PuzzleSolver/Source/functions/AbstractionLayers/LayerHistogram/AbstractionLayer_Histogram.cpp
2018-01-19 16:53:53 +01:00

161 lines
4.5 KiB
C++

//
// Created by Niko on 1/11/2018.
//
#include "../../../header.h"
#include "AbstractionLayer_Histogram.h"
using namespace cv;
Mat HistogramComparer::readImages(int count)
{
char name[100];
Mat corr;
Mat ref_gray;
sprintf(name, PATH, count);
Mat src = imread(name, 1);
if (!src.data)
{
cerr << "Problem loading image!!!" << endl;
return src;
}
if(DISPLAY)imshow("src",src);
Mat im_color;
cvtColor(src, im_color, COLOR_BGR2HSV);
return im_color;
}
bool AbstractionLayer_Histogram::PreProcessing(coor mySize, const vector<Part*>* partArray){
HistogramComparer localImage;
cout << "Abstraction 2 Preprocessing... " << flush;
const vector<Part*>& ref_partArray = *partArray;
analyseParts analyse(mySize.row*mySize.col);
Part buf;
int iterator=0;
if(!analyse.getImages())
{
cerr << "Error occured in getImages!" << endl;
return false;
}
else // hier werden alle vier verschiedenen Rotationsarten 'gleichzeitig' abgespeichert
//TODO rows and cols
for(int i = 0; i < mySize.row*mySize.col; i++)
{
Mat src_img1 = localImage.readImages(i);
Mat hsv_img1;
/// Convert to HSV
cvtColor(src_img1, hsv_img1, COLOR_BGR2HSV);
/// Using 50 bins for hue and 60 for saturation
int h_bins = 50;
int s_bins = 60;
int histSize[] = {h_bins, s_bins};
// hue varies from 0 to 179, saturation from 0 to 255
float h_ranges[] = {0, 180};
float s_ranges[] = {0, 256};
const float *ranges[] = {h_ranges, s_ranges};
// Use the o-th and 1-st channels
int channels[] = {0, 1};
/// Histograms
MatND hist_img1;
/// Calculate the histograms for the HSV images
calcHist(&hsv_img1, 1, channels, Mat(), hist_img1, 2, histSize, ranges, true, false);
// normalize(hist_img1, hist_img1, 0, 1, NORM_MINMAX, -1, Mat());
ref_partArray[iterator]->m_aHistogram.image=hsv_img1;
iterator++;
}
InitialiseConstraintMatrixSize(mySize.col, mySize.row); //col row switched in this function
cout << "Done!" << endl;
return true;
}
bool AbstractionLayer_Histogram::EvaluateQuality (const coor constraintCoordinate, qualityVector& qVector){
//evaluateQuality = evaluateProbabilaty
for(int i = 0;i < qVector.size();i++)
{
if(PlaceOfPartGood(constraintCoordinate, qVector[i].second->m_aHistogram.image))
{
qVector[i].first=1;
continue;
}
qVector[i].first=0;
}
}
bool AbstractionLayer_Histogram::PlaceOfPartGood(coor myCoor, Mat& myPart)
{
HistogramComparer localComparer;
//sets coordinates to correct position for layer
myCoor.row++;
myCoor.col++;
if( myCoor.row == 1 && myCoor.col == 1){return true;}
else if(myCoor.col == 1 && myCoor.row >1){
if(localComparer.CompareHistogram(m_constraintMatrix[myCoor.col][myCoor.row-1].image, myPart)){
return true;
}
else return false;
}
else if( myCoor.row == 1 && myCoor.col >1){
if(localComparer.CompareHistogram(m_constraintMatrix[myCoor.col-1][myCoor.row].image, myPart)){
return true;
}
else return false;
}
else if (myCoor.col > 1 && myCoor.row >1){
if( localComparer.CompareHistogram(m_constraintMatrix[myCoor.col][myCoor.row-1].image, myPart) &&
localComparer.CompareHistogram(m_constraintMatrix[myCoor.col-1][myCoor.row].image, myPart)){
return true;
}
else return false;
}else return false;
}
bool HistogramComparer::CompareHistogram(Mat hist_img1,Mat hist_img2)
{
// Correlation
double Correlation = compareHist(hist_img1, hist_img2, CV_COMP_CORREL);
if(Correlation > 0.95 ){
return true;
}
else
return false;
}
bool AbstractionLayer_Histogram::SetConstraintOnPosition(const coor constraintCoordinate, const AbstractionLayer_Histogram_Properties constraint)
{
m_constraintMatrix[constraintCoordinate.col+1][constraintCoordinate.row+1].image=constraint.image;
//m_constraintMatrix[constraintCoordinate.col+1][constraintCoordinate.row+1].m_connections=constraint.m_connections;
}
bool AbstractionLayer_Histogram::RemoveConstraintOnPosition(const coor constraintCoordinate)
{
Mat dummy(1,1,0);
m_constraintMatrix[constraintCoordinate.col+1][constraintCoordinate.row+1].image = dummy;
}