siamese/evaluate.py

22 lines
531 B
Python

import tensorflow.keras as keras
from PIL import Image
import numpy as np
import pdb
def getI(path):
return np.asarray(Image.open(path).convert('RGB').resize((100, 100))) / 255
def predict(image1, image2):
return model.predict([np.array([image2]), np.array([image1])])
model = keras.models.load_model('./siamese_checkpoint')
image1 = getI('data/fruits/fruits-360/Training/Avocado/r_254_100.jpg')
image2 = getI('data/fruits/fruits-360/Training/Avocado/r_250_100.jpg')
print(predict(image1, image2))
pdb.set_trace()