import tensorflow.keras as keras from PIL import Image import numpy as np import pdb def getI(path): return np.asarray(Image.open(path).convert('RGB').resize((100, 100))) / 255 def predict(image1, image2): return model.predict([np.array([image2]), np.array([image1])]) model = keras.models.load_model('./siamese_checkpoint') image1 = getI('../towards/data/fruits-360/Training/Avocado/r_254_100.jpg') image2 = getI('../towards/data/fruits-360/Training/Avocado/r_250_100.jpg') print(predict(image1, image2)) pdb.set_trace()