Made sub-functions for better readability

Also error catching if img does not exist
This commit is contained in:
JRauer 2018-01-26 19:59:12 +01:00
parent faeeeb8d71
commit 3bf8ed4adf
2 changed files with 56 additions and 42 deletions

View File

@ -19,13 +19,40 @@ using namespace std;
bool AbstractionLayer_SURFFeatures::PreProcessing(coor mySize, const vector<Part*>* partArray) bool AbstractionLayer_SURFFeatures::PreProcessing(coor mySize, const vector<Part*>* partArray)
{ {
InitialiseConstraintMatrixSize(mySize.col, mySize.row); InitialiseConstraintMatrixSize(mySize.col, mySize.row);
if(!PreProcessingFullImg(mySize)) return false;
if(!PreProcessingPieces(mySize, partArray)) return false;
return true;
}
bool AbstractionLayer_SURFFeatures::EvaluateQuality (coor constraintCoordinate, qualityVector& qVector)
{
//TODO: Vergleichen, welche der in qualityVector erhaltenen ähnlich viele Features besitzen, wie an der jeweiligen constraintCoordinate in der m_constraintMatrix gespeichert sind
}
bool AbstractionLayer_SURFFeatures::SetConstraintOnPosition(const coor constraintCoordinate,const AbstractionLayer_SURFFeatures_Properties constraint)
{
//TODO: Benötigen wir nicht unbedint.
//TODO: Hier erhalten wir vom Dispatcher welches Teil an welche Position gesetzt wird und wir könnten hier die Features des Bilds in die m_constraintMatrix speichern
}
bool AbstractionLayer_SURFFeatures::RemoveConstraintOnPosition(const coor constraintCoordinate)
{
//TODO: Wie auch beim SetConstraint sollte uns das hier nicht wirklich interessieren.
//TODO: Außer wir setzen etwas in die Contraintmatrix.
//TODO: Dann ruft uns der Dispatcher beim Backtrack hier auf und wir müssten das jeweilige PuzzlePart hier wieder rauslöschen.
}
bool AbstractionLayer_SURFFeatures::PreProcessingFullImg(coor mySize)
{
std::vector< cv::Point2f > corners; // Variable to store corner-positions at std::vector< cv::Point2f > corners; // Variable to store corner-positions at
// -- Complete puzzle image processing ---------------------------------------------------------------------------------------------
// ---------------------------------------------------------------------------------------------------------------------------------
// Load and resize image, so that number of parts in row and col fit in // Load and resize image, so that number of parts in row and col fit in
cv::Mat image = cv::imread(PATH_FULL_PUZZLE, IMREAD_GRAYSCALE); cv::Mat image = cv::imread(PATH_FULL_PUZZLE, IMREAD_GRAYSCALE);
if (!image.data) {
cerr << "Problem loading image of complete puzzle!" << endl;
return false;
}
//cout << "PRE: " << image.cols << " x " << image.rows << endl; //cout << "PRE: " << image.cols << " x " << image.rows << endl;
cv::resize(image, image, Size(int(ceil(double(image.cols)/mySize.col)*mySize.col), int(ceil(double(image.rows)/mySize.row)*mySize.row))); cv::resize(image, image, Size(int(ceil(double(image.cols)/mySize.col)*mySize.col), int(ceil(double(image.rows)/mySize.row)*mySize.row)));
//cout << "POST: " << image.cols << " x " << image.rows << endl; //cout << "POST: " << image.cols << " x " << image.rows << endl;
@ -92,34 +119,38 @@ bool AbstractionLayer_SURFFeatures::PreProcessing(coor mySize, const vector<Part
cv::waitKey(0);*/ cv::waitKey(0);*/
return true;
}
bool AbstractionLayer_SURFFeatures::PreProcessingPieces(coor mySize, const vector<Part*>* partArray)
// -- Puzzle piece image processing ------------------------------------------------------------------------------------------------ {
// --------------------------------------------------------------------------------------------------------------------------------- std::vector< cv::Point2f > corners; // Variable to store corner-positions at
int count = 0;
char name[100];
// PARAMETERS (for description see top of file) // PARAMETERS (for description see top of file)
maxCorners = 500; int maxCorners = 500;
qualityLevel = 0.05; double qualityLevel = 0.05;
minDistance = .5; double minDistance = .5;
cv::Mat mask;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;
minFeatures = maxCorners; int minFeatures = maxCorners;
maxFeatures = 0; int maxFeatures = 0;
char name[100];
// For each piece for (unsigned imgID = 0; imgID < mySize.col*mySize.row; imgID++) {
for (count = 0; count < mySize.col*mySize.row; count++) { //cols*rows sprintf(name, PATH, imgID);
sprintf(name, PATH, count);
Mat src = cv::imread(name, IMREAD_GRAYSCALE); Mat src = cv::imread(name, IMREAD_GRAYSCALE);
if (!src.data) { if (!src.data) {
cerr << "Problem loading image!!!" << endl; cerr << "Problem loading image of puzzle piece!" << endl;
return false; return false;
} else { } else {
cv::goodFeaturesToTrack( src, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k ); cv::goodFeaturesToTrack(src, corners, maxCorners, qualityLevel, minDistance, mask, blockSize,
if(corners.size() < minFeatures) minFeatures = corners.size(); useHarrisDetector, k);
if(corners.size() > maxFeatures) maxFeatures = corners.size(); if (corners.size() < minFeatures) minFeatures = corners.size();
partArray->at(count)->m_a4.m_numberOfFeaturesDetected = corners.size(); if (corners.size() > maxFeatures) maxFeatures = corners.size();
partArray->at(imgID)->m_a4.m_numberOfFeaturesDetected = corners.size();
/*for( size_t i = 0; i < corners.size(); i++ ) { /*for( size_t i = 0; i < corners.size(); i++ ) {
cv::circle( src, corners[i], 2, cv::Scalar( 255. ), -1 ); cv::circle( src, corners[i], 2, cv::Scalar( 255. ), -1 );
} }
@ -131,30 +162,11 @@ bool AbstractionLayer_SURFFeatures::PreProcessing(coor mySize, const vector<Part
} }
// Calculate percentage from 0 to 100% (normalized 0-1) with numberOfFeatures and safe it // Calculate percentage from 0 to 100% (normalized 0-1) with numberOfFeatures and safe it
for( int i = 0; i < mySize.col*mySize.row; i++ ) for( unsigned i = 0; i < mySize.col*mySize.row; i++ )
{ {
partArray->at(i)->m_a4.m_numberOfFeaturesDetected = (partArray->at(i)->m_a4.m_numberOfFeaturesDetected - minFeatures) / (maxFeatures - minFeatures); partArray->at(i)->m_a4.m_numberOfFeaturesDetected = (partArray->at(i)->m_a4.m_numberOfFeaturesDetected - minFeatures) / (maxFeatures - minFeatures);
cout << fixed << partArray->at(i)->m_a4.m_numberOfFeaturesDetected << endl; cout << fixed << partArray->at(i)->m_a4.m_numberOfFeaturesDetected << endl;
} }
cout << endl; cout << endl;
return true; return true;
}
bool AbstractionLayer_SURFFeatures::EvaluateQuality (coor constraintCoordinate, qualityVector& qVector)
{
//TODO: Vergleichen, welche der in qualityVector erhaltenen ähnlich viele Features besitzen, wie an der jeweiligen constraintCoordinate in der m_constraintMatrix gespeichert sind
}
bool AbstractionLayer_SURFFeatures::SetConstraintOnPosition(const coor constraintCoordinate,const AbstractionLayer_SURFFeatures_Properties constraint)
{
//TODO: Benötigen wir nicht unbedint.
//TODO: Hier erhalten wir vom Dispatcher welches Teil an welche Position gesetzt wird und wir könnten hier die Features des Bilds in die m_constraintMatrix speichern
}
bool AbstractionLayer_SURFFeatures::RemoveConstraintOnPosition(const coor constraintCoordinate)
{
//TODO: Wie auch beim SetConstraint sollte uns das hier nicht wirklich interessieren.
//TODO: Außer wir setzen etwas in die Contraintmatrix.
//TODO: Dann ruft uns der Dispatcher beim Backtrack hier auf und wir müssten das jeweilige PuzzlePart hier wieder rauslöschen.
} }

View File

@ -26,6 +26,8 @@ class AbstractionLayer_SURFFeatures : public AbstractionLayer_Base<AbstractionLa
{ {
public: public:
bool PreProcessing(coor mySize, const vector<Part*>* partArray) ; bool PreProcessing(coor mySize, const vector<Part*>* partArray) ;
bool PreProcessingFullImg(coor mySize) ;
bool PreProcessingPieces(coor mySize, const vector<Part*>* partArray) ;
bool EvaluateQuality (const coor constraintCoordinate, qualityVector& qVector); bool EvaluateQuality (const coor constraintCoordinate, qualityVector& qVector);
bool SetConstraintOnPosition(const coor constraintCoordinate,const AbstractionLayer_SURFFeatures_Properties constraint); bool SetConstraintOnPosition(const coor constraintCoordinate,const AbstractionLayer_SURFFeatures_Properties constraint);
bool RemoveConstraintOnPosition(const coor constraintCoordinate); bool RemoveConstraintOnPosition(const coor constraintCoordinate);