PuzzleSolver/Source/functions/AbstractionLayers/Layer1/AbstractionLayer_1.cpp
2018-01-20 09:40:03 +01:00

727 lines
25 KiB
C++

//
// Created by mpapa on 05.12.2017.
//
#include "AbstractionLayer_1.h"
#include "../../../header.h"
#include <iostream>
#include <bitset>
bool AbstractionLayer_1::PreProcessing(coor mySize, const vector<Part*>* partArray)
{
cout << "Abstraction 1 Preprocessing... " << flush;
const vector<Part*>& ref_partArray = *partArray;
analyseParts analyse(mySize.row*mySize.col);
Part buf;
int iterator=0;
if(!analyse.getImages())
{
cerr << "Error occured in getImages!" << endl;
return false;
}
else // hier werden alle vier verschiedenen Rotationsarten 'gleichzeitig' abgespeichert
//TODO rows and cols
for(int i = 0; i < mySize.row*mySize.col; i++)
{
unsigned char poempel = analyse.getTabs(i);;
for (int j=0;j<4;j++)
{
ref_partArray[iterator]->m_a1.m_connections=poempel;
shift(poempel,1);
iterator++;
}
}
//Zugriff auf den vector mit den einzelnen teilen: part[0].getConnenctions() entspricht pömpel von bild 0.jpg und liefert ein unsigned char, poempl Belegung wie ausgemacht
InitialiseConstraintMatrixSize(mySize.col+2, mySize.row+2); //col row switched in this function
setEdgeZero();
cout << "Done!" << endl;
return true;
}
//it through qualityVector and removes all that do not trigger PlaceOfPartGood
bool AbstractionLayer_1::EvaluateQuality (const coor constraintCoordinate, qualityVector& qVector)
{
if(constraintCoordinate.row==23 && constraintCoordinate.col==35)
cout << "in" << endl;
//evaluateQuality = evaluateProbabilaty
for(int i = 0;i<qVector.size();i++)
{
if(PlaceOfPartGood(constraintCoordinate, qVector[i].second->m_a1.m_connections))
{
qVector[i].first=1;
continue;
}
qVector[i].first=0;
}
}
bool AbstractionLayer_1::SetConstraintOnPosition(const coor constraintCoordinate, const AbstractionLayer_1_Properties constraint)
{
m_constraintMatrix[constraintCoordinate.col+1][constraintCoordinate.row+1].m_connections=constraint.m_connections;
}
bool AbstractionLayer_1::RemoveConstraintOnPosition(const coor constraintCoordinate)
{
m_constraintMatrix[constraintCoordinate.col+1][constraintCoordinate.row+1].m_connections=0b11111111;
}
int AbstractionLayer_1::RemoveSimilar(qualityVector& qVector,uint8_t& constraints)
{
//
for(int i=0;i<qVector.size();)
{
if(qVector[i].second->m_a1.m_connections==constraints)
qVector.erase(qVector.begin()+i);
else
i++;
}
}
void AbstractionLayer_1::CreateRandomPuzzle()
{
std::minstd_rand simple_rand;
simple_rand.seed((unsigned int)time(nullptr)); //dumbo
for(int col = 0; col < m_constraintMatrix.size()-2; col++){
for(int row = 0; row < (m_constraintMatrix[col].size() - 2);)
{
//create random piece
uint8_t tempPiece = 0b00000000;
if(simple_rand()%2)
tempPiece|=0b01000000;
else
tempPiece|=0b10000000;
if(simple_rand()%2)
tempPiece|=0b00010000;
else
tempPiece|=0b00100000;
if(simple_rand()%2)
tempPiece|=0b00000100;
else
tempPiece|=0b00001000;
if(simple_rand()%2)
tempPiece|=0b00000001;
else
tempPiece|=0b00000010;
//set edges and corners to 00
if(row == 0)
tempPiece and_eq (uint8_t)0b00111111;
if(row == (m_constraintMatrix[col].size() - 3))
tempPiece and_eq (uint8_t)0b11110011;
if(col == 0)
tempPiece and_eq (uint8_t)0b11111100;
if(col == (m_constraintMatrix.size() - 3))
tempPiece and_eq (uint8_t)0b11001111;
//set piece if piece good
if(PlaceOfPartGood(coor((unsigned int)col,(unsigned int)row),tempPiece))
{
m_constraintMatrix[col+1][row+1].m_connections = tempPiece;
row++;
}
}
}
}
//puts all pieces of the current constraint matrix into a puzzlebox
qualityVector AbstractionLayer_1::returnInBox(vector<Part>& PuzzleBox)
{
if(!(PuzzleBox.size()))
for(int i = 0; i< (m_constraintMatrix.size()-2)*(m_constraintMatrix[0].size()-2);i++)
PuzzleBox.emplace_back(Part());
int i=0;
for(int col=1;col<m_constraintMatrix.size()-1;col++)
for(int row=1;row<m_constraintMatrix[col].size()-1;row++)
PuzzleBox[i++].m_a1.m_connections=m_constraintMatrix[col][row].m_connections;
}
void AbstractionLayer_1::printConstraintMatrix() {
for (int j=0;j<m_constraintMatrix[0].size();j++) {
for (int i=0;i<m_constraintMatrix.size();i++)
std::cout << std::bitset<8>(m_constraintMatrix[i][j].m_connections) << " ";
std::cout << std::endl;
}
cout.flush();
}
void AbstractionLayer_1::setEdgeZero()
{
for(int row = 0; row < m_constraintMatrix.size(); row++)
for(int col = 0; col < m_constraintMatrix[row].size(); col++)
if(col == 0 || col == (m_constraintMatrix[row].size() - 1) || row == 0 || row == (m_constraintMatrix.size() - 1))
m_constraintMatrix[row][col].m_connections=0b00000000;
}
//checks if the myPart in its current orientation is legal in position m, n
bool AbstractionLayer_1::PlaceOfPartGood(coor myCoor, uint8_t& myPart)
{
//sets coordinates to correct position for layer
myCoor.row++;
myCoor.col++;
uint8_t negativePart=0b00000000;
negativePart or_eq (m_constraintMatrix[myCoor.col+1][myCoor.row].m_connections & 0b00000011);
negativePart or_eq (m_constraintMatrix[myCoor.col][myCoor.row-1].m_connections & 0b00001100);
negativePart or_eq (m_constraintMatrix[myCoor.col-1][myCoor.row].m_connections & 0b00110000);
negativePart or_eq (m_constraintMatrix[myCoor.col][myCoor.row+1].m_connections & 0b11000000);
shift(negativePart,2);
if (
( ((((negativePart & 0b11000000) ^ (myPart & 0b11000000)) != 0b00000000) && (((myPart & 0b11000000) != 0b00000000) && (negativePart & 0b11000000) != 0b00000000))
|| ((((negativePart & 0b11000000) == 0b11000000) || ((myPart & 0b11000000) == 0b11000000)) && (((myPart & 0b11000000) != 0b00000000) && (negativePart & 0b11000000) != 0b00000000))
|| (((negativePart & 0b11000000) == 0b00000000) && ((myPart & 0b11000000) == 0b00000000)) )
&&
( ((((negativePart & 0b00110000) ^ (myPart & 0b00110000)) != 0b00000000) && (((myPart & 0b00110000) != 0b00000000) && (negativePart & 0b00110000) != 0b00000000))
|| ((((negativePart & 0b00110000) == 0b00110000) || ((myPart & 0b00110000) == 0b00110000)) && (((myPart & 0b00110000) != 0b00000000) && (negativePart & 0b00110000) != 0b00000000))
|| (((negativePart & 0b00110000) == 0b00000000) && ((myPart & 0b00110000) == 0b00000000)) )
&&
( ((((negativePart & 0b00001100) ^ (myPart & 0b00001100)) != 0b00000000) && (((myPart & 0b00001100) != 0b00000000) && (negativePart & 0b00001100) != 0b00000000))
|| ((((negativePart & 0b00001100) == 0b00001100) || ((myPart & 0b00001100) == 0b00001100)) && (((myPart & 0b00001100) != 0b00000000) && (negativePart & 0b00001100) != 0b00000000))
|| (((negativePart & 0b00001100) == 0b00000000) && ((myPart & 0b00001100) == 0b00000000)) )
&&
( ((((negativePart & 0b00000011) ^ (myPart & 0b00000011)) != 0b00000000)&& (((myPart & 0b00000011) != 0b00000000) && (negativePart & 0b00000011) != 0b00000000))
|| ((((negativePart & 0b00000011) == 0b00000011) || ((myPart & 0b00000011) == 0b00000011)) && (((myPart & 0b00000011) != 0b00000000) && (negativePart & 0b00000011) != 0b00000000))
|| (((negativePart & 0b00000011) == 0b00000000) && ((myPart & 0b00000011) == 0b00000000)) )
)
{
if(myCoor.row==18 && myCoor.col==35)
cout << "gud: " << std::bitset<8>(myPart) << endl;
return true;
}
return false;
}
void AbstractionLayer_1::shift(uint8_t& Part, int shifts)
{
Part = Part >> (shifts*2) | Part << sizeof(uint8_t)*8 - (shifts*2);
}
void AbstractionLayer_1_Properties::shift(int shifts)
{
this->m_connections = this->m_connections >> (shifts*2) | this->m_connections << sizeof(uint8_t)*8 - (shifts*2);
}
void AbstractionLayer_1_Properties::print()
{
std::cout << std::bitset<8>(this->m_connections);
}
Mat analyseParts::makeBorder(Mat& im_bw) {
Mat im_part;
Scalar value = (0,0,0);
Point center = findCenter(im_bw);
copyMakeBorder(im_bw, im_part, abs((IMG_SIZE/2)-center.y),abs((IMG_SIZE/2)-(im_bw.rows-center.y)), abs((IMG_SIZE/2)-center.x),abs( (IMG_SIZE/2)-(im_bw.cols-center.x )), BORDER_CONSTANT, value);
return im_part;
}
Mat analyseParts::readImages(int count)
{
char name[100];
Mat corr;
Mat ref_gray;
sprintf(name, PATH, count);
Mat src = imread(name, 1);
if (!src.data)
{
cerr << "Problem loading image!!!" << endl;
return src;
}
if(DISPLAY)imshow("src",src);
Mat im_gray, im_bw;
cvtColor(src, im_gray, CV_RGB2GRAY);
im_bw = (im_gray > 220);
im_bw = 255 - im_bw;
im_bw = makeBorder(im_bw);
return im_bw;
}
Mat analyseParts::morphDilateErode(Mat &im_bw)
{
Mat dst = im_bw.clone();
int operation = 3;
int morph_size = 2.4;
int dilation_size = 2;
int dilation_size1 = 1.5;
int erosion_size = 2;
int erosion_type = MORPH_RECT;
int dilation_type = MORPH_RECT;
Mat element = getStructuringElement(0, Size(2 * morph_size + 1, 2 * morph_size + 1), Point(morph_size, morph_size));
Mat element1 = getStructuringElement(dilation_type, Size(2 * dilation_size + 1, 2 * dilation_size + 1), Point(dilation_size, dilation_size));
Mat element3 = getStructuringElement(dilation_type, Size(2 * dilation_size1 + 1, 2 * dilation_size1 + 1), Point(dilation_size1, dilation_size1));
Mat element2 = getStructuringElement(erosion_type, Size(2 * erosion_size, 2 * erosion_size), Point(erosion_size, erosion_size));
morphologyEx(im_bw, dst, operation, element);
dilate( dst, dst, element );
erode( dst, dst, element2 );
return dst;
}
vector<vector<Point>> analyseParts::findingContours(Mat& dst)
{
vector<vector<Point> > contours1;
vector<vector<Point> > contours;
vector<Point> poly;
vector<Vec4i> hierarchy1;
vector<Vec4i> hierarchy;
int dilation_size1 = 1.5;
int erosion_size = 2;
int erosion_type = MORPH_RECT;
int dilation_type = MORPH_RECT;
Mat element3 = getStructuringElement(dilation_type, Size(2 * dilation_size1 + 1, 2 * dilation_size1 + 1), Point(dilation_size1, dilation_size1));
Mat element2 = getStructuringElement(erosion_type, Size(2 * erosion_size, 2 * erosion_size), Point(erosion_size, erosion_size));
Mat dst1 = Mat::zeros(dst .size(), CV_8UC1);
findContours(dst, contours1, hierarchy1, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_TC89_L1, Point(0, 0));
for (int i = 0; i < contours1.size(); i++) {
drawContours(dst1, contours1, i, Scalar(255, 255, 255), 2, 8, hierarchy1, 0);
}
dilate( dst1, dst1, element3 );
erode( dst1, dst1, element2 );
findContours(dst1, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
return contours;
}
Mat analyseParts::polyApprox(vector<vector<Point>>& contours)
{
vector<vector<Point>> largestContour;
largestContour.resize(contours.size());
int erosion_size = 2;
int erosion_type = MORPH_RECT;
Mat element2 = getStructuringElement(erosion_type, Size(2 * erosion_size, 2 * erosion_size), Point(erosion_size, erosion_size));
int index = 0;
double area = 0.0;
int strength = 5;
vector<Vec4i> hierarchy;
Mat mask_gray;
for (int i = 0; i < contours.size(); i++) {
approxPolyDP(Mat(contours[i]), largestContour[index], strength, true);
index++;
}
Mat mask = Mat::zeros(Point(IMG_SIZE,IMG_SIZE), CV_8UC3);
for (int i = 0; i < largestContour.size(); i++) {
area = contourArea(largestContour[i]);
if(area > 500 )
drawContours(mask, largestContour, i, Scalar(255, 255, 255), CV_FILLED, 8, hierarchy, 0);
}
erode( mask, mask, element2 );
cvtColor(mask, mask_gray, CV_RGB2GRAY);
mask_gray = (mask_gray > 200);
return mask_gray;
}
Mat createEmpty(Point size, int color) {
if (color) {
Mat empty = Mat::zeros(size, CV_8UC3);
return empty;
} else {
Mat empty = Mat::zeros(size, CV_8UC1);
return empty;
}
}
float analyseParts::lengthTwoPoints (Point one, Point two) {
float length = 0;
length = sqrt((one.x - two.x) * (one.x - two.x) + (one.y - two.y)*(one.y - two.y));
return length;
}
float analyseParts::angle(Point one, Point two, Point three) {
float angle = 0;
float disa, disb, disc;
disa = lengthTwoPoints(two, three);
disb = lengthTwoPoints(one, three);
disc = lengthTwoPoints(one, two);
angle = acos( ((disa*disa) + (disc *disc) - (disb * disb)) / (2 * disa * disc) );
angle = angle * 180 / CV_PI;
return angle;
}
bool analyseParts::getImages(){
Details mask;
Mat src;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
vector<Point> corners;
vector<Mat> puzzleimages;
vector<vector<Point> > contours1;
Mat mask_gray;
for (int i = 0; i < nr_parts; i++) {
if(DISPLAY) cout << "Bild " << i << endl;
Mat im_bw = readImages(i);
if(!im_bw.data)
{
cerr << "Error: No pic found!!" << endl;
return false;
}
Mat dst = morphDilateErode(im_bw);
contours1 = findingContours(dst);
mask_gray = polyApprox(contours1);
mask.setImage(mask_gray);
mask.setCenter(findCenter(mask_gray));
findContours(mask_gray, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
mask.setContour(contours);
mask.setHierarchy(hierarchy);
corners = findCorners(contours[0],mask.getCenter());
if((corners.empty()) || (corners.size() < 4))
{
cerr << "Error occured in findCorners" << endl;
return false;
}
mask.setCorners(corners);
mask.setTabs(analyseContour(corners,contours[0]));
masks.push_back(mask);
destroyAllWindows();
}
return true;
}
Point analyseParts::findCenter(Mat img){
Mat im = img.clone();
Canny(im, im, 800, 1000, 3);
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours( im, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );
Moments m = moments(im, true);
Point center(m.m10/m.m00, m.m01/m.m00);
return center;
}
vector<Point> analyseParts::findCorners(vector<Point> contour, Point center){
int minContourPoint = 5;
vector<vector<Point>> quad_contour;
vector<Point> buf0;
vector<Point> buf1;
vector<Point> buf2;
vector<Point> buf3;
for(int i = 0; i < contour.size();i++){
if(contour[i].x > center.x && contour[i].y > center.y) {
buf0.push_back(contour[i]);
} else if(contour[i].x < center.x && contour[i].y > center.y) {
buf1.push_back(contour[i]);
} else if(contour[i].x > center.x && contour[i].y < center.y) {
buf2.push_back(contour[i]);
} else if(contour[i].x < center.x && contour[i].y < center.y) {
buf3.push_back(contour[i]);
}
}
if((buf0.empty()) || (buf1.empty()) || (buf2.empty()) || (buf3.empty()))
{
// return an empty vector if not all corners were found!
return vector<Point>();
}
quad_contour.push_back(buf0);
quad_contour.push_back(buf1);
quad_contour.push_back(buf2);
quad_contour.push_back(buf3);
Mat drawing = createEmpty(Point(IMG_SIZE,IMG_SIZE),1);
for(int j = 0; j < 4;j++){
for(int i = 0; i < quad_contour[j].size(); i++) {
circle(drawing,quad_contour[j][i],2,Scalar(abs(j+2)*50,abs(j+2)*20,0),3,8);
}
}
circle(drawing,center,2,Scalar(0,255,255),3,8,0);
/*finde ecke rechts unten*/
vector<Point> corners;
float dist = 0;
float max_dist = 0;
int max_idx = 0;
int num = 0;
float distToCenter = 0;
for(int i = 0; i < (IMG_SIZE/2); i++){
for(int j = 0; j < quad_contour[0].size(); j++){
if(quad_contour[0][j].x > center.x+i && quad_contour[0][j].y > center.y+i)
num++;
}
if(num < minContourPoint) {
dist = i;
i = (IMG_SIZE/2);
}
num = 0;
}
for(int j = 0; j < quad_contour[0].size(); j++){
if(quad_contour[0][j].x > center.x+dist && quad_contour[0][j].y > center.y+dist) {
distToCenter = lengthTwoPoints(center,quad_contour[0][j]);
if(distToCenter > max_dist) {
max_dist = distToCenter;
max_idx = j;
}
}
}
corners.push_back(quad_contour[0][max_idx]);
line(drawing,Point(center.x+dist,(IMG_SIZE/2)),Point(center.x+dist,IMG_SIZE),Scalar(255,0,255),3,8);
line(drawing,Point((IMG_SIZE/2),center.y+dist),Point(IMG_SIZE,center.y+dist),Scalar(255,0,255),3,8);
circle(drawing,quad_contour[0][max_idx],5,Scalar(50,100,255),5,8);
/*finde ecke links unten*/
dist = 0;
max_dist = 0;
max_idx = 0;
num = 0;
distToCenter = 0;
for(int i = 0; i < (IMG_SIZE/2); i++){
for(int j = 0; j < quad_contour[1].size(); j++){
if(quad_contour[1][j].x < center.x-i && quad_contour[1][j].y > center.y+i)
num++;
}
if(num < minContourPoint) {
dist = i;
i = (IMG_SIZE/2);
}
num = 0;
}
for(int j = 0; j < quad_contour[1].size(); j++){
if(quad_contour[1][j].x < center.x-dist && quad_contour[1][j].y > center.y+dist) {
distToCenter = lengthTwoPoints(center,quad_contour[1][j]);
if(distToCenter > max_dist) {
max_dist = distToCenter;
max_idx = j;
}
}
}
corners.push_back(quad_contour[1][max_idx]);
line(drawing,Point(center.x-dist,(IMG_SIZE/2)),Point(center.x-dist,IMG_SIZE),Scalar(255,0,255),3,8);
line(drawing,Point((IMG_SIZE/2),center.y+dist),Point(0,center.y+dist),Scalar(255,0,255),3,8);
circle(drawing,quad_contour[1][max_idx],5,Scalar(50,100,255),5,8);
/*finde ecke rechts oben*/
dist = 0;
max_dist = 0;
max_idx = 0;
num = 0;
distToCenter = 0;
for(int i = 0; i < (IMG_SIZE/2); i++){
for(int j = 0; j < quad_contour[2].size(); j++){
if(quad_contour[2][j].x > center.x+i && quad_contour[2][j].y < center.y-i)
num++;
}
if(num < minContourPoint) {
dist = i;
i = (IMG_SIZE/2);
}
num = 0;
}
for(int j = 0; j < quad_contour[2].size(); j++){
if(quad_contour[2][j].x > center.x+dist && quad_contour[2][j].y < center.y-dist) {
distToCenter = lengthTwoPoints(center,quad_contour[2][j]);
if(distToCenter > max_dist) {
max_dist = distToCenter;
max_idx = j;
}
}
}
corners.push_back(quad_contour[2][max_idx]);
line(drawing,Point(center.x+dist,(IMG_SIZE/2)),Point(center.x+dist,0),Scalar(255,0,255),3,8);
line(drawing,Point((IMG_SIZE/2),center.y-dist),Point(IMG_SIZE,center.y-dist),Scalar(255,0,255),3,8);
circle(drawing,quad_contour[2][max_idx],5,Scalar(50,100,255),5,8);
/*finde ecke links oben*/
dist = 0;
max_dist = 0;
max_idx = 0;
num = 0;
distToCenter = 0;
for(int i = 0; i < (IMG_SIZE/2); i++){
for(int j = 0; j < quad_contour[3].size(); j++){
if(quad_contour[3][j].x < center.x-i && quad_contour[3][j].y < center.y-i)
num++;
}
if(num < minContourPoint) {
dist = i;
i = (IMG_SIZE/2);
}
num = 0;
}
for(int j = 0; j < quad_contour[3].size(); j++){
if(quad_contour[3][j].x < center.x-dist && quad_contour[3][j].y < center.y-dist) {
distToCenter = lengthTwoPoints(center,quad_contour[3][j]);
if(distToCenter > max_dist) {
max_dist = distToCenter;
max_idx = j;
}
}
}
corners.push_back(quad_contour[3][max_idx]);
line(drawing,Point(center.x-dist,(IMG_SIZE/2)),Point(center.x-dist,0),Scalar(255,0,255),3,8);
line(drawing,Point(0,center.y-dist),Point((IMG_SIZE/2),center.y-dist),Scalar(255,0,255),3,8);
circle(drawing,quad_contour[3][max_idx],5,Scalar(50,100,255),5,8);
if(DISPLAY) imshow("draw",drawing);
return corners;
}
unsigned char analyseParts::analyseContour(vector<Point> corners, vector<Point> contour) {
vector<Point> contour_right;
vector<Point> contour_top;
vector<Point> contour_left;
vector<Point> contour_bottom;
Mat drawing = createEmpty(Point(IMG_SIZE,IMG_SIZE),1);
int count = 0;
int corner0 = 0, corner1 = 0, corner2 = 0, corner3 = 0;
for(int i = 0; i < contour.size(); i++){
if(contour[i] == corners[0])
corner0 = i;
if(contour[i] == corners[1])
corner1 = i;
if(contour[i] == corners[2])
corner2 = i;
if(contour[i] == corners[3])
corner3 = i;
}
count = corner0;
while(contour[count] != contour[corner2]){
count++;
count %= contour.size();
contour_right.push_back(contour[count]);
circle(drawing,contour[count],3,Scalar(255,0,0),2,8);
}
count = corner2;
while(contour[count] != contour[corner3]){
count++;
count %= contour.size();
contour_top.push_back(contour[count]);
circle(drawing,contour[count],3,Scalar(0,255,0),2,8);
}
count = corner3;
while(contour[count] != contour[corner1]){
count++;
count %= contour.size();
contour_left.push_back(contour[count]);
circle(drawing,contour[count],3,Scalar(0,0,255),2,8);
}
count = corner1;
while(contour[count] != contour[corner0]){
count++;
count %= contour.size();
contour_bottom.push_back(contour[count]);
circle(drawing,contour[count],3,Scalar(255,255,255),2,8);
}
float ref_right = (contour[corner0].x+contour[corner2].x)/2;
float ref_top = (contour[corner2].y+contour[corner3].y)/2;
float ref_left = (contour[corner3].x+contour[corner1].x)/2;
float ref_bottom = (contour[corner1].y+contour[corner0].y)/2;
float max_dist = 0;
float dist = 0;
int max_idx = 0;
for(int i = 0; i < contour_right.size(); i++){
dist = abs(ref_right-contour_right[i].x);
if(dist > max_dist) {
max_dist = dist;
max_idx = i;
}
}
unsigned char tabs = 0;
circle(drawing,contour_right[max_idx],10,Scalar(255,0,255),2,8);
if (ref_right - contour_right[max_idx].x <= -20)
tabs |= (2 << RIGHT);
if (ref_right - contour_right[max_idx].x >= 20)
tabs |= (1 << RIGHT);
if (abs(ref_right - contour_right[max_idx].x) < 20)
tabs |= (0 << RIGHT);
max_dist = 0;
dist = 0;
max_idx = 0;
for(int i = 0; i < contour_top.size(); i++){
dist = abs(ref_top-contour_top[i].y);
if(dist > max_dist) {
max_dist = dist;
max_idx = i;
}
}
circle(drawing,contour_top[max_idx],10,Scalar(255,0,255),2,8);
if (ref_top - contour_top[max_idx].y <= -20)
tabs |= (1 << TOP);
if (ref_top - contour_top[max_idx].y >= 20)
tabs |= (2 << TOP);
if (abs(ref_top - contour_top[max_idx].y) < 20)
tabs |= (0 << TOP);
max_dist = 0;
dist = 0;
max_idx = 0;
for(int i = 0; i < contour_left.size(); i++){
dist = abs(ref_left-contour_left[i].x);
if(dist > max_dist) {
max_dist = dist;
max_idx = i;
}
}
circle(drawing,contour_left[max_idx],10,Scalar(255,0,255),2,8);
if (ref_left - contour_left[max_idx].x <= -20)
tabs |= (1 << LEFT);
if (ref_left - contour_left[max_idx].x >= 20)
tabs |= (2 << LEFT);
if (abs(ref_left - contour_left[max_idx].x) < 20)
tabs |= (0 << LEFT);
max_dist = 0;
dist = 0;
max_idx = 0;
for(int i = 0; i < contour_bottom.size(); i++){
dist = abs(ref_bottom-contour_bottom[i].y);
if(dist > max_dist) {
max_dist = dist;
max_idx = i;
}
}
circle(drawing,contour_bottom[max_idx],10,Scalar(255,0,255),2,8);
if (ref_bottom - contour_bottom[max_idx].y <= -20)
tabs |= (2 << BOTTOM);
if (ref_bottom - contour_bottom[max_idx].y >= 20)
tabs |= (1 << BOTTOM);
if (abs(ref_bottom - contour_bottom[max_idx].y) < 20)
tabs |= (0 << BOTTOM);
//cout << bitset<sizeof(char) * CHAR_BIT> (tabs) << "b\n";
if(DISPLAY)imshow("corners",drawing);
if(DISPLAY)waitKey(0);
return tabs;
}