raphael
fbc6ee8187
- worse performance than with initial design - vgg16 pretrained weights are used for the base network, which is then piped into a custom head model, which - flattens the layer (previously done in the base model) + Dense Layer + Normalization + Activation - training split with 360 fruits used, same as previous mode - maximum prediction level around 0.95 after ca 60 epochs
14 lines
499 B
Python
14 lines
499 B
Python
import tensorflow.keras as keras
|
|
from PIL import Image
|
|
import numpy as np
|
|
import pdb
|
|
model = keras.models.load_model('./siamese_checkpoint')
|
|
image1 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_254_100.jpg').convert('RGB').resize((100,
|
|
100))) / 255
|
|
image2 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_250_100.jpg').convert('RGB').resize((100,
|
|
100))) / 255
|
|
|
|
output = model.predict([np.array([image2]), np.array([image1])])
|
|
pdb.set_trace()
|
|
|