13 Commits

Author SHA1 Message Date
2dac361ba2 fixed stop - go functionality via bagcontrol 2019-06-28 09:40:59 +02:00
0712a98c7f Merge branch 'photometry-jakobi-htest' of https://gitlab.com/Hippocampus/msckf into photometry-jakobi-htest 2019-06-25 12:08:41 +02:00
6b8dce9876 removed constant logging 2019-06-19 09:29:22 +02:00
49374a4323 added direct rho estimation 2019-06-14 12:37:06 +02:00
3e480560e8 Update msckf_vio.cpp 2019-06-12 09:25:38 +00:00
b3df525060 made residual change more direct. starts diverging but then sometimes appriximates correctly after some camera movement 2019-06-12 09:26:34 +02:00
a8d4580812 removed some groundtruth measurement processings 2019-06-11 17:03:05 +02:00
a0577dfb9d added some feature calculations to this branch 2019-06-11 16:45:17 +02:00
8cfbe06945 minor calcualtion changes - works at 7-8 fps bagfiles speed 2019-05-28 14:12:22 +02:00
cab56d9494 tested bug: filter converges longer without distortion effects; reason probably general formulation inconsistencies 2019-05-22 10:57:31 +02:00
5e9149eacc constructed jacobian based on residual: r = z(measurement pix. pos) - h(rho, x_l, x_a) - based on the projection of the feature point into space based on the anchor frame - followed by projection onto H_rho nullspace; works well enough 2019-05-21 14:50:53 +02:00
e4dbe2f060 removed error in photom. res. calculation 2019-05-21 14:23:49 +02:00
6b208dbc44 added changed formulation, no positive result 2019-05-16 15:53:07 +02:00
29 changed files with 346 additions and 2429 deletions

View File

@ -1,16 +0,0 @@
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"compilerPath": "/usr/bin/gcc",
"cStandard": "c11",
"cppStandard": "c++14",
"intelliSenseMode": "clang-x64"
}
],
"version": 4
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,6 +0,0 @@
{
"files.associations": {
"core": "cpp",
"sparsecore": "cpp"
}
}

BIN
GPATH

Binary file not shown.

BIN
GRTAGS

Binary file not shown.

BIN
GSYMS

Binary file not shown.

BIN
GTAGS

Binary file not shown.

View File

@ -9,7 +9,7 @@ cam0:
0, 0, 0, 1.000000000000000]
camera_model: pinhole
distortion_coeffs: [-0.28340811, 0.07395907, 0.00019359, 1.76187114e-05]
distortion_model: pre-radtan
distortion_model: radtan
intrinsics: [458.654, 457.296, 367.215, 248.375]
resolution: [752, 480]
timeshift_cam_imu: 0.0
@ -26,7 +26,7 @@ cam1:
0, 0, 0, 1.000000000000000]
camera_model: pinhole
distortion_coeffs: [-0.28368365, 0.07451284, -0.00010473, -3.55590700e-05]
distortion_model: pre-radtan
distortion_model: radtan
intrinsics: [457.587, 456.134, 379.999, 255.238]
resolution: [752, 480]
timeshift_cam_imu: 0.0

View File

@ -1,36 +0,0 @@
cam0:
T_cam_imu:
[-0.9995378259923383, 0.02917807204183088, -0.008530798463872679, 0.047094247958417004,
0.007526588843243184, -0.03435493139706542, -0.9993813532126198, -0.04788273017221637,
-0.029453096117288798, -0.9989836729399656, 0.034119442089241274, -0.0697294754693238,
0.0, 0.0, 0.0, 1.0]
camera_model: pinhole
distortion_coeffs: [0.0034823894022493434, 0.0007150348452162257, -0.0020532361418706202,
0.00020293673591811182]
distortion_model: pre-equidistant
intrinsics: [190.97847715128717, 190.9733070521226, 254.93170605935475, 256.8974428996504]
resolution: [512, 512]
rostopic: /cam0/image_raw
cam1:
T_cam_imu:
[-0.9995240747493029, 0.02986739485347808, -0.007717688852024281, -0.05374086123613335,
0.008095979457928231, 0.01256553460985914, -0.9998882749870535, -0.04648588412432889,
-0.02976708103202316, -0.9994748851595197, -0.0128013601698453, -0.07333210787623645,
0.0, 0.0, 0.0, 1.0]
T_cn_cnm1:
[0.9999994317488622, -0.0008361847221513937, -0.0006612844045898121, -0.10092123225528335,
0.0008042457277382264, 0.9988989443471681, -0.04690684567228134, -0.001964540595211977,
0.0006997790813734836, 0.04690628718225568, 0.9988990492196964, -0.0014663556043866572,
0.0, 0.0, 0.0, 1.0]
camera_model: pinhole
distortion_coeffs: [0.0034003170790442797, 0.001766278153469831, -0.00266312569781606,
0.0003299517423931039]
distortion_model: pre-equidistant
intrinsics: [190.44236969414825, 190.4344384721956, 252.59949716835982, 254.91723064636983]
resolution: [512, 512]
rostopic: /cam1/image_raw
T_imu_body:
[1.0000, 0.0000, 0.0000, 0.0000,
0.0000, 1.0000, 0.0000, 0.0000,
0.0000, 0.0000, 1.0000, 0.0000,
0.0000, 0.0000, 0.0000, 1.0000]

View File

@ -18,8 +18,6 @@ namespace msckf_vio {
struct Frame{
cv::Mat image;
cv::Mat dximage;
cv::Mat dyimage;
double exposureTime_ms;
};
@ -41,7 +39,6 @@ struct CameraCalibration{
cv::Vec4d distortion_coeffs;
movingWindow moving_window;
cv::Mat featureVisu;
int id;
};

View File

@ -137,7 +137,6 @@ void Rhocost(const Eigen::Isometry3d& T_c0_ci,
inline bool checkMotion(
const CamStateServer& cam_states) const;
/*
* @brief InitializeAnchor generates the NxN patch around the
* feature in the Anchor image
@ -172,6 +171,7 @@ void Rhocost(const Eigen::Isometry3d& T_c0_ci,
Eigen::Vector3d& in_p) const;
/*
* @brief project PositionToCamera Takes a 3d position in a world frame
* and projects it into the passed camera frame using pinhole projection
@ -184,16 +184,6 @@ void Rhocost(const Eigen::Isometry3d& T_c0_ci,
const CameraCalibration& cam,
Eigen::Vector3d& in_p) const;
double CompleteCvKernel(
const cv::Point2f pose,
const StateIDType& cam_state_id,
CameraCalibration& cam,
std::string type) const;
double cvKernel(
const cv::Point2f pose,
std::string type) const;
double Kernel(
const cv::Point2f pose,
const cv::Mat frame,
@ -208,7 +198,7 @@ void Rhocost(const Eigen::Isometry3d& T_c0_ci,
bool estimate_FrameIrradiance(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam,
CameraCalibration& cam0,
std::vector<double>& anchorPatch_estimate,
IlluminationParameter& estimatedIllumination) const;
@ -216,17 +206,14 @@ bool MarkerGeneration(
ros::Publisher& marker_pub,
const CamStateServer& cam_states) const;
bool VisualizeKernel(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0) const;
bool VisualizePatch(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam,
CameraCalibration& cam0,
const Eigen::VectorXd& photo_r,
std::stringstream& ss) const;
std::stringstream& ss,
cv::Point2f gradientVector,
cv::Point2f residualVector) const;
/*
* @brief AnchorPixelToPosition uses the calcualted pixels
* of the anchor patch to generate 3D positions of all of em
@ -277,14 +264,6 @@ inline Eigen::Vector3d AnchorPixelToPosition(cv::Point2f in_p,
bool is_initialized;
bool is_anchored;
cv::Mat abs_xderImage;
cv::Mat abs_yderImage;
cv::Mat xderImage;
cv::Mat yderImage;
cv::Mat anchorImage_blurred;
cv::Point2f anchor_center_pos;
cv::Point2f undist_anchor_center_pos;
// Noise for a normalized feature measurement.
@ -494,38 +473,6 @@ bool Feature::checkMotion(const CamStateServer& cam_states) const
else return false;
}
double Feature::CompleteCvKernel(
const cv::Point2f pose,
const StateIDType& cam_state_id,
CameraCalibration& cam,
std::string type) const
{
double delta = 0;
if(type == "Sobel_x")
delta = ((double)cam.moving_window.find(cam_state_id)->second.dximage.at<short>(pose.y, pose.x))/255.;
else if (type == "Sobel_y")
delta = ((double)cam.moving_window.find(cam_state_id)->second.dyimage.at<short>(pose.y, pose.x))/255.;
return delta;
}
double Feature::cvKernel(
const cv::Point2f pose,
std::string type) const
{
double delta = 0;
if(type == "Sobel_x")
delta = ((double)xderImage.at<short>(pose.y, pose.x))/255.;
else if (type == "Sobel_y")
delta = ((double)yderImage.at<short>(pose.y, pose.x))/255.;
return delta;
}
double Feature::Kernel(
const cv::Point2f pose,
const cv::Mat frame,
@ -542,14 +489,14 @@ int offs = (int)(kernel.rows()-1)/2;
for(int i = 0; i < kernel.rows(); i++)
for(int j = 0; j < kernel.cols(); j++)
delta += ((float)frame.at<uint8_t>(pose.y+j-offs , pose.x+i-offs))/255. * (float)kernel(j,i);
delta += ((float)frame.at<uint8_t>(pose.y+j-offs , pose.x+i-offs))/255 * (float)kernel(j,i);
return delta;
}
bool Feature::estimate_FrameIrradiance(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam,
CameraCalibration& cam0,
std::vector<double>& anchorPatch_estimate,
IlluminationParameter& estimated_illumination) const
{
@ -558,11 +505,11 @@ bool Feature::estimate_FrameIrradiance(
// muliply by a and add b of this frame
auto anchor = observations.begin();
if(cam.moving_window.find(anchor->first) == cam.moving_window.end())
if(cam0.moving_window.find(anchor->first) == cam0.moving_window.end())
return false;
double anchorExposureTime_ms = cam.moving_window.find(anchor->first)->second.exposureTime_ms;
double frameExposureTime_ms = cam.moving_window.find(cam_state_id)->second.exposureTime_ms;
double anchorExposureTime_ms = cam0.moving_window.find(anchor->first)->second.exposureTime_ms;
double frameExposureTime_ms = cam0.moving_window.find(cam_state_id)->second.exposureTime_ms;
double a_A = anchorExposureTime_ms;
@ -697,55 +644,21 @@ bool Feature::MarkerGeneration(
marker_pub.publish(ma);
}
bool Feature::VisualizeKernel(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0) const
{
auto anchor = observations.begin();
cv::Mat anchorImage = cam0.moving_window.find(anchor->first)->second.image;
//cv::Mat xderImage;
//cv::Mat yderImage;
//cv::Sobel(anchorImage, xderImage, CV_8UC1, 1, 0, 3);
//cv::Sobel(anchorImage, yderImage, CV_8UC1, 0, 1, 3);
// cv::Mat xderImage2(anchorImage.rows, anchorImage.cols, anchorImage_blurred.type());
// cv::Mat yderImage2(anchorImage.rows, anchorImage.cols, anchorImage_blurred.type());
/*
for(int i = 1; i < anchorImage.rows-1; i++)
for(int j = 1; j < anchorImage.cols-1; j++)
xderImage2.at<uint8_t>(j,i) = 255.*fabs(Kernel(cv::Point2f(i,j), anchorImage_blurred, "Sobel_x"));
for(int i = 1; i < anchorImage.rows-1; i++)
for(int j = 1; j < anchorImage.cols-1; j++)
yderImage2.at<uint8_t>(j,i) = 255.*fabs(Kernel(cv::Point2f(i,j), anchorImage_blurred, "Sobel_y"));
*/
//cv::imshow("anchor", anchorImage);
cv::imshow("xder2", xderImage);
cv::imshow("yder2", yderImage);
cvWaitKey(0);
}
bool Feature::VisualizePatch(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam,
CameraCalibration& cam0,
const Eigen::VectorXd& photo_r,
std::stringstream& ss) const
std::stringstream& ss,
cv::Point2f gradientVector,
cv::Point2f residualVector) const
{
double rescale = 1;
//visu - anchor
auto anchor = observations.begin();
cv::Mat anchorImage = cam.moving_window.find(anchor->first)->second.image;
cv::Mat anchorImage = cam0.moving_window.find(anchor->first)->second.image;
cv::Mat dottedFrame(anchorImage.size(), CV_8UC3);
cv::cvtColor(anchorImage, dottedFrame, CV_GRAY2RGB);
@ -757,10 +670,10 @@ bool Feature::VisualizePatch(
cv::Point ys(point.x, point.y);
cv::rectangle(dottedFrame, xs, ys, cv::Scalar(0,255,255));
}
cam.featureVisu = dottedFrame.clone();
cam0.featureVisu = dottedFrame.clone();
// visu - feature
cv::Mat current_image = cam.moving_window.find(cam_state_id)->second.image;
cv::Mat current_image = cam0.moving_window.find(cam_state_id)->second.image;
cv::cvtColor(current_image, dottedFrame, CV_GRAY2RGB);
// set position in frame
@ -768,7 +681,7 @@ bool Feature::VisualizePatch(
std::vector<double> projectionPatch;
for(auto point : anchorPatch_3d)
{
cv::Point2f p_in_c0 = projectPositionToCamera(cam_state, cam_state_id, cam, point);
cv::Point2f p_in_c0 = projectPositionToCamera(cam_state, cam_state_id, cam0, point);
projectionPatch.push_back(PixelIrradiance(p_in_c0, current_image));
// visu - feature
cv::Point xs(p_in_c0.x, p_in_c0.y);
@ -776,7 +689,7 @@ bool Feature::VisualizePatch(
cv::rectangle(dottedFrame, xs, ys, cv::Scalar(0,255,0));
}
cv::hconcat(cam.featureVisu, dottedFrame, cam.featureVisu);
cv::hconcat(cam0.featureVisu, dottedFrame, cam0.featureVisu);
// patches visualization
@ -823,14 +736,10 @@ bool Feature::VisualizePatch(
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 65+scale*2*N),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
cv::Point2f p_f;
if(cam.id == 0)
p_f = cv::Point2f(observations.find(cam_state_id)->second(0),observations.find(cam_state_id)->second(1));
else if(cam.id == 1)
p_f = cv::Point2f(observations.find(cam_state_id)->second(2),observations.find(cam_state_id)->second(3));
cv::Point2f p_f(observations.find(cam_state_id)->second(0),observations.find(cam_state_id)->second(1));
// move to real pixels
p_f = image_handler::distortPoint(p_f, cam0.intrinsics, cam0.distortion_model, cam0.distortion_coeffs);
p_f = image_handler::distortPoint(p_f, cam.intrinsics, cam.distortion_model, cam.distortion_coeffs);
for(int i = 0; i<N; i++)
{
for(int j = 0; j<N ; j++)
@ -847,23 +756,22 @@ bool Feature::VisualizePatch(
// residual grid projection, positive - red, negative - blue colored
namer.str(std::string());
namer << "residual";
std::cout << "-- photo_r -- \n" << photo_r << " -- " << std::endl;
cv::putText(irradianceFrame, namer.str() , cvPoint(30+scale*N, scale*N/2-5),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
for(int i = 0; i<N; i++)
for(int j = 0; j<N; j++)
if(photo_r(2*(i*N+j))>0)
if(photo_r(i*N+j)>0)
cv::rectangle(irradianceFrame,
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Scalar(255 - photo_r(2*(i*N+j)+1)*255, 255 - photo_r(2*(i*N+j)+1)*255, 255),
cv::Scalar(255 - photo_r(i*N+j)*255, 255 - photo_r(i*N+j)*255, 255),
CV_FILLED);
else
cv::rectangle(irradianceFrame,
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Scalar(255, 255 + photo_r(2*(i*N+j)+1)*255, 255 + photo_r(2*(i*N+j)+1)*255),
cv::Scalar(255, 255 + photo_r(i*N+j)*255, 255 + photo_r(i*N+j)*255),
CV_FILLED);
// gradient arrow
@ -876,15 +784,14 @@ bool Feature::VisualizePatch(
*/
// residual gradient direction
/*
cv::arrowedLine(irradianceFrame,
cv::Point(40+scale*(N+N/2+0.5), 15+scale*((N-0.5))),
cv::Point(40+scale*(N+N/2+0.5)+scale*residualVector.x, 15+scale*(N-0.5)+scale*residualVector.y),
cv::Scalar(0, 255, 175),
3);
*/
cv::hconcat(cam.featureVisu, irradianceFrame, cam.featureVisu);
cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
/*
// visualize position of used observations and resulting feature position
@ -916,15 +823,15 @@ bool Feature::VisualizePatch(
// draw, x y position and arrow with direction - write z next to it
cv::resize(cam.featureVisu, cam.featureVisu, cv::Size(), rescale, rescale);
cv::resize(cam0.featureVisu, cam0.featureVisu, cv::Size(), rescale, rescale);
cv::hconcat(cam.featureVisu, positionFrame, cam.featureVisu);
cv::hconcat(cam0.featureVisu, positionFrame, cam0.featureVisu);
*/
// write feature position
std::stringstream pos_s;
pos_s << "u: " << observations.begin()->second(0) << " v: " << observations.begin()->second(1);
cv::putText(cam.featureVisu, ss.str() , cvPoint(anchorImage.rows + 100, anchorImage.cols - 30),
cv::putText(cam0.featureVisu, ss.str() , cvPoint(anchorImage.rows + 100, anchorImage.cols - 30),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(200,200,250), 1, CV_AA);
// create line?
@ -932,16 +839,16 @@ bool Feature::VisualizePatch(
std::stringstream loc;
// loc << "/home/raphael/dev/MSCKF_ws/img/feature_" << std::to_string(ros::Time::now().toSec()) << ".jpg";
//cv::imwrite(loc.str(), cam.featureVisu);
//cv::imwrite(loc.str(), cam0.featureVisu);
cv::imshow("patch", cam.featureVisu);
cvWaitKey(1);
cv::imshow("patch", cam0.featureVisu);
cvWaitKey(0);
}
float Feature::PixelIrradiance(cv::Point2f pose, cv::Mat image) const
{
return ((float)image.at<uint8_t>(pose.y, pose.x))/255.;
return ((float)image.at<uint8_t>(pose.y, pose.x))/255;
}
cv::Point2f Feature::pixelDistanceAt(
@ -967,18 +874,14 @@ cv::Point2f Feature::pixelDistanceAt(
cam.distortion_coeffs,
pure);
// transfrom position to camera frame
// to get distance multiplier
Eigen::Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
const Eigen::Vector3d& t_c0_w = cam_state.position;
Eigen::Vector3d p_c0 = R_w_c0 * (in_p-t_c0_w);
// returns the distance between the pixel points in space
// returns the absolute pixel distance at pixels one metres away
cv::Point2f distance(fabs(pure[0].x - pure[1].x), fabs(pure[2].y - pure[3].y));
return distance;
}
cv::Point2f Feature::projectPositionToCamera(
const CAMState& cam_state,
const StateIDType& cam_state_id,
@ -988,40 +891,26 @@ cv::Point2f Feature::projectPositionToCamera(
Eigen::Isometry3d T_c0_w;
cv::Point2f out_p;
cv::Point2f my_p;
// transfrom position to camera frame
// cam0 position
// transfrom position to camera frame
Eigen::Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
const Eigen::Vector3d& t_c0_w = cam_state.position;
// project point according to model
if(cam.id == 0)
{
Eigen::Vector3d p_c0 = R_w_c0 * (in_p-t_c0_w);
out_p = cv::Point2f(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2));
}
// if camera is one, calcualte the cam1 position from cam0 position first
else if(cam.id == 1)
{
// cam1 position
Eigen::Matrix3d R_c0_c1 = CAMState::T_cam0_cam1.linear();
Eigen::Matrix3d R_w_c1 = R_c0_c1 * R_w_c0;
Eigen::Vector3d t_c1_w = t_c0_w - R_w_c1.transpose()*CAMState::T_cam0_cam1.translation();
// if(cam_state_id == observations.begin()->first)
//printf("undist:\n \tproj pos: %f, %f\n\ttrue pos: %f, %f\n", out_p.x, out_p.y, undist_anchor_center_pos.x, undist_anchor_center_pos.y);
Eigen::Vector3d p_c1 = R_w_c1 * (in_p-t_c1_w);
out_p = cv::Point2f(p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
}
// undistort point according to camera model
if (cam.distortion_model.substr(0,3) == "pre-")
my_p = cv::Point2f(out_p.x * cam.intrinsics[0] + cam.intrinsics[2], out_p.y * cam.intrinsics[1] + cam.intrinsics[3]);
else
my_p = image_handler::distortPoint(out_p,
cv::Point2f my_p = image_handler::distortPoint(out_p,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
// printf("truPosition: %f, %f, %f\n", position.x(), position.y(), position.z());
// printf("camPosition: %f, %f, %f\n", p_c0(0), p_c0(1), p_c0(2));
// printf("Photo projection: %f, %f\n", my_p[0].x, my_p[0].y);
return my_p;
}
@ -1046,48 +935,19 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
auto anchor = observations.begin();
if(cam.moving_window.find(anchor->first) == cam.moving_window.end())
{
return false;
}
cv::Mat anchorImage = cam.moving_window.find(anchor->first)->second.image;
cv::Mat anchorImage_deeper;
anchorImage.convertTo(anchorImage_deeper,CV_16S);
//TODO remove this?
cv::Sobel(anchorImage_deeper, xderImage, -1, 1, 0, 3);
cv::Sobel(anchorImage_deeper, yderImage, -1, 0, 1, 3);
xderImage/=8.;
yderImage/=8.;
cv::convertScaleAbs(xderImage, abs_xderImage);
cv::convertScaleAbs(yderImage, abs_yderImage);
cv::GaussianBlur(anchorImage, anchorImage_blurred, cv::Size(3,3), 0, 0, cv::BORDER_DEFAULT);
auto u = anchor->second(0);//*cam.intrinsics[0] + cam.intrinsics[2];
auto v = anchor->second(1);//*cam.intrinsics[1] + cam.intrinsics[3];
//testing
undist_anchor_center_pos = cv::Point2f(u,v);
// check if image has been pre-undistorted
if(cam.distortion_model.substr(0,3) == "pre")
{
//project onto pixel plane
undist_anchor_center_pos = cv::Point2f(u * cam.intrinsics[0] + cam.intrinsics[2], v * cam.intrinsics[1] + cam.intrinsics[3]);
// create vector of patch in pixel plane
for(double u_run = -n; u_run <= n; u_run++)
for(double v_run = -n; v_run <= n; v_run++)
anchorPatch_real.push_back(cv::Point2f(undist_anchor_center_pos.x+u_run, undist_anchor_center_pos.y+v_run));
//for NxN patch pixels around feature
int count = 0;
//project back into u,v
for(int i = 0; i < N*N; i++)
anchorPatch_ideal.push_back(cv::Point2f((anchorPatch_real[i].x-cam.intrinsics[2])/cam.intrinsics[0], (anchorPatch_real[i].y-cam.intrinsics[3])/cam.intrinsics[1]));
}
else
{
// get feature in undistorted pixel space
// this only reverts from 'pure' space into undistorted pixel space using camera matrix
cv::Point2f und_pix_p = image_handler::distortPoint(cv::Point2f(u, v),
@ -1107,14 +967,13 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
cam.distortion_coeffs,
anchorPatch_ideal);
}
// save anchor position for later visualisaztion
anchor_center_pos = anchorPatch_real[(N*N-1)/2];
// save true pixel Patch position
for(auto point : anchorPatch_real)
if(point.x - n < 0 || point.x + n >= cam.resolution(0)-1 || point.y - n < 0 || point.y + n >= cam.resolution(1)-1)
if(point.x - n < 0 || point.x + n >= cam.resolution(0) || point.y - n < 0 || point.y + n >= cam.resolution(1))
return false;
for(auto point : anchorPatch_real)
@ -1125,11 +984,9 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
anchorPatch_3d.push_back(AnchorPixelToPosition(point, cam));
is_anchored = true;
return true;
}
bool Feature::initializeRho(const CamStateServer& cam_states) {
// Organize camera poses and feature observations properly.

View File

@ -16,16 +16,6 @@ namespace msckf_vio {
*/
namespace image_handler {
cv::Point2f pinholeDownProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics);
cv::Point2f pinholeUpProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics);
void undistortImage(
cv::InputArray src,
cv::OutputArray dst,
const std::string& distortion_model,
const cv::Vec4d& intrinsics,
const cv::Vec4d& distortion_coeffs);
void undistortPoints(
const std::vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,
@ -55,7 +45,6 @@ void undistortPoint(
cv::Point2f& pt_out,
const cv::Matx33d &rectification_matrix = cv::Matx33d::eye(),
const cv::Vec4d &new_intrinsics = cv::Vec4d(1,1,0,0));
}
}
#endif

View File

@ -320,8 +320,6 @@ private:
return;
}
bool STREAMPAUSE;
// Indicate if this is the first image message.
bool is_first_img;

View File

@ -14,7 +14,7 @@
#include <string>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <math.h>
#include <boost/shared_ptr.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/video.hpp>
@ -38,8 +38,6 @@
#include <message_filters/subscriber.h>
#include <message_filters/time_synchronizer.h>
#define PI 3.14159265
namespace msckf_vio {
/*
* @brief MsckfVio Implements the algorithm in
@ -197,116 +195,58 @@ class MsckfVio {
// for a single feature observed at a single camera frame.
void measurementJacobian(const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::Matrix<double, 4, 6>& H_x,
Eigen::Matrix<double, 4, 3>& H_f,
Eigen::Vector4d& r);
Eigen::Matrix<double, 2, 6>& H_x,
Eigen::Matrix<double, 2, 3>& H_f,
Eigen::Vector2d& r);
// This function computes the Jacobian of all measurements viewed
// in the given camera states of this feature.
bool featureJacobian(
const FeatureIDType& feature_id,
void featureJacobian(const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
void twodotMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::MatrixXd& H_x, Eigen::MatrixXd& H_y, Eigen::VectorXd& r);
bool ConstructJacobians(
Eigen::MatrixXd& H_rho,
Eigen::MatrixXd& H_pl,
Eigen::MatrixXd& H_pA,
const Feature& feature,
const StateIDType& cam_state_id,
Eigen::MatrixXd& H_xl,
Eigen::MatrixXd& H_yl);
bool PhotometricPatchPointResidual(
const StateIDType& cam_state_id,
const Feature& feature,
Eigen::VectorXd& r);
bool PhotometricPatchPointJacobian(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const Feature& feature,
Eigen::Vector3d point,
int count,
Eigen::Matrix<double, 2, 1>& H_rhoj,
Eigen::Matrix<double, 2, 6>& H_plj,
Eigen::Matrix<double, 2, 6>& H_pAj,
Eigen::Matrix<double, 2, 4>& dI_dhj);
bool PhotometricMeasurementJacobian(
void PhotometricMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::MatrixXd& H_x,
Eigen::MatrixXd& H_y,
Eigen::VectorXd& r);
bool twodotFeatureJacobian(
void PhotometricFeatureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
bool PhotometricFeatureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
void photometricMeasurementUpdate(const Eigen::MatrixXd& H, const Eigen::VectorXd& r);
void measurementUpdate(const Eigen::MatrixXd& H,
const Eigen::VectorXd& r);
void twoMeasurementUpdate(const Eigen::MatrixXd& H, const Eigen::VectorXd& r);
bool gatingTest(const Eigen::MatrixXd& H,
const Eigen::VectorXd&r, const int& dof, int filter=0);
const Eigen::VectorXd&r, const int& dof);
void removeLostFeatures();
void findRedundantCamStates(
std::vector<StateIDType>& rm_cam_state_ids);
void pruneLastCamStateBuffer();
void pruneCamStateBuffer();
// Reset the system online if the uncertainty is too large.
void onlineReset();
// Photometry flag
int FILTER;
bool PHOTOMETRIC;
// debug flag
bool STREAMPAUSE;
bool PRINTIMAGES;
bool GROUNDTRUTH;
bool nan_flag;
bool play;
double last_time_bound;
double time_offset;
// Patch size for Photometry
int N;
// Image rescale
int SCALE;
// Chi squared test table.
static std::map<int, double> chi_squared_test_table;
double eval_time;
IMUState timed_old_imu_state;
IMUState timed_old_true_state;
IMUState old_imu_state;
IMUState old_true_state;
// change in position
Eigen::Vector3d delta_position;
Eigen::Vector3d delta_orientation;
// State vector
StateServer state_server;
StateServer photometric_state_server;
// Ground truth state vector
StateServer true_state_server;
@ -369,7 +309,6 @@ class MsckfVio {
// Subscribers and publishers
ros::Subscriber imu_sub;
ros::Subscriber truth_sub;
ros::Publisher truth_odom_pub;
ros::Publisher odom_pub;
ros::Publisher marker_pub;
ros::Publisher feature_pub;

View File

@ -1,38 +0,0 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum-scaled.yaml"/>
<!-- Image Processor Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="image_processor"
args="standalone msckf_vio/ImageProcessorNodelet"
output="screen"
>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/>
<param name="grid_col" value="4"/>
<param name="grid_min_feature_num" value="3"/>
<param name="grid_max_feature_num" value="5"/>
<param name="pyramid_levels" value="3"/>
<param name="patch_size" value="15"/>
<param name="fast_threshold" value="10"/>
<param name="max_iteration" value="30"/>
<param name="track_precision" value="0.01"/>
<param name="ransac_threshold" value="3"/>
<param name="stereo_threshold" value="5"/>
<remap from="~imu" to="/imu0"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
</node>
</group>
</launch>

View File

@ -11,9 +11,6 @@
output="screen"
>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/>
<param name="grid_col" value="4"/>

View File

@ -25,7 +25,7 @@
<param name="PrintImages" value="true"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="3"/>
<param name="patch_size_n" value="7"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>

View File

@ -17,18 +17,6 @@
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
<param name="FILTER" value="1"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="true"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="5"/>
<param name="image_scale" value ="1"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>

View File

@ -1,77 +0,0 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="fixed_frame_id" default="world"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum-scaled.yaml"/>
<!-- Image Processor Nodelet -->
<include file="$(find msckf_vio)/launch/image_processor_tinytum.launch">
<arg name="robot" value="$(arg robot)"/>
<arg name="calibration_file" value="$(arg calibration_file)"/>
</include>
<!-- Msckf Vio Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="vio"
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<param name="FILTER" value="0"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="3"/>
<param name="image_scale" value ="1"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="publish_tf" value="true"/>
<param name="frame_rate" value="20"/>
<param name="fixed_frame_id" value="$(arg fixed_frame_id)"/>
<param name="child_frame_id" value="odom"/>
<param name="max_cam_state_size" value="12"/>
<param name="position_std_threshold" value="8.0"/>
<param name="rotation_threshold" value="0.2618"/>
<param name="translation_threshold" value="0.4"/>
<param name="tracking_rate_threshold" value="0.5"/>
<!-- Feature optimization config -->
<param name="feature/config/translation_threshold" value="-1.0"/>
<!-- These values should be standard deviation -->
<param name="noise/gyro" value="0.005"/>
<param name="noise/acc" value="0.05"/>
<param name="noise/gyro_bias" value="0.001"/>
<param name="noise/acc_bias" value="0.01"/>
<param name="noise/feature" value="0.035"/>
<param name="initial_state/velocity/x" value="0.0"/>
<param name="initial_state/velocity/y" value="0.0"/>
<param name="initial_state/velocity/z" value="0.0"/>
<!-- These values should be covariance -->
<param name="initial_covariance/velocity" value="0.25"/>
<param name="initial_covariance/gyro_bias" value="0.01"/>
<param name="initial_covariance/acc_bias" value="0.01"/>
<param name="initial_covariance/extrinsic_rotation_cov" value="3.0462e-4"/>
<param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/>
<param name="initial_covariance/irradiance_frame_bias" value="0.1"/>
<remap from="~imu" to="/imu0"/>
<remap from="~ground_truth" to="/vrpn_client/raw_transform"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
<remap from="~features" to="image_processor/features"/>
</node>
</group>
</launch>

View File

@ -17,16 +17,14 @@
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
<param name="FILTER" value="1"/>
<!-- Photometry Flag-->
<param name="PHOTOMETRIC" value="true"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="false"/>
<param name="PrintImages" value="true"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="3"/>
<param name="patch_size_n" value="1"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
@ -73,6 +71,4 @@
</node>
</group>
<!--node name="player" pkg="bagcontrol" type="control.py" /-->
</launch>

73
log
View File

@ -1,73 +0,0 @@
# Created by Octave 3.8.1, Wed Jun 12 14:36:37 2019 CEST <raphael@raphael-desktop>
# name: Hx
# type: matrix
# rows: 18
# columns: 49
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 313.795 -58.7912 139.778 -46.7616 144.055 86.9644 0 -314.123 55.6434 -140.648 46.7616 -144.055 -86.9644 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 441.06 -94.50069999999999 174.424 -53.7653 204.822 120.248 0 -441.685 90.1101 -175.657 53.7653 -204.822 -120.248 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 225.35 -54.5629 77.60599999999999 -21.1425 105.886 60.3706 0 -225.756 52.3373 -78.2406 21.1425 -105.886 -60.3706 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 175.128 20.6203 175.127 -79.63939999999999 73.245 62.1868 0 -174.573 -22.5235 -175.576 79.63939999999999 -73.245 -62.1868 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 296.962 43.5469 311.307 -143.667 123.399 108.355 0 -295.905 -46.7952 -312.063 143.667 -123.399 -108.355 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126.283 117.889 311.864 -161.264 38.8521 71.8019 0 -124.464 -119.541 -312.118 161.264 -38.8521 -71.8019 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.2502 63.7166 155.071 -80.81950000000001 12.7732 32.1826 0 -48.2934 -64.4113 -155.157 80.81950000000001 -12.7732 -32.1826 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69.59699999999999 154.579 335.384 -179.355 9.212580000000001 62.0364 0 -67.35599999999999 -155.735 -335.462 179.355 -9.212580000000001 -62.0364 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -66.6965 304.947 500.218 -285.589 -71.31010000000001 55.5058 0 70.8009 -305.077 -499.831 285.589 71.31010000000001 -55.5058 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 323.404 -62.2043 141.092 -46.6015 148.737 89.1108 0 0 0 0 0 0 0 0 -324.336 57.8552 -141.991 46.6015 -148.737 -89.1108 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 454.208 -99.3095 175.986 -53.4094 211.276 123.174 0 0 0 0 0 0 0 0 -455.779 93.0992 -177.158 53.4094 -211.276 -123.174 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 231.884 -57.0266 78.2559 -20.8926 109.118 61.8183 0 0 0 0 0 0 0 0 -232.824 53.8025 -78.80719999999999 20.8926 -109.118 -61.8183 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 181.715 18.8525 177.045 -80.08499999999999 76.3716 63.8254 0 0 0 0 0 0 0 0 -181.07 -20.839 -177.959 80.08499999999999 -76.3716 -63.8254 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 308.249 40.5812 314.711 -144.494 128.766 111.207 0 0 0 0 0 0 0 0 -306.972 -43.8825 -316.328 144.494 -128.766 -111.207 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133.309 116.865 315.474 -162.598 42.0763 73.8353 0 0 0 0 0 0 0 0 -130.603 -117.454 -316.931 162.598 -42.0763 -73.8353 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52.4426 63.3607 156.902 -81.5288 14.2139 33.1222 0 0 0 0 0 0 0 0 -50.9976 -63.4393 -157.607 81.5288 -14.2139 -33.1222 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75.5508 154.234 339.369 -180.995 11.859 63.8956 0 0 0 0 0 0 0 0 -72.1041 -153.816 -340.865 180.995 -11.859 -63.8956 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -62.0551 306.357 506.351 -288.542 -69.50409999999999 57.4562 0 0 0 0 0 0 0 0 68.6262 -303.028 -508.423 288.542 69.50409999999999 -57.4562 1 0 0 0 0 0 0 0
# name: Hy
# type: matrix
# rows: 18
# columns: 14
1.56267 0 0 0 0 0 0 0 0 0 0.252873 0 0 0.110387
0 1.56267 0 0 0 0 0 0 0 0 0.453168 0 0 0.162961
0 0 1.56267 0 0 0 0 0 0 0 0.638441 0 0 0.0873758
0 0 0 1.56267 0 0 0 0 0 0 0.21031 0 0 0.0321517
0 0 0 0 1.56267 0 0 0 0 0 0.375554 0 0 0.0505151
0 0 0 0 0 1.56267 0 0 0 0 0.638441 0 0 -0.0336034
0 0 0 0 0 0 1.56267 0 0 0 0.157733 0 0 -0.0232704
0 0 0 0 0 0 0 1.56267 0 0 0.212814 0 0 -0.0688343
0 0 0 0 0 0 0 0 1.56267 0 0.360532 0 0 -0.187745
1.56267 0 0 0 0 0 0 0 0 0 0 0.252873 0 0.322811
0 1.56267 0 0 0 0 0 0 0 0 0 0.453168 0 0.467319
0 0 1.56267 0 0 0 0 0 0 0 0 0.638441 0 0.245907
0 0 0 1.56267 0 0 0 0 0 0 0 0.21031 0 0.135725
0 0 0 0 1.56267 0 0 0 0 0 0 0.375554 0 0.225277
0 0 0 0 0 1.56267 0 0 0 0 0 0.638441 0 0.012926
0 0 0 0 0 0 1.56267 0 0 0 0 0.157733 0 -0.0108962
0 0 0 0 0 0 0 1.56267 0 0 0 0.212814 0 -0.06974909999999999
0 0 0 0 0 0 0 0 1.56267 0 0 0.360532 0 -0.318846
# name: r
# type: matrix
# rows: 18
# columns: 1
0.0354809
0.0153183
0.0570191
-0.0372801
0.0878601
0.06811780000000001
-0.00426164
5.162985999041026e-321
6.927779999999998e-310
0
2.121999999910509e-314
0
0
0
3.6073900000086e-313
4.446590812571219e-323
3.952525166729972e-323
3.952525166729972e-323

View File

@ -1,64 +0,0 @@
#!/usr/bin/env python
import rosbag
import rospy
from sensor_msgs.msg import Imu, Image
from geometry_msgs.msg import TransformStamped
import time
import signal
import sys
def signal_handler(sig, frame):
print('gracefully exiting the program.')
bag.close()
sys.exit(0)
def main():
global bag
cam0_topic = '/cam0/image_raw'
cam1_topic = '/cam1/image_raw'
imu0_topic = '/imu0'
grnd_topic = '/vrpn_client/raw_transform'
rospy.init_node('controlbag')
rospy.set_param('play_bag', False)
cam0_pub = rospy.Publisher(cam0_topic, Image, queue_size=10)
cam1_pub = rospy.Publisher(cam1_topic, Image, queue_size=10)
imu0_pub = rospy.Publisher(imu0_topic, Imu, queue_size=10)
grnd_pub = rospy.Publisher(grnd_topic, TransformStamped, queue_size=10)
signal.signal(signal.SIGINT, signal_handler)
bag = rosbag.Bag('/home/raphael/dev/MSCKF_ws/bag/TUM/dataset-corridor1_1024_16.bag')
for topic, msg, t in bag.read_messages(topics=[cam0_topic, cam1_topic, imu0_topic, grnd_topic]):
# pause if parameter set to false
flag = False
while not rospy.get_param('/play_bag'):
time.sleep(0.01)
if not flag:
print("stopped playback")
flag = not flag
if flag:
print("resume playback")
if topic == cam0_topic:
cam0_pub.publish(msg)
elif topic == cam1_topic:
cam1_pub.publish(msg)
elif topic == imu0_topic:
imu0_pub.publish(msg)
elif topic ==grnd_topic:
grnd_pub.publish(msg)
#print msg
bag.close()
if __name__== "__main__":
main()

View File

@ -1,64 +0,0 @@
#!/usr/bin/env python
import rosbag
import rospy
from sensor_msgs.msg import Imu, Image
from geometry_msgs.msg import TransformStamped
import time
import signal
import sys
def signal_handler(sig, frame):
print('gracefully exiting the program.')
bag.close()
sys.exit(0)
def main():
global bag
cam0_topic = '/cam0/image_raw'
cam1_topic = '/cam1/image_raw'
imu0_topic = '/imu0'
grnd_topic = '/vrpn_client/raw_transform'
rospy.init_node('controlbag')
rospy.set_param('play_bag', False)
cam0_pub = rospy.Publisher(cam0_topic, Image, queue_size=10)
cam1_pub = rospy.Publisher(cam1_topic, Image, queue_size=10)
imu0_pub = rospy.Publisher(imu0_topic, Imu, queue_size=10)
grnd_pub = rospy.Publisher(grnd_topic, TransformStamped, queue_size=10)
signal.signal(signal.SIGINT, signal_handler)
bag = rosbag.Bag('/home/raphael/dev/MSCKF_ws/bag/TUM/dataset-corridor1_1024_16.bag')
for topic, msg, t in bag.read_messages(topics=[cam0_topic, cam1_topic, imu0_topic, grnd_topic]):
# pause if parameter set to false
flag = False
while not rospy.get_param('/play_bag'):
time.sleep(0.01)
if not flag:
print("stopped playback")
flag = not flag
if flag:
print("resume playback")
if topic == cam0_topic:
cam0_pub.publish(msg)
elif topic == cam1_topic:
cam1_pub.publish(msg)
elif topic == imu0_topic:
imu0_pub.publish(msg)
elif topic ==grnd_topic:
grnd_pub.publish(msg)
#print msg
bag.close()
if __name__== "__main__":
main()

View File

@ -14,39 +14,6 @@ namespace msckf_vio {
namespace image_handler {
cv::Point2f pinholeDownProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics)
{
return cv::Point2f(p_in.x * intrinsics[0] + intrinsics[2], p_in.y * intrinsics[1] + intrinsics[3]);
}
cv::Point2f pinholeUpProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics)
{
return cv::Point2f((p_in.x - intrinsics[2])/intrinsics[0], (p_in.y - intrinsics[3])/intrinsics[1]);
}
void undistortImage(
cv::InputArray src,
cv::OutputArray dst,
const std::string& distortion_model,
const cv::Vec4d& intrinsics,
const cv::Vec4d& distortion_coeffs)
{
const cv::Matx33d K(intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
if (distortion_model == "pre-equidistant")
cv::fisheye::undistortImage(src, dst, K, distortion_coeffs, K);
else if (distortion_model == "equidistant")
src.copyTo(dst);
else if (distortion_model == "pre-radtan")
cv::undistort(src, dst, K, distortion_coeffs, K);
else if (distortion_model == "radtan")
src.copyTo(dst);
}
void undistortPoint(
const cv::Point2f& pt_in,
@ -76,37 +43,10 @@ void undistortPoint(
if (distortion_model == "radtan") {
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
// equidistant
else if (distortion_model == "equidistant") {
} else if (distortion_model == "equidistant") {
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
// fov
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
float omega = distortion_coeffs[0];
float rd = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float ru = tan(rd * omega)/(2 * tan(omega / 2));
cv::Point2f newPoint(
((pts_in[i].x - intrinsics[2]) / intrinsics[0]) * (ru / rd),
((pts_in[i].y - intrinsics[3]) / intrinsics[1]) * (ru / rd));
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
temp_pts_out.push_back(pinholeUpProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
} else {
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
distortion_model.c_str());
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
@ -140,35 +80,10 @@ void undistortPoints(
if (distortion_model == "radtan") {
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
else if (distortion_model == "equidistant") {
} else if (distortion_model == "equidistant") {
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
float omega = distortion_coeffs[0];
float rd = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float ru = tan(rd * omega)/(2 * tan(omega / 2));
cv::Point2f newPoint(
((pts_in[i].x - intrinsics[2]) / intrinsics[0]) * (ru / rd),
((pts_in[i].y - intrinsics[3]) / intrinsics[1]) * (ru / rd));
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
temp_pts_out.push_back(pinholeUpProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
} else {
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
distortion_model.c_str());
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
@ -196,31 +111,7 @@ std::vector<cv::Point2f> distortPoints(
distortion_coeffs, pts_out);
} else if (distortion_model == "equidistant") {
cv::fisheye::distortPoints(pts_in, pts_out, K, distortion_coeffs);
}
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
// based on 'straight lines have to be straight'
float ru = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float omega = distortion_coeffs[0];
float rd = 1 / (omega)*atan(2*ru*tan(omega / 2));
cv::Point2f newPoint(
pts_in[i].x * (rd/ru) * intrinsics[0] + intrinsics[2],
pts_in[i].y * (rd/ru) * intrinsics[1] + intrinsics[3]);
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
temp_pts_out.push_back(pinholeDownProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
} else {
ROS_WARN_ONCE("The model %s is unrecognized, using radtan instead...",
distortion_model.c_str());
std::vector<cv::Point3f> homogenous_pts;
@ -253,31 +144,7 @@ cv::Point2f distortPoint(
distortion_coeffs, pts_out);
} else if (distortion_model == "equidistant") {
cv::fisheye::distortPoints(pts_in, pts_out, K, distortion_coeffs);
}
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
// based on 'straight lines have to be straight'
float ru = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float omega = distortion_coeffs[0];
float rd = 1 / (omega)*atan(2*ru*tan(omega / 2));
cv::Point2f newPoint(
pts_in[i].x * (rd/ru) * intrinsics[0] + intrinsics[2],
pts_in[i].y * (rd/ru) * intrinsics[1] + intrinsics[3]);
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
pts_out.push_back(pinholeDownProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
} else {
ROS_WARN_ONCE("The model %s is unrecognized, using radtan instead...",
distortion_model.c_str());
std::vector<cv::Point3f> homogenous_pts;

View File

@ -42,9 +42,6 @@ ImageProcessor::~ImageProcessor() {
}
bool ImageProcessor::loadParameters() {
// debug parameters
nh.param<bool>("StreamPause", STREAMPAUSE, false);
// Camera calibration parameters
nh.param<string>("cam0/distortion_model",
cam0.distortion_model, string("radtan"));
@ -214,9 +211,7 @@ void ImageProcessor::stereoCallback(
const sensor_msgs::ImageConstPtr& cam0_img,
const sensor_msgs::ImageConstPtr& cam1_img) {
// stop playing bagfile if printing images
//if(STREAMPAUSE)
// nh.setParam("/play_bag_image", false);
//cout << "==================================" << endl;
// Get the current image.
cam0_curr_img_ptr = cv_bridge::toCvShare(cam0_img,
@ -224,27 +219,12 @@ void ImageProcessor::stereoCallback(
cam1_curr_img_ptr = cv_bridge::toCvShare(cam1_img,
sensor_msgs::image_encodings::MONO8);
ros::Time start_time = ros::Time::now();
cv::Mat new_cam0;
cv::Mat new_cam1;
image_handler::undistortImage(cam0_curr_img_ptr->image, new_cam0, cam0.distortion_model, cam0.intrinsics, cam0.distortion_coeffs);
image_handler::undistortImage(cam1_curr_img_ptr->image, new_cam1, cam1.distortion_model, cam1.intrinsics, cam1.distortion_coeffs);
new_cam0.copyTo(cam0_curr_img_ptr->image);
new_cam1.copyTo(cam1_curr_img_ptr->image);
//ROS_INFO("Publishing: %f",
// (ros::Time::now()-start_time).toSec());
// Build the image pyramids once since they're used at multiple places
createImagePyramids();
// Detect features in the first frame.
if (is_first_img) {
start_time = ros::Time::now();
ros::Time start_time = ros::Time::now();
initializeFirstFrame();
//ROS_INFO("Detection time: %f",
// (ros::Time::now()-start_time).toSec());
@ -257,7 +237,7 @@ void ImageProcessor::stereoCallback(
// (ros::Time::now()-start_time).toSec());
} else {
// Track the feature in the previous image.
start_time = ros::Time::now();
ros::Time start_time = ros::Time::now();
trackFeatures();
//ROS_INFO("Tracking time: %f",
// (ros::Time::now()-start_time).toSec());
@ -265,7 +245,6 @@ void ImageProcessor::stereoCallback(
// Add new features into the current image.
start_time = ros::Time::now();
addNewFeatures();
//ROS_INFO("Addition time: %f",
// (ros::Time::now()-start_time).toSec());
@ -288,18 +267,16 @@ void ImageProcessor::stereoCallback(
// (ros::Time::now()-start_time).toSec());
// Publish features in the current image.
start_time = ros::Time::now();
ros::Time start_time = ros::Time::now();
publish();
//ROS_INFO("Publishing: %f",
// (ros::Time::now()-start_time).toSec());
// Update the previous image and previous features.
cam0_prev_img_ptr = cam0_curr_img_ptr;
prev_features_ptr = curr_features_ptr;
std::swap(prev_cam0_pyramid_, curr_cam0_pyramid_);
// Initialize the current features to empty vectors.
curr_features_ptr.reset(new GridFeatures());
for (int code = 0; code <
@ -307,10 +284,6 @@ void ImageProcessor::stereoCallback(
(*curr_features_ptr)[code] = vector<FeatureMetaData>(0);
}
// stop playing bagfile if printing images
//if(STREAMPAUSE)
// nh.setParam("/play_bag_image", true);
return;
}
@ -607,7 +580,6 @@ void ImageProcessor::trackFeatures() {
++after_ransac;
}
// Compute the tracking rate.
int prev_feature_num = 0;
for (const auto& item : *prev_features_ptr)
@ -687,8 +659,6 @@ void ImageProcessor::stereoMatch(
// Further remove outliers based on the known
// essential matrix.
vector<cv::Point2f> cam0_points_undistorted(0);
vector<cv::Point2f> cam1_points_undistorted(0);
image_handler::undistortPoints(
@ -698,7 +668,6 @@ void ImageProcessor::stereoMatch(
cam1_points, cam1.intrinsics, cam1.distortion_model,
cam1.distortion_coeffs, cam1_points_undistorted);
double norm_pixel_unit = 4.0 / (
cam0.intrinsics[0]+cam0.intrinsics[1]+
cam1.intrinsics[0]+cam1.intrinsics[1]);

File diff suppressed because it is too large Load Diff

View File

@ -1,75 +0,0 @@
#!/usr/bin/env python
from __future__ import print_function
import sys
import rospy
import cv2
from std_msgs.msg import String
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
class image_converter:
def __init__(self):
self.image0_pub = rospy.Publisher("/cam0/new_image_raw",Image, queue_size=10)
self.image1_pub = rospy.Publisher("/cam1/new_image_raw",Image, queue_size=10)
self.bridge = CvBridge()
self.image0_sub = rospy.Subscriber("/cam0/image_raw",Image,self.callback_cam0)
self.image1_sub = rospy.Subscriber("/cam1/image_raw",Image,self.callback_cam1)
def callback_cam0(self,data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
imgScale = 0.25
newX,newY = cv_image.shape[1]*imgScale, cv_image.shape[0]*imgScale
newimg = cv2.resize(cv_image,(int(newX),int(newY)))
newpub = self.bridge.cv2_to_imgmsg(newimg, "bgr8")
newdata = data
newdata.height = newpub.height
newdata.width = newpub.width
newdata.step = newpub.step
newdata.data = newpub.data
try:
self.image0_pub.publish(newdata)
except CvBridgeError as e:
print(e)
def callback_cam1(self,data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
imgScale = 0.25
newX,newY = cv_image.shape[1]*imgScale, cv_image.shape[0]*imgScale
newimg = cv2.resize(cv_image,(int(newX),int(newY)))
newpub = self.bridge.cv2_to_imgmsg(newimg, "bgr8")
newdata = data
newdata.height = newpub.height
newdata.width = newpub.width
newdata.step = newpub.step
newdata.data = newpub.data
try:
self.image1_pub.publish(newdata)
except CvBridgeError as e:
print(e)
def main(args):
ic = image_converter()
rospy.init_node('image_converter', anonymous=True)
try:
rospy.spin()
except KeyboardInterrupt:
print("Shutting down")
cv2.destroyAllWindows()
if __name__ == '__main__':
main(sys.argv)