code now functional

This commit is contained in:
Raphael Maenle 2018-01-07 20:08:50 +01:00
parent fc9743a77a
commit c78518b1e9
8 changed files with 127 additions and 167 deletions

View File

@ -13,8 +13,10 @@ map<int,float> DestructionPower_Properties::SpeedTable =
bool DestructionPower::PreProcessing(coor mySize,const vector<Part*>* partArray) bool DestructionPower::PreProcessing(coor mySize,const vector<Part*>* partArray)
{ {
InitialiseConstraintMatrixSize(mySize.row,mySize.col); cout << "DestructionPower Preprocessing... ";
InitialiseConstraintMatrixSize(mySize.row,mySize.col);
cout << "Done!" << endl;
return true; return true;
} }
@ -33,7 +35,6 @@ bool DestructionPower::RemoveConstraintOnPosition(const coor constraintCoordinat
//gets destruction power from left and from top if possible and normalizes //gets destruction power from left and from top if possible and normalizes
void DestructionPower::DestructionOfSurrounding(const coor constraintCoordinate) { void DestructionPower::DestructionOfSurrounding(const coor constraintCoordinate) {
float newDestructionArray[DESTRUCTION_COUNT];
for (int i = 0; i < DESTRUCTION_COUNT; ++i) { for (int i = 0; i < DESTRUCTION_COUNT; ++i) {
m_constraintMatrix[constraintCoordinate.col][constraintCoordinate.row].DestructionArray.push_back(0); m_constraintMatrix[constraintCoordinate.col][constraintCoordinate.row].DestructionArray.push_back(0);
@ -68,20 +69,21 @@ int DestructionPower::getNextAbstractionLayer(coor newCoordinate, int currentAbs
int nextLayer=-1; int nextLayer=-1;
float nextLayerPower=0; float nextLayerPower=0;
if (currentAbstractionLayer>=0) if (currentAbstractionLayer>=0)
currentPower = m_constraintMatrix[newCoordinate.row][newCoordinate.col].DestructionArray[currentAbstractionLayer]; currentPower = m_constraintMatrix[newCoordinate.col][newCoordinate.row].DestructionArray[currentAbstractionLayer];
int i=0; int i=0;
//giff next most valuable layer //giff next most valuable layer
for(auto it:m_constraintMatrix[newCoordinate.row][newCoordinate.col].DestructionArray) for(auto it:m_constraintMatrix[newCoordinate.col][newCoordinate.row].DestructionArray)
{ {
if(it <= currentPower) if(it <= currentPower)
{//if equal, then has to be the next one (activated from left to right) {//if equal, then has to be the next one (activated from left to right)
if(it == currentPower) if(it == currentPower) {
if (i > currentAbstractionLayer) if (i > currentAbstractionLayer)
return i; return i;
}
//if this one is bigger than previous biggest one, save //if this one is bigger than previous biggest one, save
if(it>nextLayerPower) else if(it>nextLayerPower)
{ {
nextLayerPower=it; nextLayerPower=it;
nextLayer=i; nextLayer=i;

View File

@ -10,8 +10,9 @@
bool AbstractionLayer_1::PreProcessing(coor mySize, const vector<Part*>* partArray) bool AbstractionLayer_1::PreProcessing(coor mySize, const vector<Part*>* partArray)
{ {
cout << "Abstraction 1 Preprocessing... " << flush;
const vector<Part*>& ref_partArray = *partArray; const vector<Part*>& ref_partArray = *partArray;
analyseParts analyse(1008); analyseParts analyse(mySize.row*mySize.col);
Part buf; Part buf;
int iterator=0; int iterator=0;
if(!analyse.getImages()) if(!analyse.getImages())
@ -20,7 +21,8 @@ bool AbstractionLayer_1::PreProcessing(coor mySize, const vector<Part*>* partAr
return false; return false;
} }
else // hier werden alle vier verschiedenen Rotationsarten 'gleichzeitig' abgespeichert else // hier werden alle vier verschiedenen Rotationsarten 'gleichzeitig' abgespeichert
for(int i = 0; i < 1008; i++) //TODO rows and cols
for(int i = 0; i < mySize.row*mySize.col; i++)
{ {
unsigned char poempel = analyse.getTabs(i);; unsigned char poempel = analyse.getTabs(i);;
for (int j=0;j<4;j++) for (int j=0;j<4;j++)
@ -35,9 +37,10 @@ bool AbstractionLayer_1::PreProcessing(coor mySize, const vector<Part*>* partAr
InitialiseConstraintMatrixSize(mySize.col+2, mySize.row+2); InitialiseConstraintMatrixSize(mySize.col+2, mySize.row+2); //col row switched in this function
setEdgeZero(); setEdgeZero();
cout << "Done!" << endl;
return true; return true;
} }
@ -58,12 +61,12 @@ bool AbstractionLayer_1::EvaluateQuality (const coor constraintCoordinate, quali
bool AbstractionLayer_1::SetConstraintOnPosition(const coor constraintCoordinate, const AbstractionLayer_1_Properties constraint) bool AbstractionLayer_1::SetConstraintOnPosition(const coor constraintCoordinate, const AbstractionLayer_1_Properties constraint)
{ {
m_constraintMatrix[constraintCoordinate.col][constraintCoordinate.row].m_connections=constraint.m_connections; m_constraintMatrix[constraintCoordinate.col+1][constraintCoordinate.row+1].m_connections=constraint.m_connections;
} }
bool AbstractionLayer_1::RemoveConstraintOnPosition(const coor constraintCoordinate) bool AbstractionLayer_1::RemoveConstraintOnPosition(const coor constraintCoordinate)
{ {
m_constraintMatrix[constraintCoordinate.col][constraintCoordinate.row].m_connections=0b11111111; m_constraintMatrix[constraintCoordinate.col+1][constraintCoordinate.row+1].m_connections=0b11111111;
} }
void AbstractionLayer_1::CreateRandomPuzzle() void AbstractionLayer_1::CreateRandomPuzzle()
@ -107,9 +110,9 @@ void AbstractionLayer_1::CreateRandomPuzzle()
tempPiece and_eq (uint8_t)0b11001111; tempPiece and_eq (uint8_t)0b11001111;
//set piece if piece good //set piece if piece good
if(PlaceOfPartGood(coor(col,row),tempPiece)) if(PlaceOfPartGood(coor((unsigned int)col,(unsigned int)row),tempPiece))
{ {
m_constraintMatrix[row][col].m_connections = tempPiece; m_constraintMatrix[col][row].m_connections = tempPiece;
col++; col++;
} }
} }
@ -163,8 +166,6 @@ bool AbstractionLayer_1::PlaceOfPartGood(coor myCoor, uint8_t& myPart)
negativePart or_eq (m_constraintMatrix[myCoor.row-1][myCoor.col].m_connections & 0b00001100); negativePart or_eq (m_constraintMatrix[myCoor.row-1][myCoor.col].m_connections & 0b00001100);
negativePart or_eq (m_constraintMatrix[myCoor.row][myCoor.col+1].m_connections & 0b00000011); negativePart or_eq (m_constraintMatrix[myCoor.row][myCoor.col+1].m_connections & 0b00000011);
shift(negativePart,2); shift(negativePart,2);
if(negativePart & 0b11000000)
return 1;
if ( if (
( ((((negativePart & 0b11000000) ^ (myPart & 0b11000000)) != 0b00000000) && (((myPart & 0b11000000) != 0b00000000) && (negativePart & 0b11000000) != 0b00000000)) ( ((((negativePart & 0b11000000) ^ (myPart & 0b11000000)) != 0b00000000) && (((myPart & 0b11000000) != 0b00000000) && (negativePart & 0b11000000) != 0b00000000))
|| ((((negativePart & 0b11000000) == 0b11000000) || ((myPart & 0b11000000) == 0b11000000)) && (((myPart & 0b11000000) != 0b00000000) && (negativePart & 0b11000000) != 0b00000000)) || ((((negativePart & 0b11000000) == 0b11000000) || ((myPart & 0b11000000) == 0b11000000)) && (((myPart & 0b11000000) != 0b00000000) && (negativePart & 0b11000000) != 0b00000000))
@ -220,8 +221,6 @@ Mat analyseParts::readImages(int count)
Mat ref_gray; Mat ref_gray;
sprintf(name, PATH, count); sprintf(name, PATH, count);
cout << "path" << name << endl;
Mat src = imread(name, 1); Mat src = imread(name, 1);
if (!src.data) if (!src.data)
{ {

View File

@ -12,6 +12,7 @@ class AbstractionLayer_1_Properties
public: public:
AbstractionLayer_1_Properties() : m_connections(0b11111111) {} AbstractionLayer_1_Properties() : m_connections(0b11111111) {}
void shift(int shifts); void shift(int shifts);
uint8_t getConnections(){return m_connections;};
void print(); void print();
private: private:

View File

@ -59,6 +59,10 @@ void Puzzle::removeConstrains(coor removeCoordinates)
{ {
this->a1.RemoveConstraintOnPosition(removeCoordinates); this->a1.RemoveConstraintOnPosition(removeCoordinates);
} }
void Puzzle::setConstraints(coor setConstraints, Part* constraintPiece)
{
this->a1.SetConstraintOnPosition(setConstraints,constraintPiece->m_a1);
}
void Puzzle::createRandomPuzzle() void Puzzle::createRandomPuzzle()
{ {
@ -67,13 +71,13 @@ void Puzzle::createRandomPuzzle()
void Puzzle::createp_box() void Puzzle::createp_box()
{ {
for(int i=0;i<rows*cols*4;i++) for(int i=0;i<cols*rows*4;i++)
p_myBox.push_back(&myBox[i]); p_myBox.push_back(&myBox[i]);
} }
//creates a box of puzzlepieces with nothing other than puzzle piece id and correct nr of pieces //creates a box of puzzlepieces with nothing other than puzzle piece id and correct nr of pieces
void Puzzle::createBox(){ void Puzzle::createBox(){
for(int i=0;i<rows*cols*4;i++) for(int i=0;i<cols*rows;i++)
{ {
Part temp; Part temp;
temp.SetPartID(i); temp.SetPartID(i);
@ -89,6 +93,8 @@ void Puzzle::createBox(){
} }
bool Puzzle::allSet() { bool Puzzle::allSet() {
//TODO! check if all puzzlepieces are set for(auto it:myBox)
if(!it.set)
return false; return false;
return true;
} }

View File

@ -1,8 +1,6 @@
#include "../../header.h" #include "../../header.h"
void status(vector<LogEntry>& log, vector<Part*>& p_Box);
bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector& cqVector); bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector& cqVector);
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth); void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth);
void sort(vector<LogEntry>& log);
void cut(vector<LogEntry>& log, int& cutID); void cut(vector<LogEntry>& log, int& cutID);
float capLogElements(vector<LogEntry>& log); float capLogElements(vector<LogEntry>& log);
void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector& cqVector); void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector& cqVector);
@ -11,35 +9,31 @@ bool next(vector<LogEntry>& log,Puzzle& puzzleMat)
{ {
//last log element is set, create new log element or log not yet started //last log element is set, create new log element or log not yet started
if(!(log.size()) || log.back().isSet()) if(!(log.size()) || log.back().isSet())
{
if((puzzleMat.allSet())) return false; //puzzle solved if((puzzleMat.allSet())) return false; //puzzle solved
else createNextLogElement(log,puzzleMat); else createNextLogElement(log,puzzleMat);
}
//last log element is empty, backtrack //last log element is empty, backtrack
else if(!(log.back().PieceCollector.size())) backtrack(log,puzzleMat); else if(!(log.back().PieceCollector.size()))
{
if(!(backtrack(log,puzzleMat)))
return false;
}
//case last log element has multiple entries //case last log element has multiple entries
else if(log.back().PieceCollector.size() > 1) else if(log.back().PieceCollector.size() > 1)
{
//moreLayers is 0, setbest is 1 //moreLayers is 0, setbest is 1
if (SetBestOrMoreLayersArithmetical(log, puzzleMat.combinedQualityVector)) setsolution(log, puzzleMat); if (SetBestOrMoreLayersArithmetical(log, puzzleMat.combinedQualityVector)) setsolution(log, puzzleMat);
else solve(log, puzzleMat); else solve(log, puzzleMat);
}
//case last log exactly one solution //case last log exactly one solution
else if(log.back().PieceCollector.size() == 1) else if(log.back().PieceCollector.size() == 1)
{
if(log.back().hasRandomed()) if(log.back().hasRandomed())
{
if(log.back().abstractionLevel < 2)//do 2 at least two best abstractions to check if part is okay if(log.back().abstractionLevel < 2)//do 2 at least two best abstractions to check if part is okay
{
log.back().advance();
solve(log,puzzleMat); solve(log,puzzleMat);
}
else else
setsolution(log,puzzleMat); setsolution(log,puzzleMat);
}
else else
setsolution(log,puzzleMat); setsolution(log,puzzleMat);
}
return true; return true;
} }
@ -48,10 +42,10 @@ void createNextLogElement(vector<LogEntry>& log, Puzzle& puzzleMat)
log.emplace_back(LogEntry(coor(0, 0))); log.emplace_back(LogEntry(coor(0, 0)));
log.back().myCoor = calculateNextCoor(log, puzzleMat); log.back().myCoor = calculateNextCoor(log, puzzleMat);
puzzleMat.dp.DestructionOfSurrounding(log.back().myCoor);//calculate dp from surrounding puzzleMat.dp.DestructionOfSurrounding(log.back().myCoor);//calculate dp from surrounding
//get all not set pieces
for(auto it:puzzleMat.p_myBox) for(auto it:puzzleMat.p_myBox)
if(!it->set)
log.back().PieceCollector.emplace_back(pair<float,Part*>(0,it)); log.back().PieceCollector.emplace_back(pair<float,Part*>(0,it));
cout << puzzleMat.p_myBox.size() << endl;
cout << log.back().PieceCollector.size() << endl;
solve(log,puzzleMat); solve(log,puzzleMat);
} }
@ -65,25 +59,27 @@ coor calculateNextCoor(vector<LogEntry>& log, Puzzle& puzzleMat)
return {0,0}; return {0,0};
unsigned int m= log.rbegin()[1].myCoor.col; unsigned int col= log.rbegin()[1].myCoor.col;
unsigned int n= log.rbegin()[1].myCoor.row; unsigned int row= log.rbegin()[1].myCoor.row;
if(m<puzzleMat.getSizeAsCoor().col-1) m++; if(row<puzzleMat.getSizeAsCoor().row-1) row++;
else if(n<puzzleMat.getSizeAsCoor().row-1){ m=0; n++;} else if(col<puzzleMat.getSizeAsCoor().col-1){ row=0; col++;}
return {m,n}; return {col,row};
} }
void solve(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat) void solve(vector<LogEntry>& log,Puzzle& puzzleMat)
{ {
log.back().abstractionLevel = puzzleMat.dp.getNextAbstractionLayer(log.back().myCoor,log.back().abstractionLevel); //sets in abstractionLevel log.back().abstractionLevel = puzzleMat.dp.getNextAbstractionLayer(log.back().myCoor,log.back().abstractionLevel); //sets in abstractionLevel
//status(log,p_Box,puzzleMat); //status(log,p_Box,puzzleMat);
switch(log.back().abstractionLevel) switch(log.back().abstractionLevel)
{ {
case 0: case 0://pömpel
puzzleMat.a1.EvaluateQuality(log.back().myCoor, log.back().PieceCollector); puzzleMat.a1.EvaluateQuality(log.back().myCoor, log.back().PieceCollector);
break; break;
case -1://random
setsolution(log,puzzleMat);
return;
default: default:
break; break;
} }
@ -100,19 +96,26 @@ void setsolution(vector<LogEntry>& log, Puzzle& puzzleMat)
//advance number of randomed part count //advance number of randomed part count
if(log.back().PieceCollector.size()>1) log.back().advanceRandomed(); if(log.back().PieceCollector.size()>1) log.back().advanceRandomed();
//remove first element in last logelement from box //'set=true' all 4 rotations of pieces in puzzleBox
for(int i=0;i<puzzleMat.p_myBox.size();) for(int i=0;i<puzzleMat.p_myBox.size();i++)
if(puzzleMat.p_myBox[i]==log.back().PieceCollector.begin()->second)//mach ich das richtig so?! if(puzzleMat.p_myBox[i]->GetPartID()==log.back().PieceCollector.begin()->second->GetPartID())
puzzleMat.p_myBox.erase(puzzleMat.p_myBox.begin()+i); puzzleMat.p_myBox[i]->set=true;
else
i++;
puzzleMat.combinedQualityVector.clear(); //clear data from temp variable
//tell log entry that it is set //tell log entry that it is set
log.back().Set(); log.back().Set();
puzzleMat.setConstraints(log.back().myCoor,log.back().PieceCollector.begin()->second);
cout << "set:" << log.back().myCoor.col << "," << log.back().myCoor.row << endl;
} }
bool backtrack(vector<LogEntry>& log, Puzzle& puzzleMat) bool backtrack(vector<LogEntry>& log, Puzzle& puzzleMat)
{ {
if(log.empty())
{
cout << "Puzzle not solveable!" << endl;
return false;
}
puzzleMat.combinedQualityVector.clear(); //remove all data from temp quality save
//if more pieces possible, take next piece //if more pieces possible, take next piece
if((log.back().PieceCollector.size())>1) if((log.back().PieceCollector.size())>1)
{ {
@ -131,42 +134,22 @@ bool backtrack(vector<LogEntry>& log, Puzzle& puzzleMat)
{ {
puzzleMat.removeConstrains(log.back().myCoor); //this should remove constraints from all layers puzzleMat.removeConstrains(log.back().myCoor); //this should remove constraints from all layers
if((log.back().PieceCollector.size())) if((log.back().PieceCollector.size()))
puzzleMat.p_myBox.emplace_back(log.back().PieceCollector.begin()->second); for(int i=0;i<puzzleMat.p_myBox.size();i++)
if(puzzleMat.p_myBox[i]->GetPartID()==log.back().PieceCollector.begin()->second->GetPartID())//sets all with partid
puzzleMat.p_myBox[i]->set=false;
log.pop_back(); log.pop_back();
backtrack(log,puzzleMat); if(!backtrack(log,puzzleMat))
return false;
return true;
} }
} }
void status(vector<LogEntry>& log, Puzzle& puzzleMat)
{
cout << "----------------------------" << endl;
cout << "status:" << endl;
cout << "hasrandomed: " << log[0].hasRandomed() << endl;
for(int i=0;i<log.size();i++)
{
cout << "log #" << i << ":" << endl;
cout << "piecenr " << log[i].PieceCollector.size() << endl;
if(log[i].isSet())
cout << "isset: 1" << endl;
else
cout << "isset: 0" << endl;
cout << "col: " << log[i].myCoor.col<< " row: " << log[i].myCoor.row << endl;
}
cout << endl;
cout << "Box:" << endl;
cout << "size: " << puzzleMat.p_myBox.size() << endl;
cout << "Puzzle:" << endl;
puzzleMat.printPuzzle();
cout << "----------------------------" << endl;
}
//this is addon stuff that should later all be extracted into a sererate cpp as it is not core dispatcher functionality //this is addon stuff that should later all be extracted into a sererate cpp as it is not core dispatcher functionality
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth) { void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth) {
float destructionPower = sqrt( float destructionPower = sqrt(
Layerworth * puzzleMat.dp.m_constraintMatrix[0][0].SpeedTable[log.back().abstractionLevel]); Layerworth * puzzleMat.dp.m_constraintMatrix[0][0].SpeedTable[log.back().abstractionLevel+1]);
puzzleMat.dp.setDestructionPower(log.back().myCoor, log.back().abstractionLevel, destructionPower); puzzleMat.dp.setDestructionPower(log.back().myCoor, log.back().abstractionLevel, destructionPower);
} }
@ -193,13 +176,14 @@ float capLogElements(vector<LogEntry>& log)
if(log.back().PieceCollector[id].first < limit) if(log.back().PieceCollector[id].first < limit)
break; break;
} }
int newid=0;
if(id>0)
newid = --id; //set to the one just over limit
while(id<(log.back().PieceCollector.size()-1)) //find maximum difference in function
int newid = --id; //set to the one just over limit
while(id<log.back().PieceCollector.size()-1) //find maximum difference in function
{ {
if(!log.back().PieceCollector[id].first)
break;
diff = log.back().PieceCollector[id].first - log.back().PieceCollector[++id].first; diff = log.back().PieceCollector[id].first - log.back().PieceCollector[++id].first;
if(diff > maxdiff) if(diff > maxdiff)
@ -217,21 +201,6 @@ float capLogElements(vector<LogEntry>& log)
} }
qualityVector::iterator FindPartInLog(vector<LogEntry>& log, Part* wishedPartPointer)
{
qualityVector::iterator partOnPositionIterator = log.back().PieceCollector.begin();
while (partOnPositionIterator != log.back().PieceCollector.end())
{
if(partOnPositionIterator->second == wishedPartPointer)
break;
else
partOnPositionIterator++;
}
return partOnPositionIterator;
}
void cut(vector<LogEntry>& log, int& cutID) void cut(vector<LogEntry>& log, int& cutID)
{ {
while(cutID<log.back().PieceCollector.size()) while(cutID<log.back().PieceCollector.size())
@ -243,17 +212,17 @@ void cut(vector<LogEntry>& log, int& cutID)
// geeignete Threshold values muessen noch getestet werden // geeignete Threshold values muessen noch getestet werden
bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector& cqVector) bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector& cqVector)
{ {
float threshold = 1.0, tempBest = 0.0; float threshold, tempBest = 0.0;
unsigned int countHigherThreshold = 0; unsigned int countHigherThreshold = 0;
if(cqVector.empty()) if(cqVector.empty())
{ {
cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack? //cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack?
return false; // Warning: can only return true or false. What return for error? return false; // Warning: can only return true or false. What return for error?
} }
else else
{ {
switch(log.back().abstractionLevel) switch(log.back().abstractionLevel+1)
{ {
case 1: threshold = 0.90; break; case 1: threshold = 0.90; break;
case 2: threshold = 0.80; break; case 2: threshold = 0.80; break;
@ -265,20 +234,12 @@ bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector& cqVec
// check Quality of current Puzzle Piece in combinedQualityVector with Threshold value // check Quality of current Puzzle Piece in combinedQualityVector with Threshold value
for (qualityVector::iterator it = cqVector.begin(); it != cqVector.end(); it++) for (qualityVector::iterator it = cqVector.begin(); it != cqVector.end(); it++)
{
if ((cqVector.back().first / log.back().abstractionLevel) >= threshold) // const threshold values if ((cqVector.back().first / log.back().abstractionLevel) >= threshold) // const threshold values
{
// count how many Pieces are greater than the threshold value // count how many Pieces are greater than the threshold value
countHigherThreshold++; countHigherThreshold++;
}
else else
{
if ((cqVector.back().first / log.back().abstractionLevel) > tempBest) if ((cqVector.back().first / log.back().abstractionLevel) > tempBest)
{
tempBest = cqVector.back().first; // could be used, for additional constraints tempBest = cqVector.back().first; // could be used, for additional constraints
}
}
}
// return true if only one piece is left // return true if only one piece is left
if (1 == countHigherThreshold) if (1 == countHigherThreshold)
@ -302,48 +263,37 @@ void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector,
// check if both qualityVectors are not empty // check if both qualityVectors are not empty
if(qVector.empty()) if(qVector.empty())
{ {
cerr << "qualityVector is empty." << endl; // should not be empty => backtrack? //cerr << "qualityVector is empty." << endl; // should not be empty => backtrack?
return; return;
} }
else if(cqVector.empty()) if(cqVector.empty())
{ {
cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack? //cout << "combinedQualityVector was initialized." << endl; //first layer stuff eh
return; for(auto it:qVector)
cqVector.emplace_back(it);
} }
else else
{ {
for (unsigned int i = 0; i < cqVector.size(); i++) for (unsigned int i = 0; i < cqVector.size(); i++) {
{ for (unsigned int j = 0; j < qVector.size(); j++) {
summarizedVectors = false;
for (unsigned int j = 0; j < qVector.size(); j++)
{
// search same PuzzlePart of qualityVector and combinedQualityVector // search same PuzzlePart of qualityVector and combinedQualityVector
if (&cqVector.at(i).second == &qVector.at(j).second) if (&cqVector.at(i).second == &qVector.at(j).second) {
{
// sum Quality of PieceCollector (qualityVector) to combinedQualityVector // sum Quality of PieceCollector (qualityVector) to combinedQualityVector
cqVector.at(j).first += qVector.at(i).first; cqVector.at(j).first += qVector.at(i).first;
countSummarizedVectors++; countSummarizedVectors++;
summarizedVectors = true; break; // skip remaining for loop => save time!
continue; // skip remaining for loop => save time!
} }
}
// remove element at poisition X in combinedQualityVector, because it was not summarized // remove element at poisition X in combinedQualityVector, because it was not summarized
if (!summarizedVectors)
{
// inefficient way to delete element X // inefficient way to delete element X
//cqVector->erase(cqVector->begin()+i); //cqVector->erase(cqVector->begin()+i);
// efficient way, but no sorted cqVector => wayne //echt? lol
// efficient way, but no sorted cqVector => wayne
swap(cqVector.at(i), cqVector.back()); swap(cqVector.at(i), cqVector.back());
cqVector.pop_back(); cqVector.pop_back();
} }
} }
// cqVector should have the same size now as newest qVector // cqVector should have the same size now as newest qVector
if (cqVector.size() != qVector.size()) if (cqVector.size() != qVector.size()) {
{
cerr << "Size of combinedQualityVector doenst match with size of qualityVector!" << endl; cerr << "Size of combinedQualityVector doenst match with size of qualityVector!" << endl;
cout << "Size of combinedQualityVector: " << cqVector.size() << endl; cout << "Size of combinedQualityVector: " << cqVector.size() << endl;
cout << "Size of qualityVector: " << qVector.size() << endl; cout << "Size of qualityVector: " << qVector.size() << endl;

View File

@ -14,7 +14,7 @@ class LayerContainer;
class Part class Part
{ {
public: public:
Part() : m_partID(0), m_numOfRotations(0) Part() : m_partID(0), m_numOfRotations(0), set(false)
{} {}
~Part() = default; ~Part() = default;
@ -40,8 +40,8 @@ public:
void print(){m_a1.print();} void print(){m_a1.print();}
bool set;
AbstractionLayer_1_Properties m_a1; AbstractionLayer_1_Properties m_a1;
DestructionPower_Properties m_destruction;
private: private:
int32_t m_partID; int32_t m_partID;
uint8_t m_numOfRotations; uint8_t m_numOfRotations;

View File

@ -39,13 +39,13 @@ class Puzzle
{ {
public: public:
Puzzle(unsigned int newcols,unsigned int newrows):rows(newrows),cols(newcols) {} Puzzle(unsigned int newcols,unsigned int newrows):cols(newcols),rows(newrows) {}
bool PreProcessing() bool PreProcessing()
{ {
createBox(); createp_box(); createBox(); createp_box();
dp.PreProcessing({rows,cols}, nullptr); dp.PreProcessing({cols,rows}, nullptr);
a1.PreProcessing({rows,cols}, &p_myBox); a1.PreProcessing({cols,rows}, &p_myBox);
return true; return true;
} }
@ -55,6 +55,7 @@ public:
AbstractionLayer_1 a1; AbstractionLayer_1 a1;
void removeConstrains(coor removeCoordinates); void removeConstrains(coor removeCoordinates);
void setConstraints(coor setConstraints, Part *constraintPiece);
void printPuzzle(); void printPuzzle();
void printBox(); void printBox();
@ -74,8 +75,8 @@ public:
private: private:
unsigned int rows;
unsigned int cols; unsigned int cols;
unsigned int rows;
}; };
bool next(vector<LogEntry>& log,Puzzle& puzzleMat); bool next(vector<LogEntry>& log,Puzzle& puzzleMat);

View File

@ -16,10 +16,11 @@ int main()
} }
//puzzleMat.createRandomBox(); //puzzleMat.createRandomBox();
puzzleMat.a1.printConstraintMatrix();
cout << "Solving Puzzle now...";
while(next(log, puzzleMat)); while(next(log, puzzleMat));
cout << "Done!" << endl;
puzzleMat.printPuzzle(); puzzleMat.printPuzzle();
return 0; return 0;
} }