msckf_vio/test/feature_initialization_test.cpp
2018-01-09 23:20:54 -05:00

125 lines
4.0 KiB
C++

/*
* COPYRIGHT AND PERMISSION NOTICE
* Penn Software MSCKF_VIO
* Copyright (C) 2017 The Trustees of the University of Pennsylvania
* All rights reserved.
*/
#include <iostream>
#include <vector>
#include <map>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <Eigen/StdVector>
#include <gtest/gtest.h>
#include <random_numbers/random_numbers.h>
#include <msckf_vio/cam_state.h>
#include <msckf_vio/feature.hpp>
using namespace std;
using namespace Eigen;
using namespace msckf_vio;
// Static member variables in CAMState class
Isometry3d CAMState::T_cam0_cam1 = Isometry3d::Identity();
// Static member variables in Feature class
Feature::OptimizationConfig Feature::optimization_config;
TEST(FeatureInitializeTest, sphereDistribution) {
// Set the real feature at the origin of the world frame.
Vector3d feature(0.5, 0.0, 0.0);
// Add 6 camera poses, all of which are able to see the
// feature at the origin. For simplicity, the six camera
// view are located at the six intersections between a
// unit sphere and the coordinate system. And the z axes
// of the camera frames are facing the origin.
vector<Isometry3d> cam_poses(6);
// Positive x axis.
cam_poses[0].linear() << 0.0, 0.0, -1.0,
1.0, 0.0, 0.0, 0.0, -1.0, 0.0;
cam_poses[0].translation() << 1.0, 0.0, 0.0;
// Positive y axis.
cam_poses[1].linear() << -1.0, 0.0, 0.0,
0.0, 0.0, -1.0, 0.0, -1.0, 0.0;
cam_poses[1].translation() << 0.0, 1.0, 0.0;
// Negative x axis.
cam_poses[2].linear() << 0.0, 0.0, 1.0,
-1.0, 0.0, 0.0, 0.0, -1.0, 0.0;
cam_poses[2].translation() << -1.0, 0.0, 0.0;
// Negative y axis.
cam_poses[3].linear() << 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, -1.0, 0.0;
cam_poses[3].translation() << 0.0, -1.0, 0.0;
// Positive z axis.
cam_poses[4].linear() << 0.0, -1.0, 0.0,
-1.0, 0.0, 0.0, 0.0, 0.0, -1.0;
cam_poses[4].translation() << 0.0, 0.0, 1.0;
// Negative z axis.
cam_poses[5].linear() << 1.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 1.0;
cam_poses[5].translation() << 0.0, 0.0, -1.0;
// Set the camera states
CamStateServer cam_states;
for (int i = 0; i < 6; ++i) {
CAMState new_cam_state;
new_cam_state.id = i;
new_cam_state.time = static_cast<double>(i);
new_cam_state.orientation = rotationToQuaternion(
Matrix3d(cam_poses[i].linear().transpose()));
new_cam_state.position = cam_poses[i].translation();
cam_states[new_cam_state.id] = new_cam_state;
}
// Compute measurements.
random_numbers::RandomNumberGenerator noise_generator;
vector<Vector4d, aligned_allocator<Vector4d> > measurements(6);
for (int i = 0; i < 6; ++i) {
Isometry3d cam_pose_inv = cam_poses[i].inverse();
Vector3d p = cam_pose_inv.linear()*feature + cam_pose_inv.translation();
double u = p(0) / p(2) + noise_generator.gaussian(0.0, 0.01);
double v = p(1) / p(2) + noise_generator.gaussian(0.0, 0.01);
//double u = p(0) / p(2);
//double v = p(1) / p(2);
measurements[i] = Vector4d(u, v, u, v);
}
for (int i = 0; i < 6; ++i) {
cout << "pose " << i << ":" << endl;
cout << "orientation: " << endl;
cout << cam_poses[i].linear() << endl;
cout << "translation: " << endl;
cout << cam_poses[i].translation().transpose() << endl;
cout << "measurement: " << endl;
cout << measurements[i].transpose() << endl;
cout << endl;
}
// Initialize a feature object.
Feature feature_object;
for (int i = 0; i < 6; ++i)
feature_object.observations[i] = measurements[i];
// Compute the 3d position of the feature.
feature_object.initializePosition(cam_states);
// Check the difference between the computed 3d
// feature position and the groud truth.
cout << "ground truth position: " << feature.transpose() << endl;
cout << "estimated position: " << feature_object.position.transpose() << endl;
Eigen::Vector3d error = feature_object.position - feature;
EXPECT_NEAR(error.norm(), 0, 0.05);
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}