PuzzleSolver/Source/functions/AbstractionLayers/Layer_SURFFeatures/AbstractionLayer_SURFFeatures.cpp
JRauer be49687f31 Debug-Stuff, Part turned 4x for partArray, Unbelieveable slow when layer is on...
Unbelieveable slow when layer is on... -> may be a solver problem?
Solution found (see slack). Pömpel ignored. No Seg-Faults anymore
2018-01-27 12:35:14 +01:00

191 lines
8.1 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "AbstractionLayer_SURFFeatures.h"
// Parameters for algorithm:
// maxCorners The maximum number of corners to return. If there are more corners than that will be found, the strongest of them will be returned
// qualityLevel Characterizes the minimal accepted quality of image corners;
// minDistance The minimum possible Euclidean distance between the returned corners
// mask The optional region of interest. It will specify the region in which the corners are detected
// blockSize Size of the averaging block for computing derivative covariation
// useHarrisDetector Indicates, whether to use operator or cornerMinEigenVal()
// k Free parameter of Harris detector
#include <iostream>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
bool AbstractionLayer_SURFFeatures::PreProcessing(coor mySize, const vector<Part*>* partArray)
{
cout << "Abstraction 4 (Features) Preprocessing... " << flush;
InitialiseConstraintMatrixSize(mySize.col, mySize.row);
if(!PreProcessingFullImg(mySize)) return false;
if(!PreProcessingPieces(mySize, partArray)) return false;
cout << "Done!" << endl;
return true;
}
bool AbstractionLayer_SURFFeatures::EvaluateQuality (coor constraintCoordinate, qualityVector& qVector)
{
// Calculate absolute difference between constraints and each piece and safe it
for( int i = 0; i < qVector.size(); i++ )
{
float diff = abs(m_constraintMatrix[constraintCoordinate.col][constraintCoordinate.row].m_numberOfFeaturesDetected - qVector[i].second->m_a4.m_numberOfFeaturesDetected);
qVector[i].first = 1 - diff;
// cout << i << " " << fixed << qVector[i].first << endl;
}
// cout << " Matrix: " << m_constraintMatrix[constraintCoordinate.col][constraintCoordinate.row].m_numberOfFeaturesDetected << endl;
return true;
}
bool AbstractionLayer_SURFFeatures::SetConstraintOnPosition(const coor constraintCoordinate, const AbstractionLayer_SURFFeatures_Properties constraint)
{
//TODO: Benötigen wir nicht unbedint.
//TODO: Hier erhalten wir vom Dispatcher welches Teil an welche Position gesetzt wird und wir könnten hier die Features des Bilds in die m_constraintMatrix speichern
return true;
}
bool AbstractionLayer_SURFFeatures::RemoveConstraintOnPosition(const coor constraintCoordinate)
{
//TODO: Wie auch beim SetConstraint sollte uns das hier nicht wirklich interessieren.
//TODO: Außer wir setzen etwas in die Contraintmatrix.
//TODO: Dann ruft uns der Dispatcher beim Backtrack hier auf und wir müssten das jeweilige PuzzlePart hier wieder rauslöschen.
return true;
}
bool AbstractionLayer_SURFFeatures::PreProcessingFullImg(coor mySize)
{
std::vector< cv::Point2f > corners; // Variable to store corner-positions at
// Load and resize image, so that number of parts in row and col fit in
Mat image = imread(PATH_FULL_PUZZLE, IMREAD_GRAYSCALE);
if (!image.data) {
cerr << "Problem loading image of complete puzzle!" << endl;
return false;
}
//cout << "PRE: " << image.cols << " x " << image.rows << endl;
resize(image, image, Size(int(ceil(double(image.cols)/mySize.col)*mySize.col), int(ceil(double(image.rows)/mySize.row)*mySize.row)));
//cout << "POST: " << image.cols << " x " << image.rows << endl;
// PARAMETERS (for description see top of file)
int maxCorners = 12000;
double qualityLevel = 0.01;
double minDistance = .5;
Mat mask;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;
// Detect features - this is where the magic happens
goodFeaturesToTrack( image, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k );
// Empty the matrix
for( int j = 0; j < mySize.row ; j++ )
{ for( int i = 0; i < mySize.col; i++ )
{
m_constraintMatrix[i][j].m_numberOfFeaturesDetected = 0;
//cout << m_constraintMatrix[i][j].m_numberOfFeaturesDetected << " ";
}
//cout << endl;
}
int pieceColSize = image.cols/mySize.col;
int pieceRowSize = image.rows/mySize.row;
// Calculate number of features for each piece-position
for( int i = 0; i < corners.size(); i++ ) // For all found features
{
// Increment number of found pieces
m_constraintMatrix[int(corners[i].x/pieceColSize)][int(corners[i].y/pieceRowSize)].m_numberOfFeaturesDetected++;
}
// Get minimal and maximal number of features -> TODO: Do in first loop to safe time?
int minFeatures = int(m_constraintMatrix[0][0].m_numberOfFeaturesDetected);
int maxFeatures = int(m_constraintMatrix[0][0].m_numberOfFeaturesDetected);
for( int j = 0; j < mySize.row ; j++ )
{
for( int i = 0; i < mySize.col; i++ )
{
if(m_constraintMatrix[i][j].m_numberOfFeaturesDetected < minFeatures) minFeatures = int(m_constraintMatrix[i][j].m_numberOfFeaturesDetected);
if(m_constraintMatrix[i][j].m_numberOfFeaturesDetected > maxFeatures) maxFeatures = int(m_constraintMatrix[i][j].m_numberOfFeaturesDetected);
//cout << fixed << m_constraintMatrix[i][j].m_numberOfFeaturesDetected << " ";
}
//cout << endl;
}
// Calculate percentage from 0 to 100% (normalized 0-1) with numberOfFeatures and safe it
for( int j = 0; j < mySize.row ; j++ )
{
for( int i = 0; i < mySize.col; i++ )
{
m_constraintMatrix[i][j].m_numberOfFeaturesDetected = (m_constraintMatrix[i][j].m_numberOfFeaturesDetected - minFeatures) / (maxFeatures - minFeatures);
//cout << fixed << m_constraintMatrix[i][j].m_numberOfFeaturesDetected << " ";
}
//cout << endl;
}
// DEBUG - Display image
/*for( size_t i = 0; i < corners.size(); i++ )
{
cv::circle( image, corners[i], 2, cv::Scalar( 255. ), -1 );
}
cv::namedWindow( "Output", CV_WINDOW_AUTOSIZE );
cv::imshow( "Output", image );
cv::waitKey(0);*/
return true;
}
bool AbstractionLayer_SURFFeatures::PreProcessingPieces(coor mySize, const vector<Part*>* partArray)
{
std::vector< cv::Point2f > corners; // Variable to store corner-positions at
// PARAMETERS (for description see top of file)
int maxCorners = 500;
double qualityLevel = 0.05;
double minDistance = .5;
Mat mask;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;
int minFeatures = maxCorners;
int maxFeatures = 0;
char name[100];
for (unsigned imgID = 0; imgID < mySize.col*mySize.row; imgID++) {
sprintf(name, PATH1, imgID);
Mat src = imread(name, IMREAD_GRAYSCALE);
if (!src.data) {
cerr << "Problem loading image of puzzle piece!" << endl;
return false;
} else {
goodFeaturesToTrack(src, corners, maxCorners, qualityLevel, minDistance, mask, blockSize,
useHarrisDetector, k);
if (corners.size() < minFeatures) minFeatures = corners.size();
if (corners.size() > maxFeatures) maxFeatures = corners.size();
for(int rotate = 0; rotate < 4; rotate++)
partArray->at(imgID*4 + rotate)->m_a4.m_numberOfFeaturesDetected = corners.size();
//cout << imgID << ":" << partArray->at(imgID*4)->m_a4.m_numberOfFeaturesDetected << endl;
//cout << imgID << " " << corners.size() << endl;
/*for( size_t i = 0; i < corners.size(); i++ ) {
cv::circle( src, corners[i], 2, cv::Scalar( 255. ), -1 );
}
cv::namedWindow( "Output", CV_WINDOW_AUTOSIZE );
cv::imshow( "Output", src );
cv::waitKey(0);*/
}
}
// Calculate percentage from 0 to 100% (normalized 0-1) with numberOfFeatures and safe it
for( unsigned i = 0; i < partArray->size(); i++ )
{
partArray->at(i)->m_a4.m_numberOfFeaturesDetected = (partArray->at(i)->m_a4.m_numberOfFeaturesDetected - minFeatures) / (maxFeatures - minFeatures);
//cout << fixed << partArray->at(i)->m_a4.m_numberOfFeaturesDetected << endl;
}
//cout << endl;
return true;
}