Processing of complete image added

Actually not running - never did since Max did stuff :)
This commit is contained in:
JRauer 2018-01-26 14:58:51 +01:00
parent 75e449b3c3
commit 462be02105
2 changed files with 85 additions and 6 deletions

View File

@ -1,15 +1,94 @@
#include "AbstractionLayer_SURFFeatures.h" #include "AbstractionLayer_SURFFeatures.h"
// Parameters for algorithm:
// maxCorners The maximum number of corners to return. If there are more corners than that will be found, the strongest of them will be returned
// qualityLevel Characterizes the minimal accepted quality of image corners;
// minDistance The minimum possible Euclidean distance between the returned corners
// mask The optional region of interest. It will specify the region in which the corners are detected
// blockSize Size of the averaging block for computing derivative covariation
// useHarrisDetector Indicates, whether to use operator or cornerMinEigenVal()
// k Free parameter of Harris detector
#include <iostream>
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#ifdef _WIN32
#define PATH_FULL_PUZZLE "..\\..\\..\\puzzle_img\\puzzle1.jpg"
#elif defined __unix__
#define PATH_FULL_PUZZLE "..//..//..//puzzle_img//puzzle1.jpg"
#elif defined __APPLE__
#define PATH_FULL_PUZZLE "..//..//..//puzzle_img//puzzle1.jpg"
#endif
using namespace cv;
using namespace std;
bool AbstractionLayer_SURFFeatures::PreProcessing(coor mySize, const vector<Part*>* partArray) bool AbstractionLayer_SURFFeatures::PreProcessing(coor mySize, const vector<Part*>* partArray)
{ {
InitialiseConstraintMatrixSize(mySize.col, mySize.row); InitialiseConstraintMatrixSize(mySize.col, mySize.row);
std::vector< cv::Point2f > corners; // Variable to store corner-positions at
//TODO: Gesamtbild mit OpenCV einlesen // -- Complete puzzle image processing --
//TODO: Gesamtbild anhand der berechneten Spalten und Zeilen auseinander schneiden (Sind in der puzzleKlasse gespeichert) // Load and resize image, so that number of parts in row and col fit in
//TODO: Features der einzelnen Felder des ausgeschnittenen Gesamtbildes in der m_constraintMatrix speichern cv::Mat image = cv::imread(PATH_FULL_PUZZLE, IMREAD_GRAYSCALE);
//cout << "PRE: " << image.cols << " x " << image.rows << endl;
cv::resize(image, image, Size(int(ceil(double(image.cols)/mySize.col)*mySize.row), int(ceil(double(image.rows)/mySize.row)*mySize.row)));
//cout << "POST: " << image.cols << " x " << image.rows << endl;
// Speichert die Features der linken oberen Ecke des Gesamtpuzzles in die constraintMatrix // PARAMETERS (for description see top of file)
m_constraintMatrix[0][0].m_numberOfFeaturesDetected = 50; int maxCorners = 10000;
double qualityLevel = 0.01;
double minDistance = .5;
cv::Mat mask;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;
// Detect features - this is where the magic happens
cv::goodFeaturesToTrack( image, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k );
int pieceColSize = image.cols/mySize.col;
int pieceRowSize = image.rows/mySize.row;
// Calculate number of features for each piece-position
for( int i = 0; i < corners.size(); i++ ) // For all found features
{
// Increment number of found pieces
m_constraintMatrix[int(ceil(corners[i].x/pieceColSize))-1][int(ceil(corners[i].y/pieceRowSize))-1].m_numberOfFeaturesDetected++;
}
// Get minimal and maximal number of features -> TODO: Do in first loop to safe time?
int minFeatures = int(m_constraintMatrix[0][0].m_numberOfFeaturesDetected);
int maxFeatures = int(m_constraintMatrix[0][0].m_numberOfFeaturesDetected);
for( int j = 0; j < mySize.row ; j++ )
{
for( int i = 0; i < mySize.col; i++ )
{
if(m_constraintMatrix[i][j].m_numberOfFeaturesDetected < minFeatures) minFeatures = int(m_constraintMatrix[i][j].m_numberOfFeaturesDetected);
if(m_constraintMatrix[i][j].m_numberOfFeaturesDetected > maxFeatures) maxFeatures = int(m_constraintMatrix[i][j].m_numberOfFeaturesDetected);
}
}
// Calculate percentage from 0 to 100% with numberOfFeatures and safe it
for( int j = 0; j < mySize.row ; j++ )
{
for( int i = 0; i < mySize.col; i++ )
{
m_constraintMatrix[i][j].m_numberOfFeaturesDetected = (m_constraintMatrix[i][j].m_numberOfFeaturesDetected - minFeatures) / (maxFeatures - minFeatures);
//cout << fixed << m_constraintMatrix[i][j].m_numberOfFeaturesDetected << " ";
}
//cout << endl;
}
// DEBUG - Display image
/*for( size_t i = 0; i < corners.size(); i++ )
{
cv::circle( image, corners[i], 2, cv::Scalar( 255. ), -1 );
}
cv::namedWindow( "Output", CV_WINDOW_AUTOSIZE );
cv::imshow( "Output", image );
cv::waitKey(0);*/
//TODO: Alle Bilder mit OpenCV öffnen und deren erkannten Features in SURFFeature_Properties der Part-Klasse speichern //TODO: Alle Bilder mit OpenCV öffnen und deren erkannten Features in SURFFeature_Properties der Part-Klasse speichern
// Speichert die erkannten Features des jeweiligen Bilds im partArray an der Stelle (->at(xxx)) // Speichert die erkannten Features des jeweiligen Bilds im partArray an der Stelle (->at(xxx))

View File

@ -9,7 +9,7 @@ public:
AbstractionLayer_SURFFeatures_Properties() {} AbstractionLayer_SURFFeatures_Properties() {}
private: private:
uint16_t m_numberOfFeaturesDetected; float m_numberOfFeaturesDetected;
friend class AbstractionLayer_SURFFeatures; friend class AbstractionLayer_SURFFeatures;
}; };