removes second model learning, removes second 255 division

This commit is contained in:
Raphael Maenle 2021-07-23 09:31:53 +02:00
parent 2d8cbca1bc
commit e5058cc8cc
15 changed files with 17 additions and 61 deletions

View File

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2018 aspamers
Copyright (c) 2018 Raphael Maenle
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

BIN
model.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

File diff suppressed because one or more lines are too long

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 146 KiB

View File

@ -19,6 +19,8 @@ the steps taken so far, which lead to a successfull detection of an image
- after you've successfully trained the model, it's now saved to 'model_checkpoint' or 'siamese_checkpoint'
- note that the current model design has removed the second training layer, it now only creates 'siamese_checkpoint'
- The following steps can be used to classify two images:
Note, that it was so far only tested using images in a 'pdb' shell from the mnist_siamese_example script
@ -26,8 +28,8 @@ the steps taken so far, which lead to a successfull detection of an image
import tensorflow.keras as keras
from PIL import image
model = keras.models.load_model('./siamese_checkpoint')
image1 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_254_100.jpg').convert('RGB').resize((28, 28))) / 255 / 255
image2 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_250_100.jpg').convert('RGB').resize((28, 28))) / 255 / 255
image1 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_254_100.jpg').convert('RGB').resize((28, 28))) / 255
image2 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_250_100.jpg').convert('RGB').resize((28, 28))) / 255
# note that the double division through 255 is only because the model bas taught with this double division, depends on
# the input numbers of course

View File

@ -1,15 +0,0 @@
from setuptools import setup
setup(
name='siamese',
version='0.1',
packages=[''],
url='https://github.com/aspamers/siamese',
license='MIT',
author='Abram Spamers',
author_email='aspamers@gmail.com',
install_requires=[
'keras', 'numpy',
],
description='An easy to use Keras Siamese Neural Network implementation'
)

View File

@ -8,8 +8,6 @@ import numpy as np
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
import pdb
class SiameseNetwork:
"""
@ -73,8 +71,6 @@ class SiameseNetwork:
test_generator = self.__pair_generator(x_test, y_test, batch_size)
test_steps = math.floor(max(len(x_test) / batch_size, 1))
pdb.set_trace()
self.siamese_model.fit(train_generator,
steps_per_epoch=train_steps,
validation_data=test_generator,
@ -138,7 +134,7 @@ class SiameseNetwork:
"""
generator = self.__pair_generator(x, y, batch_size=batch_size)
steps = len(x) / batch_size
return self.siamese_model.evaluate_generator(generator, steps=steps, *args, **kwargs)
return self.siamese_model.evaluate(generator, steps=steps, *args, **kwargs)
def __initialize_siamese_model(self):
"""
@ -225,12 +221,8 @@ class SiameseNetwork:
for _ in range(int(num_negative_pairs)):
cls_1, cls_2 = self.__randint_unequal(0, num_classes - 1)
try:
index_1 = random.randint(0, len(class_indices[cls_1]) - 1)
index_2 = random.randint(0, len(class_indices[cls_2]) - 1)
except Exception as e:
print(e)
pdb.set_trace()
element_index_1, element_index_2 = class_indices[cls_1][index_1], class_indices[cls_2][index_2]

Binary file not shown.

View File

@ -26,17 +26,15 @@ from siamese import SiameseNetwork
import os, math, numpy as np
from PIL import Image
import pdb
batch_size = 128
num_classes = 131
epochs = 999999
# input image dimensions
img_rows, img_cols = 28, 28
def createTrainingData():
base_dir = '../towards/data/fruits-360/Training/'
base_dir = 'data/fruits-360/Training/'
train_test_split = 0.7
no_of_files_in_each_class = 80
@ -133,10 +131,6 @@ else:
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
pdb.set_trace()
def create_own_base_model(input_shape):
model_input = Input(shape=input_shape)
@ -220,7 +214,7 @@ def get_batch(x_train, y_train, x_test, y_test, cat_train, batch_size=64):
num_classes = 131
epochs = 2000
epochs = 20
base_model = create_base_model(input_shape)
head_model = create_head_model(base_model.output_shape)
@ -254,6 +248,7 @@ siamese_network.fit(x_train, y_train,
# print("!!!!!!")
# siamese_network.load_weights(siamese_checkpoint_path)
'''
embedding = base_model.outputs[-1]
y_train = keras.utils.to_categorical(y_train)
@ -293,7 +288,8 @@ model.fit(x_train, y_train,
# print("!!!!!!")
# model.load_weights(model_checkpoint_path)
'''
score = model.evaluate(x_test, y_test, verbose=0)
score = siamese_network.evaluate(x_test, y_test, batch_size=60, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

View File

@ -6,6 +6,10 @@ Instead of using a fixed number of epochs this version continues to train
until the stop criteria is reached.
Model performance should be around 99.4% after training.
This scripts shows how to correctly handle mnist data
and how to use it for the model.fit() function
"""
from __future__ import print_function