siamese/one_shot_mnis_example.py
raphael fbc6ee8187 remodels siamese network with vgg16 and 100x100 input
- worse performance than with initial design
- vgg16 pretrained weights are used for the base
  network, which is then piped into a custom head
  model, which
    - flattens the layer (previously done in the base model)
    + Dense Layer
    + Normalization
    + Activation
- training split with 360 fruits used, same as previous mode
- maximum prediction level around 0.95 after ca 60 epochs
2021-07-28 19:02:48 +02:00

99 lines
2.9 KiB
Python

"""
This is a modified version of the Keras mnist example.
https://keras.io/examples/mnist_cnn/
Instead of using a fixed number of epochs this version continues to train
until the stop criteria is reached.
Model performance should be around 99.4% after training.
This scripts shows how to correctly handle mnist data
and how to use it for the model.fit() function
"""
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation
from keras import backend as K
from keras.callbacks import ModelCheckpoint, EarlyStopping
from keras.models import Model
from keras.layers import Input, Flatten, Dense
batch_size = 128
num_classes = 10
epochs = 999999
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
def create_base_network(input_shape):
input = Input(shape=input_shape)
x = Conv2D(32, kernel_size=(3, 3),
input_shape=input_shape)(input)
x = BatchNormalization()(x)
x = Activation(activation='relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(64, kernel_size=(3, 3))(x)
x = BatchNormalization()(x)
x = Activation(activation='relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten()(x)
x = Dense(128)(x)
x = BatchNormalization()(x)
x = Activation(activation='relu')(x)
x = Dense(num_classes)(x)
x = BatchNormalization()(x)
x = Activation(activation='softmax')(x)
return Model(input, x)
model = create_base_network(input_shape)
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.adam(),
metrics=['accuracy'])
checkpoint_path = "./checkpoint"
callbacks = [
EarlyStopping(monitor='val_acc', patience=10, verbose=0),
ModelCheckpoint(checkpoint_path,
monitor='val_acc',
save_best_only=True,
verbose=0)
]
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
callbacks=callbacks,
validation_data=(x_test, y_test))
model.load_weights(checkpoint_path)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])