siamese/coco_cvat_gen.py
2021-09-20 08:06:52 +02:00

87 lines
2.1 KiB
Python

import json, os
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
no_label = 0
small = 0
passed = 0
count = 0
def findAnnotationName(annotationId, annotations):
for c in annotations['categories']:
if c['id'] == annotationId:
return c['name']
def findAnnotationToId(ident, annotations):
for annotation in annotations['annotations']:
img_an = annotation['image_id']
if img_an == ident:
return annotation
def show(pil, pause=0.2):
ImageNumpyFormat = np.asarray(pil)
plt.imshow(ImageNumpyFormat)
plt.draw()
plt.pause(pause) # pause how many seconds
plt.close()
def parseImage(coImg, annotations, subset):
global no_label, small, passed
# open image file
path = "coco/"+subset+"/images/" + coImg['file_name'].split('/')[4]
img = Image.open(path)
an = findAnnotationToId(coImg['id'], annotations)
if an == None:
no_label += 1
return
c = an['bbox']
crop = img.crop((c[0], c[1], c[0]+c[2], c[1]+c[3]))
if crop.width < 64 or crop.height < 64:
small += 1
return
imagePath = f"classified/classified_{subset}/{findAnnotationName(an['category_id'], annotations)}/{an['id']}.png"
os.makedirs(os.path.dirname(imagePath), exist_ok=True)
crop.save(imagePath)
passed += 1
def parseSubset(subset):
global count
print("loading" + subset + "annotations...")
annotations = json.load(open('./coco/'+subset+'/annotations/instances_default.json'))
print("done")
for coImg in annotations['images']:
parseImage(coImg, annotations,subset)
count += 1
if count % 100 == 0:
print("status:")
print(f"no labels: {no_label}")
print(f"to small: {small}")
print(f"passed: {passed}")
print("-----")
if __name__ == "__main__":
parseSubset('donaulager')
parseSubset('instantina')
parseSubset('lkw_walter_2019')
parseSubset('lkw_walter_2020')
parseSubset('tkl')
parseSubset('vw_bratislava')
parseSubset('vw_portugal')
parseSubset('watt')
parseSubset('wls')