adds coco image split script, update evaluation

- evaluation now pauses via pdb and correctly divides
  the image sizes
- coco image requires a 'coco' folder with the COCO
  'val2014' and 'annotations' folder downloaded from the
  cocodataset website
- the script splits up the dataset by snipping the bounding-
  box from the images and saving it into a seperate folder
  for later parsing by the siamese network
This commit is contained in:
Raphael Maenle 2021-08-06 13:24:08 +02:00
parent fbc6ee8187
commit 4de74afcd1
2 changed files with 88 additions and 6 deletions

74
coco_gen.py Normal file
View File

@ -0,0 +1,74 @@
import json, os
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
no_label = 0
small = 0
passed = 0
count = 0
print("loading coco annotations...")
coco = json.load(open('./coco/annotations/instances_val2014.json'))
print("done")
def findAnnotationName(annotationId):
for c in coco['categories']:
if c['id'] == annotationId:
return c['name']
def findAnnotationToId(ident):
for annotation in coco['annotations']:
img_an = annotation['image_id']
if img_an == ident:
return annotation
def show(pil, pause=0.2):
ImageNumpyFormat = np.asarray(pil)
plt.imshow(ImageNumpyFormat)
plt.draw()
plt.pause(pause) # pause how many seconds
plt.close()
def parseImage(coImg):
# open image file
path = "coco/val2014/" + coImg['file_name']
img = Image.open(path)
an = findAnnotationToId(coImg['id'])
if an == None:
no_label += 1
return
path = "coco/val2014/" + coImg['file_name']
img = Image.open(path)
c = an['bbox']
crop = img.crop((c[0], c[1], c[0]+c[2], c[1]+c[3]))
if crop.width < 64 or crop.height < 64:
small += 1
return
imagePath = f"classified/{findAnnotationName(an['category_id'])}/{an['id']}.png"
os.makedirs(os.path.dirname(imagePath), exist_ok=True)
crop.save(imagePath)
passed += 1
if __name__ == "__main__":
for coImg in coco['images']:
parseImage(coImg)
count += 1
if count % 100 == 0:
print("status:")
print(f"no labels: {no_label}")
print(f"to small: {small")
print(f"passed: {passed}")
print("-----")

View File

@ -2,12 +2,20 @@ import tensorflow.keras as keras
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import pdb import pdb
model = keras.models.load_model('./siamese_checkpoint')
image1 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_254_100.jpg').convert('RGB').resize((100,
100))) / 255
image2 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_250_100.jpg').convert('RGB').resize((100,
100))) / 255
output = model.predict([np.array([image2]), np.array([image1])]) def getI(path):
return np.asarray(Image.open(path).convert('RGB').resize((100, 100))) / 255
def predict(image1, image2):
return model.predict([np.array([image2]), np.array([image1])])
model = keras.models.load_model('./siamese_checkpoint')
image1 = getI('../towards/data/fruits-360/Training/Avocado/r_254_100.jpg')
image2 = getI('../towards/data/fruits-360/Training/Avocado/r_250_100.jpg')
print(predict(image1, image2))
pdb.set_trace() pdb.set_trace()