import tensorflow.keras as keras from PIL import Image import numpy as np import ipdb class g: def __init__(self, path): self.image = np.asarray(Image.open(path).convert('RGB').resize((100, 100))) / 255 def show(self): self.image.show() def predict(image1, image2): return model.predict([np.array([image2.image]), np.array([image1.image])]) model = keras.models.load_model('../siamese_100x100_pretrainedb_vgg16') image1 = g('data/fruits/fruits-360/Training/Avocado/r_254_100.jpg') image2 = g('data/fruits/fruits-360/Training/Avocado/r_250_100.jpg') print(predict(image1, image2)) ipdb.set_trace()