570 lines
19 KiB
C++
570 lines
19 KiB
C++
/*
|
|
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
|
|
Copyright (c) 2009 Michael Margolis. All right reserved.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/*
|
|
Function slowmove and supporting code added 2010 by Korman. Above limitations apply
|
|
to all added code, except for the official maintainer of the Servo library. If he,
|
|
and only he deems the enhancment a good idea to add to the official Servo library,
|
|
he may add it without the requirement to name the author of the parts original to
|
|
this version of the library.
|
|
*/
|
|
|
|
/*
|
|
Updated 2013 by Philip van Allen (pva),
|
|
-- updated for Arduino 1.0 +
|
|
-- consolidated slowmove into the write command (while keeping slowmove() for compatibility
|
|
with Korman's version)
|
|
-- added wait parameter to allow write command to block until move is complete
|
|
-- added sequence playing ability to asynchronously move the servo through a series of positions, must be called in a loop
|
|
|
|
A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
|
|
The servos are pulsed in the background using the value most recently written using the write() method
|
|
|
|
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
|
|
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
|
|
The sequence used to sieze timers is defined in timers.h
|
|
|
|
The methods are:
|
|
|
|
VarSpeedServo - Class for manipulating servo motors connected to Arduino pins.
|
|
|
|
attach(pin ) - Attaches a servo motor to an i/o pin.
|
|
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
|
|
default min is 544, max is 2400
|
|
|
|
write(value) - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
|
|
write(value, speed) - speed varies the speed of the move to new position 0=full speed, 1-255 slower to faster
|
|
write(value, speed, wait) - wait is a boolean that, if true, causes the function call to block until move is complete
|
|
|
|
writeMicroseconds() - Sets the servo pulse width in microseconds
|
|
read() - Gets the last written servo pulse width as an angle between 0 and 180.
|
|
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
|
|
attached() - Returns true if there is a servo attached.
|
|
detach() - Stops an attached servos from pulsing its i/o pin.
|
|
|
|
slowmove(value, speed) - The same as write(value, speed), retained for compatibility with Korman's version
|
|
|
|
stop() - stops the servo at the current position
|
|
|
|
sequencePlay(sequence, sequencePositions); // play a looping sequence starting at position 0
|
|
sequencePlay(sequence, sequencePositions, loop, startPosition); // play sequence with number of positions, loop if true, start at position
|
|
sequenceStop(); // stop sequence at current position
|
|
|
|
*/
|
|
|
|
#include <avr/interrupt.h>
|
|
#include <Arduino.h> // updated from WProgram.h to Arduino.h for Arduino 1.0+, pva
|
|
|
|
#include "VarSpeedServo.h"
|
|
|
|
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
|
|
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
|
|
|
|
|
|
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
|
|
|
|
//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)
|
|
|
|
static servo_t servos[MAX_SERVOS]; // static array of servo structures
|
|
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
|
|
|
|
uint8_t ServoCount = 0; // the total number of attached servos
|
|
|
|
// sequence vars
|
|
|
|
servoSequencePoint initSeq[] = {{0,100},{45,100}};
|
|
|
|
//sequence_t sequences[MAX_SEQUENCE];
|
|
|
|
// convenience macros
|
|
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
|
|
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
|
|
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
|
|
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
|
|
|
|
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
|
|
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
|
|
|
|
/************ static functions common to all instances ***********************/
|
|
|
|
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
|
|
{
|
|
if( Channel[timer] < 0 )
|
|
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
|
|
else{
|
|
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
|
|
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
|
|
}
|
|
|
|
Channel[timer]++; // increment to the next channel
|
|
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
|
|
|
|
// Extension for slowmove
|
|
if (SERVO(timer,Channel[timer]).speed) {
|
|
// Increment ticks by speed until we reach the target.
|
|
// When the target is reached, speed is set to 0 to disable that code.
|
|
if (SERVO(timer,Channel[timer]).target > SERVO(timer,Channel[timer]).ticks) {
|
|
SERVO(timer,Channel[timer]).ticks += SERVO(timer,Channel[timer]).speed;
|
|
if (SERVO(timer,Channel[timer]).target <= SERVO(timer,Channel[timer]).ticks) {
|
|
SERVO(timer,Channel[timer]).ticks = SERVO(timer,Channel[timer]).target;
|
|
SERVO(timer,Channel[timer]).speed = 0;
|
|
}
|
|
}
|
|
else {
|
|
SERVO(timer,Channel[timer]).ticks -= SERVO(timer,Channel[timer]).speed;
|
|
if (SERVO(timer,Channel[timer]).target >= SERVO(timer,Channel[timer]).ticks) {
|
|
SERVO(timer,Channel[timer]).ticks = SERVO(timer,Channel[timer]).target;
|
|
SERVO(timer,Channel[timer]).speed = 0;
|
|
}
|
|
}
|
|
}
|
|
// End of Extension for slowmove
|
|
|
|
// Todo
|
|
|
|
*OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
|
|
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
|
|
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
|
|
}
|
|
else {
|
|
// finished all channels so wait for the refresh period to expire before starting over
|
|
if( (unsigned)*TCNTn < (usToTicks(REFRESH_INTERVAL) + 4) ) // allow a few ticks to ensure the next OCR1A not missed
|
|
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
|
|
else
|
|
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
|
|
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
|
|
}
|
|
}
|
|
|
|
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
|
|
// Interrupt handlers for Arduino
|
|
#if defined(_useTimer1)
|
|
SIGNAL (TIMER1_COMPA_vect)
|
|
{
|
|
handle_interrupts(_timer1, &TCNT1, &OCR1A);
|
|
}
|
|
#endif
|
|
|
|
#if defined(_useTimer3)
|
|
SIGNAL (TIMER3_COMPA_vect)
|
|
{
|
|
handle_interrupts(_timer3, &TCNT3, &OCR3A);
|
|
}
|
|
#endif
|
|
|
|
#if defined(_useTimer4)
|
|
SIGNAL (TIMER4_COMPA_vect)
|
|
{
|
|
handle_interrupts(_timer4, &TCNT4, &OCR4A);
|
|
}
|
|
#endif
|
|
|
|
#if defined(_useTimer5)
|
|
SIGNAL (TIMER5_COMPA_vect)
|
|
{
|
|
handle_interrupts(_timer5, &TCNT5, &OCR5A);
|
|
}
|
|
#endif
|
|
|
|
#elif defined WIRING
|
|
// Interrupt handlers for Wiring
|
|
#if defined(_useTimer1)
|
|
void Timer1Service()
|
|
{
|
|
handle_interrupts(_timer1, &TCNT1, &OCR1A);
|
|
}
|
|
#endif
|
|
#if defined(_useTimer3)
|
|
void Timer3Service()
|
|
{
|
|
handle_interrupts(_timer3, &TCNT3, &OCR3A);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
|
|
static void initISR(timer16_Sequence_t timer)
|
|
{
|
|
#if defined (_useTimer1)
|
|
if(timer == _timer1) {
|
|
TCCR1A = 0; // normal counting mode
|
|
TCCR1B = _BV(CS11); // set prescaler of 8
|
|
TCNT1 = 0; // clear the timer count
|
|
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
|
|
TIFR |= _BV(OCF1A); // clear any pending interrupts;
|
|
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
|
|
#else
|
|
// here if not ATmega8 or ATmega128
|
|
TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
|
|
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
|
|
#endif
|
|
#if defined(WIRING)
|
|
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if defined (_useTimer3)
|
|
if(timer == _timer3) {
|
|
TCCR3A = 0; // normal counting mode
|
|
TCCR3B = _BV(CS31); // set prescaler of 8
|
|
TCNT3 = 0; // clear the timer count
|
|
#if defined(__AVR_ATmega128__)
|
|
TIFR |= _BV(OCF3A); // clear any pending interrupts;
|
|
ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
|
|
#else
|
|
TIFR3 = _BV(OCF3A); // clear any pending interrupts;
|
|
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
|
|
#endif
|
|
#if defined(WIRING)
|
|
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if defined (_useTimer4)
|
|
if(timer == _timer4) {
|
|
TCCR4A = 0; // normal counting mode
|
|
TCCR4B = _BV(CS41); // set prescaler of 8
|
|
TCNT4 = 0; // clear the timer count
|
|
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
|
|
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
|
|
}
|
|
#endif
|
|
|
|
#if defined (_useTimer5)
|
|
if(timer == _timer5) {
|
|
TCCR5A = 0; // normal counting mode
|
|
TCCR5B = _BV(CS51); // set prescaler of 8
|
|
TCNT5 = 0; // clear the timer count
|
|
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
|
|
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void finISR(timer16_Sequence_t timer)
|
|
{
|
|
//disable use of the given timer
|
|
#if defined WIRING // Wiring
|
|
if(timer == _timer1) {
|
|
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
|
|
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
|
|
#else
|
|
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
|
|
#endif
|
|
timerDetach(TIMER1OUTCOMPAREA_INT);
|
|
}
|
|
else if(timer == _timer3) {
|
|
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
|
|
TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
|
|
#else
|
|
ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
|
|
#endif
|
|
timerDetach(TIMER3OUTCOMPAREA_INT);
|
|
}
|
|
#else
|
|
//For arduino - in future: call here to a currently undefined function to reset the timer
|
|
#endif
|
|
}
|
|
|
|
static boolean isTimerActive(timer16_Sequence_t timer)
|
|
{
|
|
// returns true if any servo is active on this timer
|
|
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
|
|
if(SERVO(timer,channel).Pin.isActive == true)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/****************** end of static functions ******************************/
|
|
|
|
VarSpeedServo::VarSpeedServo()
|
|
{
|
|
if( ServoCount < MAX_SERVOS) {
|
|
this->servoIndex = ServoCount++; // assign a servo index to this instance
|
|
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
|
|
this->curSeqPosition = 0;
|
|
this->curSequence = initSeq;
|
|
}
|
|
else
|
|
this->servoIndex = INVALID_SERVO ; // too many servos
|
|
}
|
|
|
|
uint8_t VarSpeedServo::attach(int pin)
|
|
{
|
|
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
|
|
}
|
|
|
|
uint8_t VarSpeedServo::attach(int pin, int min, int max)
|
|
{
|
|
if(this->servoIndex < MAX_SERVOS ) {
|
|
pinMode( pin, OUTPUT) ; // set servo pin to output
|
|
servos[this->servoIndex].Pin.nbr = pin;
|
|
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
|
|
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
|
|
this->max = (MAX_PULSE_WIDTH - max)/4;
|
|
// initialize the timer if it has not already been initialized
|
|
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
|
if(isTimerActive(timer) == false)
|
|
initISR(timer);
|
|
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
|
|
}
|
|
return this->servoIndex ;
|
|
}
|
|
|
|
void VarSpeedServo::detach()
|
|
{
|
|
servos[this->servoIndex].Pin.isActive = false;
|
|
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
|
if(isTimerActive(timer) == false) {
|
|
finISR(timer);
|
|
}
|
|
}
|
|
|
|
void VarSpeedServo::write(int value)
|
|
{
|
|
|
|
byte channel = this->servoIndex;
|
|
servos[channel].value = value;
|
|
|
|
if(value < MIN_PULSE_WIDTH)
|
|
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
|
// updated to use constrain() instead of if(), pva
|
|
value = constrain(value, 0, 180);
|
|
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
|
|
}
|
|
this->writeMicroseconds(value);
|
|
}
|
|
|
|
void VarSpeedServo::writeMicroseconds(int value)
|
|
{
|
|
// calculate and store the values for the given channel
|
|
byte channel = this->servoIndex;
|
|
servos[channel].value = value;
|
|
|
|
if( (channel >= 0) && (channel < MAX_SERVOS) ) // ensure channel is valid
|
|
{
|
|
if( value < SERVO_MIN() ) // ensure pulse width is valid
|
|
value = SERVO_MIN();
|
|
else if( value > SERVO_MAX() )
|
|
value = SERVO_MAX();
|
|
|
|
value -= TRIM_DURATION;
|
|
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
|
|
|
|
uint8_t oldSREG = SREG;
|
|
cli();
|
|
servos[channel].ticks = value;
|
|
SREG = oldSREG;
|
|
|
|
// Extension for slowmove
|
|
// Disable slowmove logic.
|
|
servos[channel].speed = 0;
|
|
// End of Extension for slowmove
|
|
}
|
|
}
|
|
|
|
// Extension for slowmove
|
|
/*
|
|
write(value, speed) - Just like write but at reduced speed.
|
|
|
|
value - Target position for the servo. Identical use as value of the function write.
|
|
speed - Speed at which to move the servo.
|
|
speed=0 - Full speed, identical to write
|
|
speed=1 - Minimum speed
|
|
speed=255 - Maximum speed
|
|
*/
|
|
void VarSpeedServo::write(int value, uint8_t speed) {
|
|
// This fuction is a copy of write and writeMicroseconds but value will be saved
|
|
// in target instead of in ticks in the servo structure and speed will be save
|
|
// there too.
|
|
|
|
byte channel = this->servoIndex;
|
|
servos[channel].value = value;
|
|
|
|
if (speed) {
|
|
|
|
if (value < MIN_PULSE_WIDTH) {
|
|
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
|
// updated to use constrain instead of if, pva
|
|
value = constrain(value, 0, 180);
|
|
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
|
|
}
|
|
|
|
// calculate and store the values for the given channel
|
|
if( (channel >= 0) && (channel < MAX_SERVOS) ) { // ensure channel is valid
|
|
// updated to use constrain instead of if, pva
|
|
value = constrain(value, SERVO_MIN(), SERVO_MAX());
|
|
|
|
value = value - TRIM_DURATION;
|
|
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
|
|
|
|
// Set speed and direction
|
|
uint8_t oldSREG = SREG;
|
|
cli();
|
|
servos[channel].target = value;
|
|
servos[channel].speed = speed;
|
|
SREG = oldSREG;
|
|
}
|
|
}
|
|
else {
|
|
write (value);
|
|
}
|
|
}
|
|
|
|
void VarSpeedServo::write(int value, uint8_t speed, bool wait) {
|
|
write(value, speed);
|
|
|
|
if (wait) { // block until the servo is at its new position
|
|
if (value < MIN_PULSE_WIDTH) {
|
|
while (read() != value) {
|
|
delay(5);
|
|
}
|
|
} else {
|
|
while (readMicroseconds() != value) {
|
|
delay(5);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VarSpeedServo::stop() {
|
|
write(read());
|
|
}
|
|
|
|
void VarSpeedServo::slowmove(int value, uint8_t speed) {
|
|
// legacy function to support original version of VarSpeedServo
|
|
write(value, speed);
|
|
}
|
|
|
|
// End of Extension for slowmove
|
|
|
|
|
|
int VarSpeedServo::read() // return the value as degrees
|
|
{
|
|
return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
|
|
}
|
|
|
|
int VarSpeedServo::readMicroseconds()
|
|
{
|
|
unsigned int pulsewidth;
|
|
if( this->servoIndex != INVALID_SERVO )
|
|
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
|
|
else
|
|
pulsewidth = 0;
|
|
|
|
return pulsewidth;
|
|
}
|
|
|
|
bool VarSpeedServo::attached()
|
|
{
|
|
return servos[this->servoIndex].Pin.isActive ;
|
|
}
|
|
|
|
uint8_t VarSpeedServo::sequencePlay(servoSequencePoint sequenceIn[], uint8_t numPositions, bool loop, uint8_t startPos) {
|
|
uint8_t oldSeqPosition = this->curSeqPosition;
|
|
|
|
if( this->curSequence != sequenceIn) {
|
|
//Serial.println("newSeq");
|
|
this->curSequence = sequenceIn;
|
|
this->curSeqPosition = startPos;
|
|
oldSeqPosition = 255;
|
|
}
|
|
|
|
if (read() == sequenceIn[this->curSeqPosition].position && this->curSeqPosition != CURRENT_SEQUENCE_STOP) {
|
|
this->curSeqPosition++;
|
|
|
|
if (this->curSeqPosition >= numPositions) { // at the end of the loop
|
|
if (loop) { // reset to the beginning of the loop
|
|
this->curSeqPosition = 0;
|
|
} else { // stop the loop
|
|
this->curSeqPosition = CURRENT_SEQUENCE_STOP;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (this->curSeqPosition != oldSeqPosition && this->curSeqPosition != CURRENT_SEQUENCE_STOP) {
|
|
// CURRENT_SEQUENCE_STOP position means the animation has ended, and should no longer be played
|
|
// otherwise move to the next position
|
|
write(sequenceIn[this->curSeqPosition].position, sequenceIn[this->curSeqPosition].speed);
|
|
//Serial.println(this->seqCurPosition);
|
|
}
|
|
|
|
return this->curSeqPosition;
|
|
}
|
|
|
|
uint8_t VarSpeedServo::sequencePlay(servoSequencePoint sequenceIn[], uint8_t numPositions) {
|
|
return sequencePlay(sequenceIn, numPositions, true, 0);
|
|
}
|
|
|
|
void VarSpeedServo::sequenceStop() {
|
|
write(read());
|
|
this->curSeqPosition = CURRENT_SEQUENCE_STOP;
|
|
}
|
|
|
|
// to be used only with "write(value, speed)"
|
|
void VarSpeedServo::wait() {
|
|
byte channel = this->servoIndex;
|
|
int value = servos[channel].value;
|
|
|
|
// wait until is done
|
|
if (value < MIN_PULSE_WIDTH) {
|
|
while (read() != value) {
|
|
delay(5);
|
|
}
|
|
} else {
|
|
while (readMicroseconds() != value) {
|
|
delay(5);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VarSpeedServo::isMoving() {
|
|
byte channel = this->servoIndex;
|
|
int value = servos[channel].value;
|
|
|
|
if (value < MIN_PULSE_WIDTH) {
|
|
if (read() != value) {
|
|
return true;
|
|
}
|
|
} else {
|
|
if (readMicroseconds() != value) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
To do
|
|
int VarSpeedServo::targetPosition() {
|
|
byte channel = this->servoIndex;
|
|
return map( servos[channel].target+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
|
|
}
|
|
|
|
int VarSpeedServo::targetPositionMicroseconds() {
|
|
byte channel = this->servoIndex;
|
|
return servos[channel].target;
|
|
}
|
|
|
|
*/
|