = dz_dpc0*dpc0_dxc + dz_dpc1*dpc1_dxc;
 | 
				
			||||||
  H_f = dz_dpc0*dpc0_dpg + dz_dpc1*dpc1_dpg;
 | 
					  H_f = dz_dpc0*dpc0_dpg + dz_dpc1*dpc1_dpg;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // Modifty the measurement Jacobian to ensure
 | 
				
			||||||
 | 
					  // observability constrain.
 | 
				
			||||||
 | 
					  Matrix<double, 4, 6> A = H_x;
 | 
				
			||||||
 | 
					  Matrix<double, 6, 1> u = Matrix<double, 6, 1>::Zero();
 | 
				
			||||||
 | 
					  u.block<3, 1>(0, 0) = quaternionToRotation(
 | 
				
			||||||
 | 
					      cam_state.orientation_null) * IMUState::gravity;
 | 
				
			||||||
 | 
					  u.block<3, 1>(3, 0) = skewSymmetric(
 | 
				
			||||||
 | 
					      p_w-cam_state.position_null) * IMUState::gravity;
 | 
				
			||||||
 | 
					  H_x = A - A*u*(u.transpose()*u).inverse()*u.transpose();
 | 
				
			||||||
 | 
					  H_f = -H_x.block<4, 3>(0, 3);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Compute the residual.
 | 
					  // Compute the residual.
 | 
				
			||||||
  r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2),
 | 
					  r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2),
 | 
				
			||||||
      p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
 | 
					      p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
 | 
				
			||||||
@@ -1573,11 +1574,14 @@ void MsckfVio::measurementJacobian(
 | 
				
			|||||||
  return;
 | 
					  return;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void MsckfVio::featureJacobian(
 | 
					void MsckfVio::featureJacobian(
 | 
				
			||||||
    const FeatureIDType& feature_id,
 | 
					    const FeatureIDType& feature_id,
 | 
				
			||||||
    const std::vector<StateIDType>& cam_state_ids,
 | 
					    const std::vector<StateIDType>& cam_state_ids,
 | 
				
			||||||
    MatrixXd& H_x, VectorXd& r) 
 | 
					    MatrixXd& H_x, VectorXd& r) 
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
 | 
					  if(PRINTIMAGES)
 | 
				
			||||||
 | 
					    nh.setParam("/play_bag", false);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  const auto& feature = map_server[feature_id];
 | 
					  const auto& feature = map_server[feature_id];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1640,11 +1644,17 @@ void MsckfVio::featureJacobian(
 | 
				
			|||||||
   r = A.transpose() * r_j;
 | 
					   r = A.transpose() * r_j;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
 | 
					  if(PRINTIMAGES)
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
    ofstream myfile;
 | 
					    ofstream myfile;
 | 
				
			||||||
    myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
 | 
					    myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
 | 
				
			||||||
  myfile << "Hx\n" << H_x << "r\n" << r << "from residual estimated error state: " << H_x.ldlt().solve(r) << endl;
 | 
					    myfile << H_x.colPivHouseholderQr().solve(r) << endl;
 | 
				
			||||||
    myfile.close();
 | 
					    myfile.close();
 | 
				
			||||||
    cout << "---------- LOGGED -------- " << endl; 
 | 
					    cout << "---------- LOGGED -------- " << endl; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    std::cout << "resume playback" << std::endl;
 | 
				
			||||||
 | 
					    nh.setParam("/play_bag", true);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
  return;
 | 
					  return;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
@@ -1758,7 +1768,6 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
 | 
					bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
 | 
				
			||||||
  return true;
 | 
					 | 
				
			||||||
  MatrixXd P1 = H * state_server.state_cov * H.transpose();
 | 
					  MatrixXd P1 = H * state_server.state_cov * H.transpose();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1867,7 +1876,8 @@ void MsckfVio::removeLostFeatures() {
 | 
				
			|||||||
    else
 | 
					    else
 | 
				
			||||||
      featureJacobian(feature.id, cam_state_ids, H_xj, r_j);
 | 
					      featureJacobian(feature.id, cam_state_ids, H_xj, r_j);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (gatingTest(H_xj, r_j, cam_state_ids.size()-1)) {
 | 
					
 | 
				
			||||||
 | 
					    if (gatingTest(H_xj, r_j, state_server.cam_states.size() - 1)){ //cam_state_ids.size()-1)) {
 | 
				
			||||||
      H_x.block(stack_cntr, 0, H_xj.rows(), H_xj.cols()) = H_xj;
 | 
					      H_x.block(stack_cntr, 0, H_xj.rows(), H_xj.cols()) = H_xj;
 | 
				
			||||||
      r.segment(stack_cntr, r_j.rows()) = r_j;
 | 
					      r.segment(stack_cntr, r_j.rows()) = r_j;
 | 
				
			||||||
      stack_cntr += H_xj.rows();
 | 
					      stack_cntr += H_xj.rows();
 | 
				
			||||||
@@ -2029,7 +2039,7 @@ void MsckfVio::pruneCamStateBuffer() {
 | 
				
			|||||||
    else
 | 
					    else
 | 
				
			||||||
      featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
 | 
					      featureJacobian(feature.id, involved_cam_state_ids, H_xj, r_j);
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    if (gatingTest(H_xj, r_j, involved_cam_state_ids.size())) {
 | 
					    if (gatingTest(H_xj, r_j, involved_cam_state_ids.size() - 1)) { //involved_cam_state_ids.size())) {
 | 
				
			||||||
      H_x.block(stack_cntr, 0, H_xj.rows(), H_xj.cols()) = H_xj;
 | 
					      H_x.block(stack_cntr, 0, H_xj.rows(), H_xj.cols()) = H_xj;
 | 
				
			||||||
      r.segment(stack_cntr, r_j.rows()) = r_j;
 | 
					      r.segment(stack_cntr, r_j.rows()) = r_j;
 | 
				
			||||||
      stack_cntr += H_xj.rows();
 | 
					      stack_cntr += H_xj.rows();
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user