PuzzleSolver/Source/functions/solve/structure.cpp

353 lines
12 KiB
C++
Executable File

#include "../../header.h"
void status(vector<LogEntry>& log, vector<Part*>& p_Box);
bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector& cqVector);
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth);
void sort(vector<LogEntry>& log);
void cut(vector<LogEntry>& log, int& cutID);
float capLogElements(vector<LogEntry>& log);
void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector& cqVector);
bool next(vector<LogEntry>& log,Puzzle& puzzleMat)
{
//last log element is set, create new log element or log not yet started
if(!(log.size()) || log.back().isSet())
{
if((puzzleMat.allSet())) return false; //puzzle solved
else createNextLogElement(log,puzzleMat);
}
//last log element is empty, backtrack
else if(!(log.back().PieceCollector.size())) backtrack(log,puzzleMat);
//case last log element has multiple entries
else if(log.back().PieceCollector.size() > 1)
{
//moreLayers is 0, setbest is 1
if (SetBestOrMoreLayersArithmetical(log, puzzleMat.combinedQualityVector)) setsolution(log, puzzleMat);
else solve(log, puzzleMat);
}
//case last log exactly one solution
else if(log.back().PieceCollector.size() == 1)
{
if(log.back().hasRandomed())
{
if(log.back().abstractionLevel < 2)//do 2 at least two best abstractions to check if part is okay
{
log.back().advance();
solve(log,puzzleMat);
}
else
setsolution(log,puzzleMat);
}
else
setsolution(log,puzzleMat);
}
return true;
}
void createNextLogElement(vector<LogEntry>& log, Puzzle& puzzleMat)
{
log.emplace_back(LogEntry(coor(0, 0)));
log.back().myCoor = calculateNextCoor(log, puzzleMat);
puzzleMat.dp.DestructionOfSurrounding(log.back().myCoor);//calculate dp from surrounding
for(auto it:puzzleMat.p_myBox)
log.back().PieceCollector.emplace_back(pair<float,Part*>(0,it));
cout << puzzleMat.p_myBox.size() << endl;
cout << log.back().PieceCollector.size() << endl;
solve(log,puzzleMat);
}
coor calculateNextCoor(vector<LogEntry>& log, Puzzle& puzzleMat)
{
//level 1:
//go left to right, then increase current row
if (log.size() == 1)
return {0,0};
unsigned int m= log.rbegin()[1].myCoor.col;
unsigned int n= log.rbegin()[1].myCoor.row;
if(m<puzzleMat.getSizeAsCoor().col-1) m++;
else if(n<puzzleMat.getSizeAsCoor().row-1){ m=0; n++;}
return {m,n};
}
void solve(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
log.back().abstractionLevel = puzzleMat.dp.getNextAbstractionLayer(log.back().myCoor,log.back().abstractionLevel); //sets in abstractionLevel
//status(log,p_Box,puzzleMat);
switch(log.back().abstractionLevel)
{
case 0:
puzzleMat.a1.EvaluateQuality(log.back().myCoor, log.back().PieceCollector);
break;
default:
break;
}
float worth = capLogElements(log);
calculateTrueDestructionPower(log,puzzleMat, worth);
CalculateNewCombinedQuality(log, log.back().PieceCollector, puzzleMat.combinedQualityVector);
}
//removes from box and makes log "set"
void setsolution(vector<LogEntry>& log, Puzzle& puzzleMat)
{
//advance number of randomed part count
if(log.back().PieceCollector.size()>1) log.back().advanceRandomed();
//remove first element in last logelement from box
for(int i=0;i<puzzleMat.p_myBox.size();)
if(puzzleMat.p_myBox[i]==log.back().PieceCollector.begin()->second)//mach ich das richtig so?!
puzzleMat.p_myBox.erase(puzzleMat.p_myBox.begin()+i);
else
i++;
//tell log entry that it is set
log.back().Set();
}
bool backtrack(vector<LogEntry>& log, Puzzle& puzzleMat)
{
//if more pieces possible, take next piece
if((log.back().PieceCollector.size())>1)
{
puzzleMat.p_myBox.push_back(log.back().PieceCollector.begin()->second);
log.back().PieceCollector.erase(log.back().PieceCollector.begin());
if(log.back().PieceCollector.size()==1)
log.back().decreaseRandomed();
setsolution(log,puzzleMat);
return true;
}
//else remove log element and backtrack once more
else
{
puzzleMat.removeConstrains(log.back().myCoor); //this should remove constraints from all layers
if((log.back().PieceCollector.size()))
puzzleMat.p_myBox.emplace_back(log.back().PieceCollector.begin()->second);
log.pop_back();
backtrack(log,puzzleMat);
}
}
void status(vector<LogEntry>& log, Puzzle& puzzleMat)
{
cout << "----------------------------" << endl;
cout << "status:" << endl;
cout << "hasrandomed: " << log[0].hasRandomed() << endl;
for(int i=0;i<log.size();i++)
{
cout << "log #" << i << ":" << endl;
cout << "piecenr " << log[i].PieceCollector.size() << endl;
if(log[i].isSet())
cout << "isset: 1" << endl;
else
cout << "isset: 0" << endl;
cout << "col: " << log[i].myCoor.col<< " row: " << log[i].myCoor.row << endl;
}
cout << endl;
cout << "Box:" << endl;
cout << "size: " << puzzleMat.p_myBox.size() << endl;
cout << "Puzzle:" << endl;
puzzleMat.printPuzzle();
cout << "----------------------------" << endl;
}
//this is addon stuff that should later all be extracted into a sererate cpp as it is not core dispatcher functionality
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth) {
float destructionPower = sqrt(
Layerworth * puzzleMat.dp.m_constraintMatrix[0][0].SpeedTable[log.back().abstractionLevel]);
puzzleMat.dp.setDestructionPower(log.back().myCoor, log.back().abstractionLevel, destructionPower);
}
// PART RAUER_WEIDINGER
float capLogElements(vector<LogEntry>& log)
{
// Till Now only ground structure -> incorrect variable ans vector names
double limit = 0.6;
double diff = 0;
int id=0;
double maxdiff = 0;
int vectorsizeBefore = 0;
int vectorsizeAfter = 0;
double destroyed = 0; // destroyed parts in %
vectorsizeBefore = log.back().PieceCollector.size();
sort(log.back().PieceCollector.begin(),log.back().PieceCollector.end()); // Sort the vector after probabilities
reverse(log.back().PieceCollector.begin(),log.back().PieceCollector.end());
for(;id<log.back().PieceCollector.size();id++)
{
if(log.back().PieceCollector[id].first < limit)
break;
}
int newid = --id; //set to the one just over limit
while(id<log.back().PieceCollector.size()-1) //find maximum difference in function
{
diff = log.back().PieceCollector[id].first - log.back().PieceCollector[++id].first;
if(diff > maxdiff)
{
maxdiff = diff;
newid = id;
}
}
cut(log,newid);
vectorsizeAfter = log.back().PieceCollector.size();
destroyed = ((double)vectorsizeBefore - (double)vectorsizeAfter) / (double)vectorsizeBefore;
return (float)sqrt(destroyed*maxdiff);
}
qualityVector::iterator FindPartInLog(vector<LogEntry>& log, Part* wishedPartPointer)
{
qualityVector::iterator partOnPositionIterator = log.back().PieceCollector.begin();
while (partOnPositionIterator != log.back().PieceCollector.end())
{
if(partOnPositionIterator->second == wishedPartPointer)
break;
else
partOnPositionIterator++;
}
return partOnPositionIterator;
}
void cut(vector<LogEntry>& log, int& cutID)
{
while(cutID<log.back().PieceCollector.size())
log.back().PieceCollector.erase(log.back().PieceCollector.begin()+cutID);
}
// -------------------- Part David: SetBest and CalculateCombinedQuality --------------------
// pruefen, ob mehr als X combinedQualities ueber dem Grenzwert sind. Wenn nur noch Y Pieces ueber bleiben, dann setBest!
// geeignete Threshold values muessen noch getestet werden
bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector& cqVector)
{
float threshold = 1.0, tempBest = 0.0;
unsigned int countHigherThreshold = 0;
if(cqVector.empty())
{
cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack?
return false; // Warning: can only return true or false. What return for error?
}
else
{
switch(log.back().abstractionLevel)
{
case 1: threshold = 0.90; break;
case 2: threshold = 0.80; break;
case 3: threshold = 0.75; break;
case 4: threshold = 0.66; break;
case 5: threshold = 0.60; break;
default: threshold = 0.5; break;
}
// check Quality of current Puzzle Piece in combinedQualityVector with Threshold value
for (qualityVector::iterator it = cqVector.begin(); it != cqVector.end(); it++)
{
if ((cqVector.back().first / log.back().abstractionLevel) >= threshold) // const threshold values
{
// count how many Pieces are greater than the threshold value
countHigherThreshold++;
}
else
{
if ((cqVector.back().first / log.back().abstractionLevel) > tempBest)
{
tempBest = cqVector.back().first; // could be used, for additional constraints
}
}
}
// return true if only one piece is left
if (1 == countHigherThreshold)
{
return true;
}
else
{
return false;
}
}
}
// jede Quality vom Piececollector zu einer combinedQuality aufsummieren (von jedem bereits verwendetem Layer)
// Achtung: Es muss noch der Mittelwert gebildet werden => SetBestOrMoreLayersArithmetical
void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector& cqVector)
{
bool summarizedVectors = false;
int countSummarizedVectors = 0;
// check if both qualityVectors are not empty
if(qVector.empty())
{
cerr << "qualityVector is empty." << endl; // should not be empty => backtrack?
return;
}
else if(cqVector.empty())
{
cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack?
return;
}
else
{
for (unsigned int i = 0; i < cqVector.size(); i++)
{
summarizedVectors = false;
for (unsigned int j = 0; j < qVector.size(); j++)
{
// search same PuzzlePart of qualityVector and combinedQualityVector
if (&cqVector.at(i).second == &qVector.at(j).second)
{
// sum Quality of PieceCollector (qualityVector) to combinedQualityVector
cqVector.at(j).first += qVector.at(i).first;
countSummarizedVectors++;
summarizedVectors = true;
continue; // skip remaining for loop => save time!
}
}
// remove element at poisition X in combinedQualityVector, because it was not summarized
if (!summarizedVectors)
{
// inefficient way to delete element X
//cqVector->erase(cqVector->begin()+i);
// efficient way, but no sorted cqVector => wayne
swap(cqVector.at(i), cqVector.back());
cqVector.pop_back();
}
}
// cqVector should have the same size now as newest qVector
if (cqVector.size() != qVector.size())
{
cerr << "Size of combinedQualityVector doenst match with size of qualityVector!" << endl;
cout << "Size of combinedQualityVector: " << cqVector.size() << endl;
cout << "Size of qualityVector: " << qVector.size() << endl;
cout << "Size of countSummarizedVectors: " << countSummarizedVectors << endl;
}
}
}