""" This is a modified version of the Keras mnist example. https://keras.io/examples/mnist_cnn/ Instead of using a fixed number of epochs this version continues to train until a stop criteria is reached. A siamese neural network is used to pre-train an embedding for the network. The resulting embedding is then extended with a softmax output layer for categorical predictions. Model performance should be around 99.84% after training. The resulting model is identical in structure to the one in the example yet shows considerable improvement in relative error confirming that the embedding learned by the siamese network is useful. """ from __future__ import print_function import tensorflow.keras as keras from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation, Concatenate from tensorflow.keras import backend as K from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Flatten, Dense from siamese import SiameseNetwork import os, math, numpy as np from PIL import Image batch_size = 128 num_classes = 131 # input image dimensions img_rows, img_cols = 100, 100 def createTrainingData(): base_dir = 'data/fruits/fruits-360/Training/' train_test_split = 0.7 no_of_files_in_each_class = 80 #Read all the folders in the directory folder_list = os.listdir(base_dir) print( len(folder_list), "categories found in the dataset") #Declare training array cat_list = [] x = [] names = [] y = [] y_label = 0 #Using just 5 images per category for folder_name in folder_list: files_list = os.listdir(os.path.join(base_dir, folder_name)) temp=[] for file_name in files_list[:no_of_files_in_each_class]: temp.append(len(x)) x.append(np.asarray(Image.open(os.path.join(base_dir, folder_name, file_name)).convert('RGB').resize((img_rows, img_cols)))) names.append(folder_name + "/" + file_name) y.append(y_label) y_label+=1 cat_list.append(temp) cat_list = np.asarray(cat_list) x = np.asarray(x)/255.0 y = np.asarray(y) print('X, Y shape',x.shape, y.shape, cat_list.shape) #Training Split x_train, y_train, cat_train, x_val, y_val, cat_test = [], [], [], [], [], [] train_split = math.floor((train_test_split) * no_of_files_in_each_class) test_split = math.floor((1-train_test_split) * no_of_files_in_each_class) train_count = 0 test_count = 0 for i in range(len(x)-1): if i % no_of_files_in_each_class == 0: cat_train.append([]) cat_test.append([]) class_train_count = 1 class_test_count = 1 if i % math.floor(1/train_test_split) == 0 and class_test_count < test_split: x_val.append(x[i]) y_val.append(y[i]) cat_test[-1].append(test_count) test_count += 1 class_test_count += 1 elif class_train_count < train_split: x_train.append(x[i]) y_train.append(y[i]) cat_train[-1].append(train_count) train_count += 1 class_train_count += 1 x_val = np.array(x_val) y_val = np.array(y_val) x_train = np.array(x_train) y_train = np.array(y_train) cat_train = np.array(cat_train) cat_test = np.array(cat_test) print('X&Y shape of training data :',x_train.shape, 'and', y_train.shape, cat_train.shape) print('X&Y shape of testing data :' , x_val.shape, 'and', y_val.shape, cat_test.shape) return (x_train, y_train), (x_val, y_val), cat_train # the data, split between train and test sets # (x_train, y_train), (x_test, y_test) = mnist.load_data() # channels = 1 (x_train, y_train), (x_test, y_test), cat_train = createTrainingData() channels = 3 if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], channels, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], channels, img_rows, img_cols) input_shape = (channels, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, channels) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels) input_shape = (img_rows, img_cols, channels) x_train = x_train.astype('float32') x_test = x_test.astype('float32') def create_own_base_model(input_shape): return keras.applications.vgg16.VGG16(include_top=False, input_tensor=Input(shape=input_shape), weights='imagenet', classes=1) def create_base_model(input_shape): model_input = Input(shape=input_shape) embedding = Conv2D(32, kernel_size=(3, 3), input_shape=input_shape)(model_input) embedding = BatchNormalization()(embedding) embedding = Activation(activation='relu')(embedding) embedding = MaxPooling2D(pool_size=(2, 2))(embedding) embedding = Conv2D(64, kernel_size=(3, 3))(embedding) embedding = BatchNormalization()(embedding) embedding = Activation(activation='relu')(embedding) embedding = MaxPooling2D(pool_size=(2, 2))(embedding) embedding = Flatten()(embedding) embedding = Dense(128)(embedding) embedding = BatchNormalization()(embedding) embedding = Activation(activation='relu')(embedding) return Model(model_input, embedding) def create_own_head_model(embedding_shape): embedding_a = Input(shape=embedding_shape[1:]) embedding_b = Input(shape=embedding_shape[1:]) embedding_a_mod = Flatten()(embedding_a) embedding_a_mod = Dense(128)(embedding_a_mod) embedding_a_mod = BatchNormalization()(embedding_a_mod) embedding_a_mod = Activation(activation='relu')(embedding_a_mod) embedding_b_mod = Flatten()(embedding_b) embedding_b_mod = Dense(128)(embedding_b_mod) embedding_b_mod = BatchNormalization()(embedding_b_mod) embedding_b_mod = Activation(activation='relu')(embedding_b_mod) head = Concatenate()([embedding_a_mod, embedding_b_mod]) head = Dense(8)(head) head = BatchNormalization()(head) head = Activation(activation='sigmoid')(head) head = Dense(1)(head) head = BatchNormalization()(head) head = Activation(activation='sigmoid')(head) return Model([embedding_a, embedding_b], head) def create_head_model(embedding_shape): embedding_a = Input(shape=embedding_shape[1:]) embedding_b = Input(shape=embedding_shape[1:]) head = Concatenate()([embedding_a, embedding_b]) head = Dense(8)(head) head = BatchNormalization()(head) head = Activation(activation='sigmoid')(head) head = Dense(1)(head) head = BatchNormalization()(head) head = Activation(activation='sigmoid')(head) return Model([embedding_a, embedding_b], head) def get_batch(x_train, y_train, x_test, y_test, cat_train, batch_size=64): temp_x = x_train temp_cat_list = cat_train start=0 batch_x=[] batch_y = np.zeros(batch_size) batch_y[int(batch_size/2):] = 1 np.random.shuffle(batch_y) class_list = np.random.randint(start, len(cat_train), batch_size) batch_x.append(np.zeros((batch_size, 100, 100, 3))) batch_x.append(np.zeros((batch_size, 100, 100, 3))) for i in range(0, batch_size): batch_x[0][i] = temp_x[np.random.choice(temp_cat_list[class_list[i]])] #If train_y has 0 pick from the same class, else pick from any other class if batch_y[i]==0: r = np.random.choice(temp_cat_list[class_list[i]]) batch_x[1][i] = temp_x[r] else: temp_list = np.append(temp_cat_list[:class_list[i]].flatten(), temp_cat_list[class_list[i]+1:].flatten()) batch_x[1][i] = temp_x[np.random.choice(temp_list)] return(batch_x, batch_y) num_classes = 131 epochs = 500 base_model = create_own_base_model(input_shape) head_model = create_own_head_model(base_model.output_shape) siamese_network = SiameseNetwork(base_model, head_model) siamese_network.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) siamese_checkpoint_path = "./siamese_checkpoint" siamese_callbacks = [ # EarlyStopping(monitor='val_accuracy', patience=10, verbose=0), ModelCheckpoint(siamese_checkpoint_path, monitor='val_accuracy', save_best_only=True, verbose=0) ] # batch_size = 64 # for epoch in range(1, epochs): # batch_x, batch_y = get_batch(x_train, y_train, x_test, y_test, cat_train, train_size, batch_size) # loss = siamese_network.train_on_batch(batch_x, batch_y) # print('Epoch:', epoch, ', Loss:', loss) siamese_network.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size=45, epochs=epochs, callbacks=siamese_callbacks) # try: # siamese_network = keras.models.load_model(siamese_checkpoint_path) # except Exception as e: # print(e) # print("!!!!!!") # siamese_network.load_weights(siamese_checkpoint_path) ''' embedding = base_model.outputs[-1] y_train = keras.utils.to_categorical(y_train) y_test = keras.utils.to_categorical(y_test) # Add softmax layer to the pre-trained embedding network embedding = Dense(num_classes)(embedding) embedding = BatchNormalization()(embedding) embedding = Activation(activation='sigmoid')(embedding) model = Model(base_model.inputs[0], embedding) model.compile(loss=keras.losses.binary_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy']) model_checkpoint_path = "./model_checkpoint" model__callbacks = [ # EarlyStopping(monitor='val_accuracy', patience=10, verbose=0), ModelCheckpoint(model_checkpoint_path, monitor='val_accuracy', save_best_only=True, verbose=0) ] # for e in range(1, epochs): # batch_x, batch_y = get_batch(x_train, y_train, x_test, y_test, cat_train, train_size, batch_size) # loss = model.train_on_batch(batch_x, batch_y) # print('Epoch:', epoch, ', Loss:', loss) model.fit(x_train, y_train, batch_size=128, epochs=epochs, callbacks=model__callbacks, validation_data=(x_test, y_test)) # try: # model = keras.models.load_model(model_checkpoint_path) # except Exception as e: # print(e) # print("!!!!!!") # model.load_weights(model_checkpoint_path) ''' score = siamese_network.evaluate(x_test, y_test, batch_size=60, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])