Compare commits

..

No commits in common. "master" and "photometry" have entirely different histories.

33 changed files with 409 additions and 3759 deletions

View File

@ -1,16 +0,0 @@
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"compilerPath": "/usr/bin/gcc",
"cStandard": "c11",
"cppStandard": "c++14",
"intelliSenseMode": "clang-x64"
}
],
"version": 4
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,6 +0,0 @@
{
"files.associations": {
"core": "cpp",
"sparsecore": "cpp"
}
}

View File

@ -24,7 +24,6 @@ find_package(catkin REQUIRED COMPONENTS
pcl_conversions
pcl_ros
std_srvs
visualization_msgs
)
## System dependencies are found with CMake's conventions

BIN
GPATH

Binary file not shown.

BIN
GRTAGS

Binary file not shown.

BIN
GSYMS

Binary file not shown.

BIN
GTAGS

Binary file not shown.

View File

@ -1,22 +1,12 @@
# MSCKF\_VIO
The `MSCKF_VIO` package is a stereo-photometric version of MSCKF. The software takes in synchronized stereo images and IMU messages and generates real-time 6DOF pose estimation of the IMU frame.
The `MSCKF_VIO` package is a stereo version of MSCKF. The software takes in synchronized stereo images and IMU messages and generates real-time 6DOF pose estimation of the IMU frame.
This approach is based on the paper written by Ke Sun et al.
[https://arxiv.org/abs/1712.00036](https://arxiv.org/abs/1712.00036) and their Stereo MSCKF implementation, which tightly fuse the matched feature information of a stereo image pair into a 6DOF Pose.
The approach implemented in this repository follows the semi-dense msckf approach tightly fusing the photometric
information around the matched featues into the covariance matrix, as described and derived in the master thesis [Pose Estimation using a Stereo-Photometric Multi-State Constraint Kalman Filter](http://raphael.maenle.net/resources/sp-msckf/maenle_master_thesis.pdf).
It's positioning is comparable to the approach from Ke Sun et al. with the photometric approach, with a higher
computational load, especially with larger image patches around the feature. A video explaining the approach can be
found on [https://youtu.be/HrqQywAnenQ](https://youtu.be/HrqQywAnenQ):
<br/>
[![Stereo-Photometric MSCKF](https://img.youtube.com/vi/HrqQywAnenQ/0.jpg)](https://www.youtube.com/watch?v=HrqQywAnenQ)
<br/>
This software should be deployed using ROS Kinetic on Ubuntu 16.04 or 18.04.
The software is tested on Ubuntu 16.04 with ROS Kinetic.
Video: [https://www.youtube.com/watch?v=jxfJFgzmNSw&t](https://www.youtube.com/watch?v=jxfJFgzmNSw&t=3s)<br/>
Paper Draft: [https://arxiv.org/abs/1712.00036](https://arxiv.org/abs/1712.00036)
## License
@ -38,6 +28,16 @@ cd your_work_space
catkin_make --pkg msckf_vio --cmake-args -DCMAKE_BUILD_TYPE=Release
```
## Calibration
An accurate calibration is crucial for successfully running the software. To get the best performance of the software, the stereo cameras and IMU should be hardware synchronized. Note that for the stereo calibration, which includes the camera intrinsics, distortion, and extrinsics between the two cameras, you have to use a calibration software. **Manually setting these parameters will not be accurate enough.** [Kalibr](https://github.com/ethz-asl/kalibr) can be used for the stereo calibration and also to get the transformation between the stereo cameras and IMU. The yaml file generated by Kalibr can be directly used in this software. See calibration files in the `config` folder for details. The two calibration files in the `config` folder should work directly with the EuRoC and [fast flight](https://github.com/KumarRobotics/msckf_vio/wiki) datasets. The convention of the calibration file is as follows:
`camx/T_cam_imu`: takes a vector from the IMU frame to the camx frame.
`cam1/T_cn_cnm1`: takes a vector from the cam0 frame to the cam1 frame.
The filter uses the first 200 IMU messages to initialize the gyro bias, acc bias, and initial orientation. Therefore, the robot is required to start from a stationary state in order to initialize the VIO successfully.
## EuRoC and UPenn Fast flight dataset example usage
First obtain either the [EuRoC](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets) or the [UPenn fast flight](https://github.com/KumarRobotics/msckf_vio/wiki/Dataset) dataset.
@ -75,8 +75,6 @@ To visualize the pose and feature estimates you can use the provided rviz config
## ROS Nodes
The general structure is similar to the structure of the MSCKF implementation this repository is derived from.
### `image_processor` node
**Subscribed Topics**

View File

@ -9,7 +9,7 @@ cam0:
0, 0, 0, 1.000000000000000]
camera_model: pinhole
distortion_coeffs: [-0.28340811, 0.07395907, 0.00019359, 1.76187114e-05]
distortion_model: pre-radtan
distortion_model: radtan
intrinsics: [458.654, 457.296, 367.215, 248.375]
resolution: [752, 480]
timeshift_cam_imu: 0.0
@ -26,7 +26,7 @@ cam1:
0, 0, 0, 1.000000000000000]
camera_model: pinhole
distortion_coeffs: [-0.28368365, 0.07451284, -0.00010473, -3.55590700e-05]
distortion_model: pre-radtan
distortion_model: radtan
intrinsics: [457.587, 456.134, 379.999, 255.238]
resolution: [752, 480]
timeshift_cam_imu: 0.0

View File

@ -1,36 +0,0 @@
cam0:
T_cam_imu:
[-0.9995378259923383, 0.02917807204183088, -0.008530798463872679, 0.047094247958417004,
0.007526588843243184, -0.03435493139706542, -0.9993813532126198, -0.04788273017221637,
-0.029453096117288798, -0.9989836729399656, 0.034119442089241274, -0.0697294754693238,
0.0, 0.0, 0.0, 1.0]
camera_model: pinhole
distortion_coeffs: [0.0034823894022493434, 0.0007150348452162257, -0.0020532361418706202,
0.00020293673591811182]
distortion_model: pre-equidistant
intrinsics: [190.97847715128717, 190.9733070521226, 254.93170605935475, 256.8974428996504]
resolution: [512, 512]
rostopic: /cam0/image_raw
cam1:
T_cam_imu:
[-0.9995240747493029, 0.02986739485347808, -0.007717688852024281, -0.05374086123613335,
0.008095979457928231, 0.01256553460985914, -0.9998882749870535, -0.04648588412432889,
-0.02976708103202316, -0.9994748851595197, -0.0128013601698453, -0.07333210787623645,
0.0, 0.0, 0.0, 1.0]
T_cn_cnm1:
[0.9999994317488622, -0.0008361847221513937, -0.0006612844045898121, -0.10092123225528335,
0.0008042457277382264, 0.9988989443471681, -0.04690684567228134, -0.001964540595211977,
0.0006997790813734836, 0.04690628718225568, 0.9988990492196964, -0.0014663556043866572,
0.0, 0.0, 0.0, 1.0]
camera_model: pinhole
distortion_coeffs: [0.0034003170790442797, 0.001766278153469831, -0.00266312569781606,
0.0003299517423931039]
distortion_model: pre-equidistant
intrinsics: [190.44236969414825, 190.4344384721956, 252.59949716835982, 254.91723064636983]
resolution: [512, 512]
rostopic: /cam1/image_raw
T_imu_body:
[1.0000, 0.0000, 0.0000, 0.0000,
0.0000, 1.0000, 0.0000, 0.0000,
0.0000, 0.0000, 1.0000, 0.0000,
0.0000, 0.0000, 0.0000, 1.0000]

View File

@ -18,8 +18,6 @@ namespace msckf_vio {
struct Frame{
cv::Mat image;
cv::Mat dximage;
cv::Mat dyimage;
double exposureTime_ms;
};
@ -41,7 +39,6 @@ struct CameraCalibration{
cv::Vec4d distortion_coeffs;
movingWindow moving_window;
cv::Mat featureVisu;
int id;
};

File diff suppressed because it is too large Load Diff

View File

@ -16,16 +16,6 @@ namespace msckf_vio {
*/
namespace image_handler {
cv::Point2f pinholeDownProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics);
cv::Point2f pinholeUpProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics);
void undistortImage(
cv::InputArray src,
cv::OutputArray dst,
const std::string& distortion_model,
const cv::Vec4d& intrinsics,
const cv::Vec4d& distortion_coeffs);
void undistortPoints(
const std::vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,
@ -46,16 +36,6 @@ cv::Point2f distortPoint(
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs);
void undistortPoint(
const cv::Point2f& pt_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs,
cv::Point2f& pt_out,
const cv::Matx33d &rectification_matrix = cv::Matx33d::eye(),
const cv::Vec4d &new_intrinsics = cv::Vec4d(1,1,0,0));
}
}
#endif

View File

@ -320,8 +320,6 @@ private:
return;
}
bool STREAMPAUSE;
// Indicate if this is the first image message.
bool is_first_img;

View File

@ -43,50 +43,6 @@ inline void quaternionNormalize(Eigen::Vector4d& q) {
return;
}
/*
* @brief invert rotation of passed quaternion through conjugation
* and return conjugation
*/
inline Eigen::Vector4d quaternionConjugate(Eigen::Vector4d& q)
{
Eigen::Vector4d p;
p(0) = -q(0);
p(1) = -q(1);
p(2) = -q(2);
p(3) = q(3);
quaternionNormalize(p);
return p;
}
/*
* @brief converts a vector4 to a vector3, dropping (3)
* this is typically used to get the vector part of a quaternion
for eq small angle approximation
*/
inline Eigen::Vector3d v4tov3(const Eigen::Vector4d& q)
{
Eigen::Vector3d p;
p(0) = q(0);
p(1) = q(1);
p(2) = q(2);
return p;
}
/*
* @brief Perform q1 * q2
*/
inline Eigen::Vector4d QtoV(const Eigen::Quaterniond& q)
{
Eigen::Vector4d p;
p(0) = q.x();
p(1) = q.y();
p(2) = q.z();
p(3) = q.w();
return p;
}
/*
* @brief Perform q1 * q2
*/

View File

@ -14,7 +14,7 @@
#include <string>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <math.h>
#include <boost/shared_ptr.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/video.hpp>
@ -38,8 +38,6 @@
#include <message_filters/subscriber.h>
#include <message_filters/time_synchronizer.h>
#define PI 3.14159265
namespace msckf_vio {
/*
* @brief MsckfVio Implements the algorithm in
@ -109,15 +107,6 @@ class MsckfVio {
*/
void imuCallback(const sensor_msgs::ImuConstPtr& msg);
/*
* @brief truthCallback
* Callback function for ground truth navigation information
* @param TransformStamped msg
*/
void truthCallback(
const geometry_msgs::TransformStampedPtr& msg);
/*
* @brief imageCallback
* Callback function for feature measurements
@ -155,26 +144,11 @@ class MsckfVio {
bool resetCallback(std_srvs::Trigger::Request& req,
std_srvs::Trigger::Response& res);
// Saves the exposure time and the camera measurementes
void manageMovingWindow(
const sensor_msgs::ImageConstPtr& cam0_img,
const sensor_msgs::ImageConstPtr& cam1_img,
const CameraMeasurementConstPtr& feature_msg);
void calcErrorState();
// Debug related Functions
// Propagate the true state
void batchTruthProcessing(
const double& time_bound);
void processTruthtoIMU(const double& time,
const Eigen::Vector4d& m_rot,
const Eigen::Vector3d& m_trans);
// Filter related functions
// Propogate the state
void batchImuProcessing(
@ -186,12 +160,8 @@ class MsckfVio {
const Eigen::Vector3d& gyro,
const Eigen::Vector3d& acc);
// groundtruth state augmentation
void truePhotometricStateAugmentation(const double& time);
// Measurement update
void stateAugmentation(const double& time);
void PhotometricStateAugmentation(const double& time);
void addFeatureObservations(const CameraMeasurementConstPtr& msg);
// This function is used to compute the measurement Jacobian
// for a single feature observed at a single camera frame.
@ -202,118 +172,39 @@ class MsckfVio {
Eigen::Vector4d& r);
// This function computes the Jacobian of all measurements viewed
// in the given camera states of this feature.
bool featureJacobian(
const FeatureIDType& feature_id,
void featureJacobian(const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
void twodotMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::MatrixXd& H_x, Eigen::MatrixXd& H_y, Eigen::VectorXd& r);
void PhotometricMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::Matrix<double, 4, 6>& H_x,
Eigen::Matrix<double, 4, 3>& H_f,
Eigen::Vector4d& r);
bool ConstructJacobians(
Eigen::MatrixXd& H_rho,
Eigen::MatrixXd& H_pl,
Eigen::MatrixXd& H_pA,
const Feature& feature,
const StateIDType& cam_state_id,
Eigen::MatrixXd& H_xl,
Eigen::MatrixXd& H_yl);
void PhotometricFeatureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
bool PhotometricPatchPointResidual(
const StateIDType& cam_state_id,
const Feature& feature,
Eigen::VectorXd& r);
bool PhotometricPatchPointJacobian(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const Feature& feature,
Eigen::Vector3d point,
int count,
Eigen::Matrix<double, 2, 1>& H_rhoj,
Eigen::Matrix<double, 2, 6>& H_plj,
Eigen::Matrix<double, 2, 6>& H_pAj,
Eigen::Matrix<double, 2, 4>& dI_dhj);
bool PhotometricMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::MatrixXd& H_x,
Eigen::MatrixXd& H_y,
Eigen::VectorXd& r);
bool twodotFeatureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
bool PhotometricFeatureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
void photometricMeasurementUpdate(const Eigen::MatrixXd& H, const Eigen::VectorXd& r);
void measurementUpdate(const Eigen::MatrixXd& H,
const Eigen::VectorXd& r);
void twoMeasurementUpdate(const Eigen::MatrixXd& H, const Eigen::VectorXd& r);
bool gatingTest(const Eigen::MatrixXd& H,
const Eigen::VectorXd&r, const int& dof, int filter=0);
const Eigen::VectorXd&r, const int& dof);
void removeLostFeatures();
void findRedundantCamStates(
std::vector<StateIDType>& rm_cam_state_ids);
void pruneLastCamStateBuffer();
void pruneCamStateBuffer();
// Reset the system online if the uncertainty is too large.
void onlineReset();
// Photometry flag
int FILTER;
// debug flag
bool STREAMPAUSE;
bool PRINTIMAGES;
bool GROUNDTRUTH;
bool nan_flag;
bool play;
double last_time_bound;
double time_offset;
// Patch size for Photometry
int N;
// Image rescale
int SCALE;
// Chi squared test table.
static std::map<int, double> chi_squared_test_table;
double eval_time;
IMUState timed_old_imu_state;
IMUState timed_old_true_state;
IMUState old_imu_state;
IMUState old_true_state;
// change in position
Eigen::Vector3d delta_position;
Eigen::Vector3d delta_orientation;
// State vector
StateServer state_server;
StateServer photometric_state_server;
// Ground truth state vector
StateServer true_state_server;
// error state based on ground truth
StateServer err_state_server;
// Maximum number of camera states
int max_cam_state_size;
@ -325,8 +216,6 @@ class MsckfVio {
// transfer delay between IMU and Image messages.
std::vector<sensor_msgs::Imu> imu_msg_buffer;
// Ground Truth message data
std::vector<geometry_msgs::TransformStamped> truth_msg_buffer;
// Moving Window buffer
movingWindow cam0_moving_window;
movingWindow cam1_moving_window;
@ -335,8 +224,6 @@ class MsckfVio {
CameraCalibration cam0;
CameraCalibration cam1;
// covariance data
double irradiance_frame_bias;
ros::Time image_save_time;
@ -368,10 +255,7 @@ class MsckfVio {
// Subscribers and publishers
ros::Subscriber imu_sub;
ros::Subscriber truth_sub;
ros::Publisher truth_odom_pub;
ros::Publisher odom_pub;
ros::Publisher marker_pub;
ros::Publisher feature_pub;
tf::TransformBroadcaster tf_pub;
ros::ServiceServer reset_srv;
@ -403,9 +287,6 @@ class MsckfVio {
ros::Publisher mocap_odom_pub;
geometry_msgs::TransformStamped raw_mocap_odom_msg;
Eigen::Isometry3d mocap_initial_frame;
Eigen::Vector4d mocap_initial_orientation;
Eigen::Vector3d mocap_initial_position;
};
typedef MsckfVio::Ptr MsckfVioPtr;

View File

@ -1,38 +0,0 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum-scaled.yaml"/>
<!-- Image Processor Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="image_processor"
args="standalone msckf_vio/ImageProcessorNodelet"
output="screen"
>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/>
<param name="grid_col" value="4"/>
<param name="grid_min_feature_num" value="3"/>
<param name="grid_max_feature_num" value="5"/>
<param name="pyramid_levels" value="3"/>
<param name="patch_size" value="15"/>
<param name="fast_threshold" value="10"/>
<param name="max_iteration" value="30"/>
<param name="track_precision" value="0.01"/>
<param name="ransac_threshold" value="3"/>
<param name="stereo_threshold" value="5"/>
<remap from="~imu" to="/imu0"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
</node>
</group>
</launch>

View File

@ -11,9 +11,6 @@
output="screen"
>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/>
<param name="grid_col" value="4"/>

View File

@ -1,75 +0,0 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="fixed_frame_id" default="world"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum.yaml"/>
<!-- Image Processor Nodelet -->
<include file="$(find msckf_vio)/launch/image_processor_tum.launch">
<arg name="robot" value="$(arg robot)"/>
<arg name="calibration_file" value="$(arg calibration_file)"/>
</include>
<!-- Msckf Vio Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="vio"
args='standalone msckf_vio/MsckfVioNodelet'
output="screen"
launch-prefix="xterm -e gdb --args">
<!-- Photometry Flag-->
<param name="PHOTOMETRIC" value="true"/>
<!-- Debugging Flaggs -->
<param name="PrintImages" value="true"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="3"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="publish_tf" value="true"/>
<param name="frame_rate" value="20"/>
<param name="fixed_frame_id" value="$(arg fixed_frame_id)"/>
<param name="child_frame_id" value="odom"/>
<param name="max_cam_state_size" value="20"/>
<param name="position_std_threshold" value="8.0"/>
<param name="rotation_threshold" value="0.2618"/>
<param name="translation_threshold" value="0.4"/>
<param name="tracking_rate_threshold" value="0.5"/>
<!-- Feature optimization config -->
<param name="feature/config/translation_threshold" value="-1.0"/>
<!-- These values should be standard deviation -->
<param name="noise/gyro" value="0.005"/>
<param name="noise/acc" value="0.05"/>
<param name="noise/gyro_bias" value="0.001"/>
<param name="noise/acc_bias" value="0.01"/>
<param name="noise/feature" value="0.035"/>
<param name="initial_state/velocity/x" value="0.0"/>
<param name="initial_state/velocity/y" value="0.0"/>
<param name="initial_state/velocity/z" value="0.0"/>
<!-- These values should be covariance -->
<param name="initial_covariance/velocity" value="0.25"/>
<param name="initial_covariance/gyro_bias" value="0.01"/>
<param name="initial_covariance/acc_bias" value="0.01"/>
<param name="initial_covariance/extrinsic_rotation_cov" value="3.0462e-4"/>
<param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/>
<param name="initial_covariance/irradiance_frame_bias" value="0.1"/>
<remap from="~imu" to="/imu0"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
<remap from="~features" to="image_processor/features"/>
</node>
</group>
</launch>

View File

@ -17,18 +17,6 @@
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
<param name="FILTER" value="1"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="true"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="5"/>
<param name="image_scale" value ="1"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>

View File

@ -1,77 +0,0 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="fixed_frame_id" default="world"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum-scaled.yaml"/>
<!-- Image Processor Nodelet -->
<include file="$(find msckf_vio)/launch/image_processor_tinytum.launch">
<arg name="robot" value="$(arg robot)"/>
<arg name="calibration_file" value="$(arg calibration_file)"/>
</include>
<!-- Msckf Vio Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="vio"
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<param name="FILTER" value="0"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="3"/>
<param name="image_scale" value ="1"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="publish_tf" value="true"/>
<param name="frame_rate" value="20"/>
<param name="fixed_frame_id" value="$(arg fixed_frame_id)"/>
<param name="child_frame_id" value="odom"/>
<param name="max_cam_state_size" value="12"/>
<param name="position_std_threshold" value="8.0"/>
<param name="rotation_threshold" value="0.2618"/>
<param name="translation_threshold" value="0.4"/>
<param name="tracking_rate_threshold" value="0.5"/>
<!-- Feature optimization config -->
<param name="feature/config/translation_threshold" value="-1.0"/>
<!-- These values should be standard deviation -->
<param name="noise/gyro" value="0.005"/>
<param name="noise/acc" value="0.05"/>
<param name="noise/gyro_bias" value="0.001"/>
<param name="noise/acc_bias" value="0.01"/>
<param name="noise/feature" value="0.035"/>
<param name="initial_state/velocity/x" value="0.0"/>
<param name="initial_state/velocity/y" value="0.0"/>
<param name="initial_state/velocity/z" value="0.0"/>
<!-- These values should be covariance -->
<param name="initial_covariance/velocity" value="0.25"/>
<param name="initial_covariance/gyro_bias" value="0.01"/>
<param name="initial_covariance/acc_bias" value="0.01"/>
<param name="initial_covariance/extrinsic_rotation_cov" value="3.0462e-4"/>
<param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/>
<param name="initial_covariance/irradiance_frame_bias" value="0.1"/>
<remap from="~imu" to="/imu0"/>
<remap from="~ground_truth" to="/vrpn_client/raw_transform"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
<remap from="~features" to="image_processor/features"/>
</node>
</group>
</launch>

View File

@ -17,16 +17,6 @@
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
<param name="FILTER" value="1"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="3"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
@ -61,10 +51,8 @@
<param name="initial_covariance/acc_bias" value="0.01"/>
<param name="initial_covariance/extrinsic_rotation_cov" value="3.0462e-4"/>
<param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/>
<param name="initial_covariance/irradiance_frame_bias" value="0.1"/>
<remap from="~imu" to="/imu0"/>
<remap from="~ground_truth" to="/vrpn_client/raw_transform"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
@ -73,6 +61,4 @@
</node>
</group>
<!--node name="player" pkg="bagcontrol" type="control.py" /-->
</launch>

73
log
View File

@ -1,73 +0,0 @@
# Created by Octave 3.8.1, Wed Jun 12 14:36:37 2019 CEST <raphael@raphael-desktop>
# name: Hx
# type: matrix
# rows: 18
# columns: 49
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 313.795 -58.7912 139.778 -46.7616 144.055 86.9644 0 -314.123 55.6434 -140.648 46.7616 -144.055 -86.9644 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 441.06 -94.50069999999999 174.424 -53.7653 204.822 120.248 0 -441.685 90.1101 -175.657 53.7653 -204.822 -120.248 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 225.35 -54.5629 77.60599999999999 -21.1425 105.886 60.3706 0 -225.756 52.3373 -78.2406 21.1425 -105.886 -60.3706 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 175.128 20.6203 175.127 -79.63939999999999 73.245 62.1868 0 -174.573 -22.5235 -175.576 79.63939999999999 -73.245 -62.1868 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 296.962 43.5469 311.307 -143.667 123.399 108.355 0 -295.905 -46.7952 -312.063 143.667 -123.399 -108.355 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126.283 117.889 311.864 -161.264 38.8521 71.8019 0 -124.464 -119.541 -312.118 161.264 -38.8521 -71.8019 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.2502 63.7166 155.071 -80.81950000000001 12.7732 32.1826 0 -48.2934 -64.4113 -155.157 80.81950000000001 -12.7732 -32.1826 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69.59699999999999 154.579 335.384 -179.355 9.212580000000001 62.0364 0 -67.35599999999999 -155.735 -335.462 179.355 -9.212580000000001 -62.0364 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -66.6965 304.947 500.218 -285.589 -71.31010000000001 55.5058 0 70.8009 -305.077 -499.831 285.589 71.31010000000001 -55.5058 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 323.404 -62.2043 141.092 -46.6015 148.737 89.1108 0 0 0 0 0 0 0 0 -324.336 57.8552 -141.991 46.6015 -148.737 -89.1108 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 454.208 -99.3095 175.986 -53.4094 211.276 123.174 0 0 0 0 0 0 0 0 -455.779 93.0992 -177.158 53.4094 -211.276 -123.174 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 231.884 -57.0266 78.2559 -20.8926 109.118 61.8183 0 0 0 0 0 0 0 0 -232.824 53.8025 -78.80719999999999 20.8926 -109.118 -61.8183 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 181.715 18.8525 177.045 -80.08499999999999 76.3716 63.8254 0 0 0 0 0 0 0 0 -181.07 -20.839 -177.959 80.08499999999999 -76.3716 -63.8254 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 308.249 40.5812 314.711 -144.494 128.766 111.207 0 0 0 0 0 0 0 0 -306.972 -43.8825 -316.328 144.494 -128.766 -111.207 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133.309 116.865 315.474 -162.598 42.0763 73.8353 0 0 0 0 0 0 0 0 -130.603 -117.454 -316.931 162.598 -42.0763 -73.8353 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52.4426 63.3607 156.902 -81.5288 14.2139 33.1222 0 0 0 0 0 0 0 0 -50.9976 -63.4393 -157.607 81.5288 -14.2139 -33.1222 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75.5508 154.234 339.369 -180.995 11.859 63.8956 0 0 0 0 0 0 0 0 -72.1041 -153.816 -340.865 180.995 -11.859 -63.8956 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -62.0551 306.357 506.351 -288.542 -69.50409999999999 57.4562 0 0 0 0 0 0 0 0 68.6262 -303.028 -508.423 288.542 69.50409999999999 -57.4562 1 0 0 0 0 0 0 0
# name: Hy
# type: matrix
# rows: 18
# columns: 14
1.56267 0 0 0 0 0 0 0 0 0 0.252873 0 0 0.110387
0 1.56267 0 0 0 0 0 0 0 0 0.453168 0 0 0.162961
0 0 1.56267 0 0 0 0 0 0 0 0.638441 0 0 0.0873758
0 0 0 1.56267 0 0 0 0 0 0 0.21031 0 0 0.0321517
0 0 0 0 1.56267 0 0 0 0 0 0.375554 0 0 0.0505151
0 0 0 0 0 1.56267 0 0 0 0 0.638441 0 0 -0.0336034
0 0 0 0 0 0 1.56267 0 0 0 0.157733 0 0 -0.0232704
0 0 0 0 0 0 0 1.56267 0 0 0.212814 0 0 -0.0688343
0 0 0 0 0 0 0 0 1.56267 0 0.360532 0 0 -0.187745
1.56267 0 0 0 0 0 0 0 0 0 0 0.252873 0 0.322811
0 1.56267 0 0 0 0 0 0 0 0 0 0.453168 0 0.467319
0 0 1.56267 0 0 0 0 0 0 0 0 0.638441 0 0.245907
0 0 0 1.56267 0 0 0 0 0 0 0 0.21031 0 0.135725
0 0 0 0 1.56267 0 0 0 0 0 0 0.375554 0 0.225277
0 0 0 0 0 1.56267 0 0 0 0 0 0.638441 0 0.012926
0 0 0 0 0 0 1.56267 0 0 0 0 0.157733 0 -0.0108962
0 0 0 0 0 0 0 1.56267 0 0 0 0.212814 0 -0.06974909999999999
0 0 0 0 0 0 0 0 1.56267 0 0 0.360532 0 -0.318846
# name: r
# type: matrix
# rows: 18
# columns: 1
0.0354809
0.0153183
0.0570191
-0.0372801
0.0878601
0.06811780000000001
-0.00426164
5.162985999041026e-321
6.927779999999998e-310
0
2.121999999910509e-314
0
0
0
3.6073900000086e-313
4.446590812571219e-323
3.952525166729972e-323
3.952525166729972e-323

View File

@ -18,7 +18,6 @@
<depend>nav_msgs</depend>
<depend>sensor_msgs</depend>
<depend>geometry_msgs</depend>
<depend>visualization_msgs</depend>
<depend>eigen_conversions</depend>
<depend>tf_conversions</depend>
<depend>random_numbers</depend>

View File

@ -1,64 +0,0 @@
#!/usr/bin/env python
import rosbag
import rospy
from sensor_msgs.msg import Imu, Image
from geometry_msgs.msg import TransformStamped
import time
import signal
import sys
def signal_handler(sig, frame):
print('gracefully exiting the program.')
bag.close()
sys.exit(0)
def main():
global bag
cam0_topic = '/cam0/image_raw'
cam1_topic = '/cam1/image_raw'
imu0_topic = '/imu0'
grnd_topic = '/vrpn_client/raw_transform'
rospy.init_node('controlbag')
rospy.set_param('play_bag', False)
cam0_pub = rospy.Publisher(cam0_topic, Image, queue_size=10)
cam1_pub = rospy.Publisher(cam1_topic, Image, queue_size=10)
imu0_pub = rospy.Publisher(imu0_topic, Imu, queue_size=10)
grnd_pub = rospy.Publisher(grnd_topic, TransformStamped, queue_size=10)
signal.signal(signal.SIGINT, signal_handler)
bag = rosbag.Bag('/home/raphael/dev/MSCKF_ws/bag/TUM/dataset-corridor1_1024_16.bag')
for topic, msg, t in bag.read_messages(topics=[cam0_topic, cam1_topic, imu0_topic, grnd_topic]):
# pause if parameter set to false
flag = False
while not rospy.get_param('/play_bag'):
time.sleep(0.01)
if not flag:
print("stopped playback")
flag = not flag
if flag:
print("resume playback")
if topic == cam0_topic:
cam0_pub.publish(msg)
elif topic == cam1_topic:
cam1_pub.publish(msg)
elif topic == imu0_topic:
imu0_pub.publish(msg)
elif topic ==grnd_topic:
grnd_pub.publish(msg)
#print msg
bag.close()
if __name__== "__main__":
main()

View File

@ -1,64 +0,0 @@
#!/usr/bin/env python
import rosbag
import rospy
from sensor_msgs.msg import Imu, Image
from geometry_msgs.msg import TransformStamped
import time
import signal
import sys
def signal_handler(sig, frame):
print('gracefully exiting the program.')
bag.close()
sys.exit(0)
def main():
global bag
cam0_topic = '/cam0/image_raw'
cam1_topic = '/cam1/image_raw'
imu0_topic = '/imu0'
grnd_topic = '/vrpn_client/raw_transform'
rospy.init_node('controlbag')
rospy.set_param('play_bag', False)
cam0_pub = rospy.Publisher(cam0_topic, Image, queue_size=10)
cam1_pub = rospy.Publisher(cam1_topic, Image, queue_size=10)
imu0_pub = rospy.Publisher(imu0_topic, Imu, queue_size=10)
grnd_pub = rospy.Publisher(grnd_topic, TransformStamped, queue_size=10)
signal.signal(signal.SIGINT, signal_handler)
bag = rosbag.Bag('/home/raphael/dev/MSCKF_ws/bag/TUM/dataset-corridor1_1024_16.bag')
for topic, msg, t in bag.read_messages(topics=[cam0_topic, cam1_topic, imu0_topic, grnd_topic]):
# pause if parameter set to false
flag = False
while not rospy.get_param('/play_bag'):
time.sleep(0.01)
if not flag:
print("stopped playback")
flag = not flag
if flag:
print("resume playback")
if topic == cam0_topic:
cam0_pub.publish(msg)
elif topic == cam1_topic:
cam1_pub.publish(msg)
elif topic == imu0_topic:
imu0_pub.publish(msg)
elif topic ==grnd_topic:
grnd_pub.publish(msg)
#print msg
bag.close()
if __name__== "__main__":
main()

View File

@ -14,108 +14,6 @@ namespace msckf_vio {
namespace image_handler {
cv::Point2f pinholeDownProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics)
{
return cv::Point2f(p_in.x * intrinsics[0] + intrinsics[2], p_in.y * intrinsics[1] + intrinsics[3]);
}
cv::Point2f pinholeUpProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics)
{
return cv::Point2f((p_in.x - intrinsics[2])/intrinsics[0], (p_in.y - intrinsics[3])/intrinsics[1]);
}
void undistortImage(
cv::InputArray src,
cv::OutputArray dst,
const std::string& distortion_model,
const cv::Vec4d& intrinsics,
const cv::Vec4d& distortion_coeffs)
{
const cv::Matx33d K(intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
if (distortion_model == "pre-equidistant")
cv::fisheye::undistortImage(src, dst, K, distortion_coeffs, K);
else if (distortion_model == "equidistant")
src.copyTo(dst);
else if (distortion_model == "pre-radtan")
cv::undistort(src, dst, K, distortion_coeffs, K);
else if (distortion_model == "radtan")
src.copyTo(dst);
}
void undistortPoint(
const cv::Point2f& pt_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs,
cv::Point2f& pt_out,
const cv::Matx33d &rectification_matrix,
const cv::Vec4d &new_intrinsics) {
std::vector<cv::Point2f> pts_in;
std::vector<cv::Point2f> pts_out;
pts_in.push_back(pt_in);
if (pts_in.size() == 0) return;
const cv::Matx33d K(
intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
const cv::Matx33d K_new(
new_intrinsics[0], 0.0, new_intrinsics[2],
0.0, new_intrinsics[1], new_intrinsics[3],
0.0, 0.0, 1.0);
if (distortion_model == "radtan") {
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
// equidistant
else if (distortion_model == "equidistant") {
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
// fov
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
float omega = distortion_coeffs[0];
float rd = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float ru = tan(rd * omega)/(2 * tan(omega / 2));
cv::Point2f newPoint(
((pts_in[i].x - intrinsics[2]) / intrinsics[0]) * (ru / rd),
((pts_in[i].y - intrinsics[3]) / intrinsics[1]) * (ru / rd));
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
temp_pts_out.push_back(pinholeUpProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
distortion_model.c_str());
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
pt_out = pts_out[0];
return;
}
void undistortPoints(
const std::vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,
@ -140,35 +38,10 @@ void undistortPoints(
if (distortion_model == "radtan") {
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
else if (distortion_model == "equidistant") {
} else if (distortion_model == "equidistant") {
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
float omega = distortion_coeffs[0];
float rd = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float ru = tan(rd * omega)/(2 * tan(omega / 2));
cv::Point2f newPoint(
((pts_in[i].x - intrinsics[2]) / intrinsics[0]) * (ru / rd),
((pts_in[i].y - intrinsics[3]) / intrinsics[1]) * (ru / rd));
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
temp_pts_out.push_back(pinholeUpProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
} else {
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
distortion_model.c_str());
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
@ -196,31 +69,7 @@ std::vector<cv::Point2f> distortPoints(
distortion_coeffs, pts_out);
} else if (distortion_model == "equidistant") {
cv::fisheye::distortPoints(pts_in, pts_out, K, distortion_coeffs);
}
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
// based on 'straight lines have to be straight'
float ru = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float omega = distortion_coeffs[0];
float rd = 1 / (omega)*atan(2*ru*tan(omega / 2));
cv::Point2f newPoint(
pts_in[i].x * (rd/ru) * intrinsics[0] + intrinsics[2],
pts_in[i].y * (rd/ru) * intrinsics[1] + intrinsics[3]);
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
temp_pts_out.push_back(pinholeDownProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
} else {
ROS_WARN_ONCE("The model %s is unrecognized, using radtan instead...",
distortion_model.c_str());
std::vector<cv::Point3f> homogenous_pts;
@ -253,31 +102,7 @@ cv::Point2f distortPoint(
distortion_coeffs, pts_out);
} else if (distortion_model == "equidistant") {
cv::fisheye::distortPoints(pts_in, pts_out, K, distortion_coeffs);
}
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
// based on 'straight lines have to be straight'
float ru = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float omega = distortion_coeffs[0];
float rd = 1 / (omega)*atan(2*ru*tan(omega / 2));
cv::Point2f newPoint(
pts_in[i].x * (rd/ru) * intrinsics[0] + intrinsics[2],
pts_in[i].y * (rd/ru) * intrinsics[1] + intrinsics[3]);
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
pts_out.push_back(pinholeDownProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
} else {
ROS_WARN_ONCE("The model %s is unrecognized, using radtan instead...",
distortion_model.c_str());
std::vector<cv::Point3f> homogenous_pts;
@ -289,5 +114,5 @@ cv::Point2f distortPoint(
return pts_out[0];
}
} // namespace image_handler
} // namespace image_handler
} // namespace msckf_vio

View File

@ -42,9 +42,6 @@ ImageProcessor::~ImageProcessor() {
}
bool ImageProcessor::loadParameters() {
// debug parameters
nh.param<bool>("StreamPause", STREAMPAUSE, false);
// Camera calibration parameters
nh.param<string>("cam0/distortion_model",
cam0.distortion_model, string("radtan"));
@ -214,9 +211,7 @@ void ImageProcessor::stereoCallback(
const sensor_msgs::ImageConstPtr& cam0_img,
const sensor_msgs::ImageConstPtr& cam1_img) {
// stop playing bagfile if printing images
//if(STREAMPAUSE)
// nh.setParam("/play_bag_image", false);
//cout << "==================================" << endl;
// Get the current image.
cam0_curr_img_ptr = cv_bridge::toCvShare(cam0_img,
@ -224,27 +219,12 @@ void ImageProcessor::stereoCallback(
cam1_curr_img_ptr = cv_bridge::toCvShare(cam1_img,
sensor_msgs::image_encodings::MONO8);
ros::Time start_time = ros::Time::now();
cv::Mat new_cam0;
cv::Mat new_cam1;
image_handler::undistortImage(cam0_curr_img_ptr->image, new_cam0, cam0.distortion_model, cam0.intrinsics, cam0.distortion_coeffs);
image_handler::undistortImage(cam1_curr_img_ptr->image, new_cam1, cam1.distortion_model, cam1.intrinsics, cam1.distortion_coeffs);
new_cam0.copyTo(cam0_curr_img_ptr->image);
new_cam1.copyTo(cam1_curr_img_ptr->image);
//ROS_INFO("Publishing: %f",
// (ros::Time::now()-start_time).toSec());
// Build the image pyramids once since they're used at multiple places
createImagePyramids();
// Detect features in the first frame.
if (is_first_img) {
start_time = ros::Time::now();
ros::Time start_time = ros::Time::now();
initializeFirstFrame();
//ROS_INFO("Detection time: %f",
// (ros::Time::now()-start_time).toSec());
@ -257,7 +237,7 @@ void ImageProcessor::stereoCallback(
// (ros::Time::now()-start_time).toSec());
} else {
// Track the feature in the previous image.
start_time = ros::Time::now();
ros::Time start_time = ros::Time::now();
trackFeatures();
//ROS_INFO("Tracking time: %f",
// (ros::Time::now()-start_time).toSec());
@ -265,7 +245,6 @@ void ImageProcessor::stereoCallback(
// Add new features into the current image.
start_time = ros::Time::now();
addNewFeatures();
//ROS_INFO("Addition time: %f",
// (ros::Time::now()-start_time).toSec());
@ -288,18 +267,16 @@ void ImageProcessor::stereoCallback(
// (ros::Time::now()-start_time).toSec());
// Publish features in the current image.
start_time = ros::Time::now();
ros::Time start_time = ros::Time::now();
publish();
//ROS_INFO("Publishing: %f",
// (ros::Time::now()-start_time).toSec());
// Update the previous image and previous features.
cam0_prev_img_ptr = cam0_curr_img_ptr;
prev_features_ptr = curr_features_ptr;
std::swap(prev_cam0_pyramid_, curr_cam0_pyramid_);
// Initialize the current features to empty vectors.
curr_features_ptr.reset(new GridFeatures());
for (int code = 0; code <
@ -307,10 +284,6 @@ void ImageProcessor::stereoCallback(
(*curr_features_ptr)[code] = vector<FeatureMetaData>(0);
}
// stop playing bagfile if printing images
//if(STREAMPAUSE)
// nh.setParam("/play_bag_image", true);
return;
}
@ -607,7 +580,6 @@ void ImageProcessor::trackFeatures() {
++after_ransac;
}
// Compute the tracking rate.
int prev_feature_num = 0;
for (const auto& item : *prev_features_ptr)
@ -647,14 +619,9 @@ void ImageProcessor::stereoMatch(
image_handler::undistortPoints(cam0_points, cam0.intrinsics, cam0.distortion_model,
cam0.distortion_coeffs, cam0_points_undistorted,
R_cam0_cam1);
<<<<<<< HEAD
cam1_points = distortPoints(cam0_points_undistorted, cam1_intrinsics,
cam1_distortion_model, cam1_distortion_coeffs);
=======
cam1_points = image_handler::distortPoints(cam0_points_undistorted, cam1.intrinsics,
cam1.distortion_model, cam1.distortion_coeffs);
>>>>>>> photometry-jakobi
}
// Track features using LK optical flow method.
@ -692,8 +659,6 @@ void ImageProcessor::stereoMatch(
// Further remove outliers based on the known
// essential matrix.
vector<cv::Point2f> cam0_points_undistorted(0);
vector<cv::Point2f> cam1_points_undistorted(0);
image_handler::undistortPoints(
@ -703,7 +668,6 @@ void ImageProcessor::stereoMatch(
cam1_points, cam1.intrinsics, cam1.distortion_model,
cam1.distortion_coeffs, cam1_points_undistorted);
double norm_pixel_unit = 4.0 / (
cam0.intrinsics[0]+cam0.intrinsics[1]+
cam1.intrinsics[0]+cam1.intrinsics[1]);

File diff suppressed because it is too large Load Diff

View File

@ -1,75 +0,0 @@
#!/usr/bin/env python
from __future__ import print_function
import sys
import rospy
import cv2
from std_msgs.msg import String
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
class image_converter:
def __init__(self):
self.image0_pub = rospy.Publisher("/cam0/new_image_raw",Image, queue_size=10)
self.image1_pub = rospy.Publisher("/cam1/new_image_raw",Image, queue_size=10)
self.bridge = CvBridge()
self.image0_sub = rospy.Subscriber("/cam0/image_raw",Image,self.callback_cam0)
self.image1_sub = rospy.Subscriber("/cam1/image_raw",Image,self.callback_cam1)
def callback_cam0(self,data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
imgScale = 0.25
newX,newY = cv_image.shape[1]*imgScale, cv_image.shape[0]*imgScale
newimg = cv2.resize(cv_image,(int(newX),int(newY)))
newpub = self.bridge.cv2_to_imgmsg(newimg, "bgr8")
newdata = data
newdata.height = newpub.height
newdata.width = newpub.width
newdata.step = newpub.step
newdata.data = newpub.data
try:
self.image0_pub.publish(newdata)
except CvBridgeError as e:
print(e)
def callback_cam1(self,data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
imgScale = 0.25
newX,newY = cv_image.shape[1]*imgScale, cv_image.shape[0]*imgScale
newimg = cv2.resize(cv_image,(int(newX),int(newY)))
newpub = self.bridge.cv2_to_imgmsg(newimg, "bgr8")
newdata = data
newdata.height = newpub.height
newdata.width = newpub.width
newdata.step = newpub.step
newdata.data = newpub.data
try:
self.image1_pub.publish(newdata)
except CvBridgeError as e:
print(e)
def main(args):
ic = image_converter()
rospy.init_node('image_converter', anonymous=True)
try:
rospy.spin()
except KeyboardInterrupt:
print("Shutting down")
cv2.destroyAllWindows()
if __name__ == '__main__':
main(sys.argv)