""" This is a modified version of the Keras mnist example. https://keras.io/examples/mnist_cnn/ Instead of using a fixed number of epochs this version continues to train until the stop criteria is reached. Model performance should be around 99.4% after training. """ from __future__ import print_function import keras from keras.datasets import mnist from keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation from keras import backend as K from keras.callbacks import ModelCheckpoint, EarlyStopping from keras.models import Model from keras.layers import Input, Flatten, Dense batch_size = 128 num_classes = 10 epochs = 999999 # input image dimensions img_rows, img_cols = 28, 28 # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) def create_base_network(input_shape): input = Input(shape=input_shape) x = Conv2D(32, kernel_size=(3, 3), input_shape=input_shape)(input) x = BatchNormalization()(x) x = Activation(activation='relu')(x) x = MaxPooling2D(pool_size=(2, 2))(x) x = Conv2D(64, kernel_size=(3, 3))(x) x = BatchNormalization()(x) x = Activation(activation='relu')(x) x = MaxPooling2D(pool_size=(2, 2))(x) x = Flatten()(x) x = Dense(128)(x) x = BatchNormalization()(x) x = Activation(activation='relu')(x) x = Dense(num_classes)(x) x = BatchNormalization()(x) x = Activation(activation='softmax')(x) return Model(input, x) model = create_base_network(input_shape) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.adam(), metrics=['accuracy']) checkpoint_path = "./checkpoint" callbacks = [ EarlyStopping(monitor='val_acc', patience=10, verbose=0), ModelCheckpoint(checkpoint_path, monitor='val_acc', save_best_only=True, verbose=0) ] model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, callbacks=callbacks, validation_data=(x_test, y_test)) model.load_weights(checkpoint_path) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])