PuzzleSolver/Source/functions/solve/structure.cpp

262 lines
8.3 KiB
C++
Executable File

#include "../../header.h"
void status(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat);
bool next(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat)
{
//last log element is set, create new log element or log not yet started
if(!(log.size()) || log.back().isSet())
{
if(!(p_Box.size())) return false; //puzzle solved
else createNextLogElement(log,p_Box,puzzleMat);
}
//last log element is empty, backtrack
else if(!(log.back().PieceCollector.size())) backtrack(log,p_Box,puzzleMat);
//case last log element has multiple entries
else if(log.back().PieceCollector.size() > 1)
{
//moreLayers is 0, setbest is 1
//if(SetBestorMoreLayers()) setsolution(log,p_Box,puzzleMat);
//else solve(log,p_Box,puzzleMat);
}
//case last log exactly one solution
else if(log.back().PieceCollector.size() == 1)
{
if(log.back().hasRandomed())
{
if(log.back().abstractionLevel < MAX_ABSTRAX)
{
log.back().advance();
solve(log,p_Box,puzzleMat);
}
else
setsolution(log,p_Box,puzzleMat);
}
else
setsolution(log,p_Box,puzzleMat);
}
return true;
}
void createNextLogElement(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat)
{
log.emplace_back(LogEntry());
log.back().myCoor = calculateNextCoor(log, p_Box, puzzleMat);
//getLayerDestructionPowerfromSurrounding();
solve(log, p_Box,puzzleMat);
}
coor calculateNextCoor(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat)
{
//level 1:
//go left to right, then increase current row
if (log.size() == 1)
return {0,0};
int m= log.rbegin()[1].myCoor.col;
int n= log.rbegin()[1].myCoor.row;
if(m<puzzleMat.getCols()-1) m++;
else if(n<puzzleMat.getRows()-1){ m=0; n++;}
else return {};
return {m,n};
//return nextCoor;
}
void solve(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat)
{
//getNextHighestLayerworth(puzzleMat); //sets in abstractionLevel
//status(log,p_Box,puzzleMat);
switch(log.back().abstractionLevel)
{
case 0: abstractionlayer0solver(log,p_Box,puzzleMat);
break;
case 1: abstractionlayer1solver(log,p_Box,puzzleMat);
break;
default:
break;
}
//capLogElements(log);
//calculateWorth(log);
//calculateTrueDestructionPower(log,puzzleMat);
//calculateNewCombinedProbablility(log);
}
void abstractionlayer0solver(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat)
{
//throw all remaining puzzle pieces into newest log
for(auto i:p_Box)
log.back().PieceCollector.push_back(i);
}
void abstractionlayer1solver(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat)
{
//remove all that do not fit according to abstraction layer 0
for(int i=0;i<(log.back().PieceCollector.size());)
{
(*(log.back().PieceCollector[i])).resetShift();
//TODO: change checker from checking every box piece to only checking the simplifyed version ob the box with abstraction layer one
if(!(puzzleMat.testRotationPiece(log.back().myCoor, *(log.back().PieceCollector[i]))))
log.back().PieceCollector.erase(log.back().PieceCollector.begin()+i);
else
{
//set shift to 0 so that we have a defined starting position for all pieces
while(log.back().PieceCollector[i]->getShift())
log.back().PieceCollector[i]->shift(1);
i++; //otherwise loop stops before end!
}
}
}
void setsolution(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat)
{
//advance number of randomed part count
if(log.back().PieceCollector.size()>1) log.back().advanceRandomed();
//remove first element in last logelement from box
for(int i=0;i<p_Box.size();)
if(p_Box[i]==log.back().PieceCollector[0])
p_Box.erase(p_Box.begin()+i);
else
i++;
//turn piece until it fits and then set element into matrix
if(puzzleMat.testRotationPiece(log.back().myCoor,*(log.back().PieceCollector[0])))
//error if it turned
//puzzleMat.setPiece(log.back().myCoor.m, log.back().myCoor.n, *(log.back().PieceCollector[0]));
puzzleMat.setPiece(log.back().myCoor, *(log.back().PieceCollector[0]));
else
{
cout << "fatal error, wrong piece saved" << endl;
exit;
}
//tell log entry that it is set
log.back().Set();
}
bool backtrack(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat)
{
//following possibilities:
//last log entry empty - delete last log + backtrack
if(!(log.back().PieceCollector.size()))
{
puzzleMat.removePiece(log.back().myCoor);
log.pop_back();
backtrack(log,p_Box,puzzleMat);
return true;
}
//last log entry only one solution - delete last logd put back into box + backtrack
else if((log.back().PieceCollector.size())==1)
{
(log.back().PieceCollector[0])->shift(1);
//check rotion
while((log.back().PieceCollector[0])->getShift() !=0 && (log.back().PieceCollector[0])->getShift() !=3)
{
log.back().PieceCollector[0]->shift(1);
if(puzzleMat.testRotationPiece(log.back().myCoor, *(log.back().PieceCollector[0]), 1))
{
setsolution(log,p_Box,puzzleMat);
return true;
}
}
p_Box.push_back(log.back().PieceCollector[0]);
//shuffleup
std::random_device rd;
std::mt19937 g(rd());
std::shuffle(p_Box.begin(),p_Box.end(),g);
puzzleMat.removePiece(log.back().myCoor);
log.pop_back();
//cout << "removed" << endl;
//status(log,p_Box,puzzleMat);
backtrack(log,p_Box,puzzleMat);
return true;
}
//last log entry multiple solutions (and current one was randomed) - delete randomed piece and go to next
else if((log.back().PieceCollector.size())>1)
{
//check if piece has second rotation solution
(*(log.back().PieceCollector[0])).shift(1);
while((log.back().PieceCollector[0])->getShift() !=0 && (log.back().PieceCollector[0])->getShift() !=3)
{
log.back().PieceCollector[0]->shift(1);
if(puzzleMat.testRotationPiece(log.back().myCoor, *(log.back().PieceCollector[0]), 1))
{
setsolution(log,p_Box,puzzleMat);
return true;
}
}
p_Box.push_back(log.back().PieceCollector[0]);
//shuffleup
std::random_device rd;
std::mt19937 g(rd());
std::shuffle(p_Box.begin(),p_Box.end(),g);
log.back().PieceCollector.erase(log.back().PieceCollector.begin());
if(log.back().PieceCollector.size()==1)
log.back().decreaseRandomed();
//for abstraction layer 1 so that first rotation solution is set.
(*(log.back().PieceCollector[0])).resetShift();
setsolution(log,p_Box,puzzleMat);
return true;
//no need to remove from puzzle mat, as setsolution overwrites it anyway
}
else
return false;
}
void status(vector<LogEntry>& log, vector<PuzzlePiece*>& p_Box, Puzzle& puzzleMat)
{
cout << "----------------------------" << endl;
cout << "status:" << endl;
cout << "hasrandomed: " << log[0].hasRandomed() << endl;
for(int i=0;i<log.size();i++)
{
cout << "log #" << i << ":" << endl;
cout << "piecenr " << log[i].PieceCollector.size() << endl;
if(log[i].isSet())
cout << "isset: 1" << endl;
else
cout << "isset: 0" << endl;
cout << "col: " << log[i].myCoor.col<< " row: " << log[i].myCoor.row << endl;
}
cout << endl;
cout << "Box:" << endl;
cout << "size: " << p_Box.size() << endl;
for(auto i:p_Box)
{
i->printPiece();
cout << endl;
}
cout << "Puzzle:" << endl;
puzzleMat.printPuzzle();
cout << "----------------------------" << endl;
}
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth)
{
//hier muss noch rein, wo die zeit der Abstractionlevels gespeichter wird
float destructionPower=sqrt(Layerworth * log.back().abstractionLevel);
//puzzleMat.setdestructionPower(log.back().myCoor,log.back().abstractionLevel,destructionPower);
}