refactors into classes
- ImageMeta struct saves image metadata - DataHandler takes care of loading dataset and parsing the label information - YoloProcessing takes care of image preprocessing and yolo postprocessing - HailoHandler connects to Hailo device, pushes the desired network hef file and runs the dataset on the hailo chip
This commit is contained in:
		
							
								
								
									
										554
									
								
								inference.py
									
									
									
									
									
								
							
							
						
						
									
										554
									
								
								inference.py
									
									
									
									
									
								
							@@ -1,317 +1,302 @@
 | 
			
		||||
import os
 | 
			
		||||
from multiprocessing import Process
 | 
			
		||||
import json
 | 
			
		||||
import os
 | 
			
		||||
import time
 | 
			
		||||
import numpy as np
 | 
			
		||||
t
 | 
			
		||||
from PIL import Image
 | 
			
		||||
 | 
			
		||||
from detection_tools.utils.visualization_utils import \
 | 
			
		||||
            visualize_boxes_and_labels_on_image_array
 | 
			
		||||
 | 
			
		||||
from hailo_platform import (ConfigureParams, FormatType, HEF,
 | 
			
		||||
                            HailoStreamInterface, InferVStreams,
 | 
			
		||||
                            InputVStreamParams, OutputVStreamParams,
 | 
			
		||||
                            PcieDevice)
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
import tensorflow as tf
 | 
			
		||||
from tensorflow.image import combined_non_max_suppression
 | 
			
		||||
 | 
			
		||||
from detection_tools.utils.visualization_utils import visualize_boxes_and_labels_on_image_array
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
from hailo_platform import (HEF, PcieDevice, HailoStreamInterface, InferVStreams, ConfigureParams, \
 | 
			
		||||
        InputVStreamParams, OutputVStreamParams, InputVStreams, OutputVStreams, FormatType)
 | 
			
		||||
 | 
			
		||||
# preprocess dataset for yolov5 size
 | 
			
		||||
# yolov5 640x640
 | 
			
		||||
# resnet18 320x320
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def preproc(image, output_height=640, output_width=640, resize_side=256):
 | 
			
		||||
 | 
			
		||||
    '''
 | 
			
		||||
    imagenet-standard: aspect-preserving resize to 256px smaller-side,
 | 
			
		||||
    then central-crop to 224px
 | 
			
		||||
    '''
 | 
			
		||||
    new_width = int(image.width/image.height*resize_side)
 | 
			
		||||
    new_height = resize_side
 | 
			
		||||
    x , y = (new_width-output_width)/2, 0
 | 
			
		||||
 | 
			
		||||
    # Select area to crop
 | 
			
		||||
    area = (x, y, x+output_width, y+output_height)
 | 
			
		||||
 | 
			
		||||
    # Crop, show, and save image
 | 
			
		||||
    cropped_img = image.resize((new_width, new_height)).crop(area)
 | 
			
		||||
    return cropped_img
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Collect images from data files
 | 
			
		||||
def dataset_read(hef):
 | 
			
		||||
 | 
			
		||||
    images_path = './minimal_data'
 | 
			
		||||
    names = []
 | 
			
		||||
    images_list = [img_name for img_name in os.listdir(images_path) if
 | 
			
		||||
            os.path.splitext(os.path.join(images_path, img_name))[1] == '.jpg']
 | 
			
		||||
 | 
			
		||||
    # Define dataset params
 | 
			
		||||
    input_vstream_info = hef.get_input_vstream_infos()[0]
 | 
			
		||||
    output_vstream_infos = hef.get_output_vstream_infos()
 | 
			
		||||
    image_height, image_width, channels = input_vstream_info.shape
 | 
			
		||||
 | 
			
		||||
    # dataset = np.zeros((len(images_list), image_height, image_width, channels),
 | 
			
		||||
    #        dtype=np.float32)
 | 
			
		||||
    dataset = np.zeros((1, image_height, image_width, channels),
 | 
			
		||||
           dtype=np.float32)
 | 
			
		||||
 | 
			
		||||
    for idx, img_name in enumerate(images_list):
 | 
			
		||||
        img = Image.open(os.path.join(images_path, img_name))
 | 
			
		||||
        img_preproc = preproc(img)
 | 
			
		||||
        dataset[idx,:,:,:] = np.array(img_preproc) 
 | 
			
		||||
        names.append(img_name)
 | 
			
		||||
        break
 | 
			
		||||
 | 
			
		||||
    return dataset, names
 | 
			
		||||
 | 
			
		||||
# Generate random dataset
 | 
			
		||||
def dataset_random(image_height, image_width, channels):
 | 
			
		||||
    num_of_images = 10
 | 
			
		||||
    low, high = 2, 20
 | 
			
		||||
    dataset = np.random.randint(low, high, (num_of_images, image_height,
 | 
			
		||||
        image_width, channels)).astype(np.float32)
 | 
			
		||||
    return dataset
 | 
			
		||||
 | 
			
		||||
def init_hailo(model_name='yolov5m'):
 | 
			
		||||
    target = PcieDevice()
 | 
			
		||||
 | 
			
		||||
    hef_path = f'hef/{model_name}.hef'
 | 
			
		||||
    hef = HEF(hef_path)
 | 
			
		||||
 | 
			
		||||
    # Configure network groups
 | 
			
		||||
    configure_params = ConfigureParams.create_from_hef(hef=hef, interface=HailoStreamInterface.PCIe)
 | 
			
		||||
    network_groups = target.configure(hef, configure_params)
 | 
			
		||||
    network_group = network_groups[0]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    return hef, network_group
 | 
			
		||||
class ImageMeta:
 | 
			
		||||
    def __init__(self, image_height, image_width, channels):
 | 
			
		||||
        self.image_height = image_height
 | 
			
		||||
        self.image_width = image_width
 | 
			
		||||
        self.channels = channels
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
The target can be used as a context manager ("with" statement) to ensure it's released on time.
 | 
			
		||||
Here it's avoided for the sake of simplicity
 | 
			
		||||
'''
 | 
			
		||||
def run_hailo(dataset, names, hef, network_group):
 | 
			
		||||
    # Create input and output virtual streams params
 | 
			
		||||
    # Quantized argument signifies whether or not the incoming data is already quantized.
 | 
			
		||||
    # Data is quantized by HailoRT if and only if quantized == False .
 | 
			
		||||
    input_vstreams_params = InputVStreamParams.make(network_group,
 | 
			
		||||
            quantized=False,
 | 
			
		||||
            format_type=FormatType.FLOAT32)
 | 
			
		||||
    # TODO: change to FLOAT32
 | 
			
		||||
    output_vstreams_params = OutputVStreamParams.make(network_group, quantized=False, format_type=FormatType.FLOAT32)
 | 
			
		||||
    # output_vstreams_params = OutputVStreamParams.make(network_group,
 | 
			
		||||
    #        quantized=True,
 | 
			
		||||
    #        format_type=FormatType.INT8)
 | 
			
		||||
class DataHandler:
 | 
			
		||||
    def __init__(self, path, image_meta):
 | 
			
		||||
        self.images_path = path
 | 
			
		||||
        self.image_meta = image_meta
 | 
			
		||||
 | 
			
		||||
    def load_data(self, preprocess_fn):
 | 
			
		||||
        names = []
 | 
			
		||||
 | 
			
		||||
        images_list = [img_name for img_name in os.listdir(self.images_path)
 | 
			
		||||
                       if os.path.splitext(os.path.join(self.images_path, img_name))[1] == '.jpg']
 | 
			
		||||
        dataset = np.zeros((1, self.image_meta.image_height, 
 | 
			
		||||
                               self.image_meta.image_width, 
 | 
			
		||||
                               self.image_meta.channels),
 | 
			
		||||
                           dtype=np.float32)
 | 
			
		||||
 | 
			
		||||
        for idx, img_name in enumerate(images_list):
 | 
			
		||||
            img = Image.open(os.path.join(self.images_path, img_name))
 | 
			
		||||
            img_preproc = preprocess_fn(img)
 | 
			
		||||
            dataset[idx, :, :, :] = np.array(img_preproc)
 | 
			
		||||
            names.append(img_name)
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
        self.dataset = dataset
 | 
			
		||||
        self.names = names
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    input_vstream_info = hef.get_input_vstream_infos()[0]
 | 
			
		||||
    output_vstream_infos = hef.get_output_vstream_infos()
 | 
			
		||||
    input_data = {input_vstream_info.name: dataset}
 | 
			
		||||
    network_group_params = network_group.create_params()
 | 
			
		||||
 | 
			
		||||
    with InferVStreams(network_group, input_vstreams_params, output_vstreams_params) as infer_pipeline:
 | 
			
		||||
        with network_group.activate(network_group_params):
 | 
			
		||||
            infer_results = infer_pipeline.infer(input_data)
 | 
			
		||||
 | 
			
		||||
    out = [infer_results[i.name] for i in output_vstream_infos]
 | 
			
		||||
    return out, names, dataset, names
 | 
			
		||||
    def _get_coco_labels(self):
 | 
			
		||||
        coco_names = json.load(open(os.path.join(os.path.dirname(__file__), 'coco_names.json')))
 | 
			
		||||
        coco_names = {int(k): {'id': int(k), 'name': str(v)} for (k, v) in coco_names.items()}
 | 
			
		||||
        return coco_names
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# 20 x 20 -> 32
 | 
			
		||||
# stride = 32
 | 
			
		||||
def yolo_postprocess_numpy(net_out, anchors_for_stride, stride):
 | 
			
		||||
    """
 | 
			
		||||
    net_out is shape: [N, 19, 19, 255] or [N, 38, 38, 255] or [N, 76, 76, 255]
 | 
			
		||||
    first we reshape it to be as in gluon and then follow gluon's shapes.
 | 
			
		||||
    output_ind = 0 for stride 32, 1 for stride 16, 2 for stride 8.
 | 
			
		||||
    """
 | 
			
		||||
    def _get_labels(self, label_name):
 | 
			
		||||
        filename = os.path.join(os.path.dirname(__file__), label_name + '.json')
 | 
			
		||||
        names = json.load(open(filename))
 | 
			
		||||
        names = {int(k): {'id': int(k), 'name': str(v)} for (k, v) in names.items()}
 | 
			
		||||
        return names
 | 
			
		||||
 | 
			
		||||
    # net_out = net_out.astype(np.float32) / 256
 | 
			
		||||
    num_classes = 4
 | 
			
		||||
    BS = net_out.shape[0]  # batch size
 | 
			
		||||
    H = net_out.shape[1]
 | 
			
		||||
    W = net_out.shape[2]
 | 
			
		||||
 | 
			
		||||
    num_anchors = anchors_for_stride.size // 2  # 2 params for each anchor.
 | 
			
		||||
    num_pred = 1 + 4 + num_classes  # 2 box centers, 2 box scales, 1 objness, num_classes class scores
 | 
			
		||||
    alloc_size = (128, 128)
 | 
			
		||||
 | 
			
		||||
    grid_x = np.arange(alloc_size[1])
 | 
			
		||||
    grid_y = np.arange(alloc_size[0])
 | 
			
		||||
    grid_x, grid_y = np.meshgrid(grid_x, grid_y)  # dims [128,128], [128,128]
 | 
			
		||||
 | 
			
		||||
    offsets = np.concatenate((grid_x[:, :, np.newaxis], grid_y[:, :, np.newaxis]), axis=-1)  # dim [128,128,2]
 | 
			
		||||
    offsets = np.expand_dims(np.expand_dims(offsets, 0), 0)  # dim [1,1,128,128,2]
 | 
			
		||||
 | 
			
		||||
    pred = net_out.transpose((0, 3, 1, 2))  # now dims are: [N,C,H,W] as in Gluon.
 | 
			
		||||
    pred = np.reshape(pred, (BS, num_anchors * num_pred, -1))  # dim [N, 255, HxW]
 | 
			
		||||
    # dim [N, 361, 255], we did it so that the 255 be the last dim and can be reshaped.
 | 
			
		||||
    pred = pred.transpose((0, 2, 1))
 | 
			
		||||
    pred = np.reshape(pred, (BS, -1, num_anchors, num_pred))  # dim [N, HxW, 3, 85]]
 | 
			
		||||
 | 
			
		||||
    raw_box_centers = pred[:, :, :, 0:2]  # dim [N, HxW, 3, 2]
 | 
			
		||||
    raw_box_scales = pred[:, :, :, 2:4]  # dim [N,HxW, 3, 2]
 | 
			
		||||
 | 
			
		||||
    objness = pred[:, :, :, 4:5]  # dim [N, HxW, 3, 1]
 | 
			
		||||
    class_pred = pred[:, :, :, 5:]  # dim [N, HxW, 3, 80]
 | 
			
		||||
    offsets = offsets[:, :, :H, :W, :]  # dim [1, 1, H, W, 2]
 | 
			
		||||
    offsets = np.reshape(offsets, (1, -1, 1, 2))  # dim [1, HxW, 1, 2]
 | 
			
		||||
    box_centers, box_scales, confidence, class_pred = _yolo5_decode(
 | 
			
		||||
        raw_box_centers=raw_box_centers,
 | 
			
		||||
        raw_box_scales=raw_box_scales,
 | 
			
		||||
        objness=objness,
 | 
			
		||||
        class_pred=class_pred,
 | 
			
		||||
        anchors_for_stride=anchors_for_stride,
 | 
			
		||||
        offsets=offsets,
 | 
			
		||||
        stride=stride)
 | 
			
		||||
 | 
			
		||||
    class_score = class_pred * confidence  # dim [N, HxW, 3, 80]
 | 
			
		||||
    wh = box_scales / 2.0
 | 
			
		||||
    # dim [N, HxW, 3, 4]. scheme xmin, ymin, xmax, ymax
 | 
			
		||||
    bbox = np.concatenate((box_centers - wh, box_centers + wh), axis=-1)
 | 
			
		||||
 | 
			
		||||
    detection_boxes = np.reshape(bbox, (BS, -1, 1, 4))  # dim [N, num_detections, 1, 4]
 | 
			
		||||
    detection_scores = np.reshape(class_score, (BS, -1, num_classes))  # dim [N, num_detections, 80]
 | 
			
		||||
 | 
			
		||||
    # switching scheme from xmin, ymin, xmanx, ymax to ymin, xmin, ymax, xmax:
 | 
			
		||||
    detection_boxes_tmp = np.zeros(detection_boxes.shape)
 | 
			
		||||
    detection_boxes_tmp[:, :, :, 0] = detection_boxes[:, :, :, 1]
 | 
			
		||||
    detection_boxes_tmp[:, :, :, 1] = detection_boxes[:, :, :, 0]
 | 
			
		||||
    detection_boxes_tmp[:, :, :, 2] = detection_boxes[:, :, :, 3]
 | 
			
		||||
    detection_boxes_tmp[:, :, :, 3] = detection_boxes[:, :, :, 2]
 | 
			
		||||
 | 
			
		||||
    detection_boxes = detection_boxes_tmp  # now scheme is: ymin, xmin, ymax, xmax
 | 
			
		||||
    return detection_boxes.astype(np.float32), detection_scores.astype(np.float32)
 | 
			
		||||
 | 
			
		||||
def _yolo5_decode(raw_box_centers, raw_box_scales, objness, class_pred, anchors_for_stride, offsets, stride):
 | 
			
		||||
    box_centers = (raw_box_centers * 2. - 0.5 + offsets) * stride
 | 
			
		||||
    box_scales = (raw_box_scales * 2) ** 2 * anchors_for_stride  # dim [N, HxW, 3, 2]
 | 
			
		||||
    return box_centers, box_scales, objness, class_pred
 | 
			
		||||
 | 
			
		||||
def postprocessing(endnodes):
 | 
			
		||||
    """
 | 
			
		||||
    endnodes is a list of 3 output tensors:
 | 
			
		||||
    endnodes[0] - stride 32 of input
 | 
			
		||||
    endnodes[1] - stride 16 of input
 | 
			
		||||
    endnodes[2] - stride 8 of input
 | 
			
		||||
    Returns:
 | 
			
		||||
    a tensor with dims: [BS, Total_num_of_detections_in_image, 6]
 | 
			
		||||
    where:
 | 
			
		||||
        total_num_of_detections_in_image = H*W*((1/32^2) + (1/16^2) + (1/8^2))*num_anchors*num_classes,
 | 
			
		||||
        with H, W as input dims.
 | 
			
		||||
        If H=W=608, num_anchors=3, num_classes=80 (coco 2017), we get:
 | 
			
		||||
        total_num_of_detections = 1819440 ~ 1.8M detections per image for the NMS
 | 
			
		||||
    """
 | 
			
		||||
    H_input = 640
 | 
			
		||||
    W_input = 640
 | 
			
		||||
    anchors_list = [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]]
 | 
			
		||||
    # TODO make prettier
 | 
			
		||||
    strides = [8, 16, 32]
 | 
			
		||||
    num_classes = 80
 | 
			
		||||
 | 
			
		||||
    for output_ind, output_branch in enumerate(endnodes):  # iterating over the output layers:
 | 
			
		||||
        stride = strides[::-1][output_ind]
 | 
			
		||||
        anchors_for_stride = np.array(anchors_list[::-1][output_ind])
 | 
			
		||||
        anchors_for_stride = np.reshape(anchors_for_stride, (1, 1, -1, 2))  # dim [1, 1, 3, 2]
 | 
			
		||||
 | 
			
		||||
        detection_boxes, detection_scores = yolo_postprocess_numpy(output_branch, 
 | 
			
		||||
                                                                   anchors_for_stride,
 | 
			
		||||
                                                                   stride)
 | 
			
		||||
 | 
			
		||||
        # detection_boxes is a [BS, num_detections, 1, 4] tensor, detection_scores is a
 | 
			
		||||
        # [BS, num_detections, num_classes] tensor
 | 
			
		||||
        detection_boxes = detection_boxes / H_input  # normalization of box coordinates to 1
 | 
			
		||||
        BS = endnodes[0].shape[0]
 | 
			
		||||
        H = H_input // stride
 | 
			
		||||
        W = W_input // stride
 | 
			
		||||
        num_anchors = anchors_for_stride.size // 2
 | 
			
		||||
        num_detections = H * W * num_anchors
 | 
			
		||||
        # detection_boxes.set_shape((BS, num_detections, 1, 4))
 | 
			
		||||
        # detection_scores.set_shape((BS, num_detections, num_classes))
 | 
			
		||||
        # concatenating the detections from the different output layers:
 | 
			
		||||
        if output_ind == 0:
 | 
			
		||||
            detection_boxes_full = detection_boxes
 | 
			
		||||
            detection_scores_full = detection_scores
 | 
			
		||||
        else:
 | 
			
		||||
            detection_boxes_full = tf.concat([detection_boxes_full, detection_boxes], axis=1)
 | 
			
		||||
            detection_scores_full = tf.concat([detection_scores_full, detection_scores], axis=1)
 | 
			
		||||
 | 
			
		||||
    score_threshold = 0.5
 | 
			
		||||
    nms_iou_threshold = 0.5
 | 
			
		||||
    labels_offset = 1
 | 
			
		||||
 | 
			
		||||
    (nmsed_boxes, nmsed_scores, nmsed_classes, num_detections) = \
 | 
			
		||||
        combined_non_max_suppression(boxes=detection_boxes_full,
 | 
			
		||||
                                     scores=detection_scores_full,
 | 
			
		||||
                                     score_threshold=score_threshold,
 | 
			
		||||
                                     iou_threshold=nms_iou_threshold,
 | 
			
		||||
                                     max_output_size_per_class=100,
 | 
			
		||||
                                     max_total_size=100)
 | 
			
		||||
COCO_17_14 = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9,
 | 
			
		||||
              10: 10, 11: 11, 12: 13, 13: 14, 14: 15, 15: 16, 16: 17, 17: 18,
 | 
			
		||||
              18: 19, 19: 20, 20: 21, 21: 22, 22: 23, 23: 24, 24: 25, 25: 27,
 | 
			
		||||
              26: 28, 27: 31, 28: 32, 29: 33, 30: 34, 31: 35, 32: 36, 33: 37,
 | 
			
		||||
              34: 38, 35: 39, 36: 40, 37: 41, 38: 42, 39: 43, 40: 44, 41: 46,
 | 
			
		||||
              42: 47, 43: 48, 44: 49, 45: 50, 46: 51, 47: 52, 48: 53, 49: 54,
 | 
			
		||||
              50: 55, 51: 56, 52: 57, 53: 58, 54: 59, 55: 60, 56: 61, 57: 62,
 | 
			
		||||
              58: 63, 59: 64, 60: 65, 61: 67, 62: 70, 63: 72, 64: 73, 65: 74,
 | 
			
		||||
              66: 75, 67: 76, 68: 77, 69: 78, 70: 79, 71: 80, 72: 81, 73: 82,
 | 
			
		||||
              74: 84, 75: 85, 76: 86, 77: 87, 78: 88, 79: 89, 80: 90}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    # adding offset to the class prediction and cast to integer
 | 
			
		||||
    def translate_coco_2017_to_2014(nmsed_classes):
 | 
			
		||||
        return np.vectorize(COCO_2017_TO_2014_TRANSLATION.get)(nmsed_classes).astype(np.int32)
 | 
			
		||||
class YoloProcessing:
 | 
			
		||||
    def __init__(self, imageMeta, classes):
 | 
			
		||||
        self.output_height = imageMeta.image_height
 | 
			
		||||
        self.output_width = imageMeta.image_width
 | 
			
		||||
        self.classes = classes
 | 
			
		||||
 | 
			
		||||
    nmsed_classes = tf.cast(tf.add(nmsed_classes, labels_offset), tf.int16)
 | 
			
		||||
    nmsed_classes = translate_coco_2017_to_2014(nmsed_classes)
 | 
			
		||||
    def preproc(self, image, resize_side=256):
 | 
			
		||||
 | 
			
		||||
    return {'detection_boxes': nmsed_boxes,
 | 
			
		||||
            'detection_scores': nmsed_scores,
 | 
			
		||||
            'detection_classes': nmsed_classes,
 | 
			
		||||
            'num_detections': num_detections}
 | 
			
		||||
        '''
 | 
			
		||||
        imagenet-standard: aspect-preserving resize to 256px smaller-side,
 | 
			
		||||
        then central-crop to 224px
 | 
			
		||||
        '''
 | 
			
		||||
        new_width = int(image.width/image.height*resize_side)
 | 
			
		||||
        new_height = resize_side
 | 
			
		||||
        x, y = (new_width-self.output_width)/2, 0
 | 
			
		||||
 | 
			
		||||
        # Select area to crop
 | 
			
		||||
        area = (x, y, x+self.output_width, y+self.output_height)
 | 
			
		||||
 | 
			
		||||
        # Crop, show, and save image
 | 
			
		||||
        cropped_img = image.resize((new_width, new_height)).crop(area)
 | 
			
		||||
        return cropped_img
 | 
			
		||||
 | 
			
		||||
    # 20 x 20 -> 32
 | 
			
		||||
    # stride = 32
 | 
			
		||||
    def yolo_postprocess_numpy(self, net_out, anchors_for_stride, stride):
 | 
			
		||||
        """
 | 
			
		||||
        net_out is shape: [N, 19, 19, 255] or [N, 38, 38, 255] or [N, 76, 76, 255]
 | 
			
		||||
        first we reshape it to be as in gluon and then follow gluon's shapes.
 | 
			
		||||
        output_ind = 0 for stride 32, 1 for stride 16, 2 for stride 8.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        # net_out = net_out.astype(np.float32) / 256
 | 
			
		||||
        num_classes = 4
 | 
			
		||||
        BS = net_out.shape[0]  # batch size
 | 
			
		||||
        H = net_out.shape[1]
 | 
			
		||||
        W = net_out.shape[2]
 | 
			
		||||
 | 
			
		||||
        num_anchors = anchors_for_stride.size // 2  # 2 params for each anchor.
 | 
			
		||||
        num_pred = 1 + 4 + num_classes  # 2 box centers, 2 box scales, 1 objness, num_classes class scores
 | 
			
		||||
        alloc_size = (128, 128)
 | 
			
		||||
 | 
			
		||||
        grid_x = np.arange(alloc_size[1])
 | 
			
		||||
        grid_y = np.arange(alloc_size[0])
 | 
			
		||||
        grid_x, grid_y = np.meshgrid(grid_x, grid_y)  # dims [128,128], [128,128]
 | 
			
		||||
 | 
			
		||||
        offsets = np.concatenate((grid_x[:, :, np.newaxis], grid_y[:, :, np.newaxis]), axis=-1)  # dim [128,128,2]
 | 
			
		||||
        offsets = np.expand_dims(np.expand_dims(offsets, 0), 0)  # dim [1,1,128,128,2]
 | 
			
		||||
 | 
			
		||||
        pred = net_out.transpose((0, 3, 1, 2))  # now dims are: [N,C,H,W] as in Gluon.
 | 
			
		||||
        pred = np.reshape(pred, (BS, num_anchors * num_pred, -1))  # dim [N, 255, HxW]
 | 
			
		||||
        # dim [N, 361, 255], we did it so that the 255 be the last dim and can be reshaped.
 | 
			
		||||
        pred = pred.transpose((0, 2, 1))
 | 
			
		||||
        pred = np.reshape(pred, (BS, -1, num_anchors, num_pred))  # dim [N, HxW, 3, 85]]
 | 
			
		||||
 | 
			
		||||
        raw_box_centers = pred[:, :, :, 0:2]  # dim [N, HxW, 3, 2]
 | 
			
		||||
        raw_box_scales = pred[:, :, :, 2:4]  # dim [N,HxW, 3, 2]
 | 
			
		||||
 | 
			
		||||
        objness = pred[:, :, :, 4:5]  # dim [N, HxW, 3, 1]
 | 
			
		||||
        class_pred = pred[:, :, :, 5:]  # dim [N, HxW, 3, 80]
 | 
			
		||||
        offsets = offsets[:, :, :H, :W, :]  # dim [1, 1, H, W, 2]
 | 
			
		||||
        offsets = np.reshape(offsets, (1, -1, 1, 2))  # dim [1, HxW, 1, 2]
 | 
			
		||||
        box_centers, box_scales, confidence, class_pred = self._yolo5_decode(
 | 
			
		||||
            raw_box_centers=raw_box_centers,
 | 
			
		||||
            raw_box_scales=raw_box_scales,
 | 
			
		||||
            objness=objness,
 | 
			
		||||
            class_pred=class_pred,
 | 
			
		||||
            anchors_for_stride=anchors_for_stride,
 | 
			
		||||
            offsets=offsets,
 | 
			
		||||
            stride=stride)
 | 
			
		||||
 | 
			
		||||
        class_score = class_pred * confidence  # dim [N, HxW, 3, 80]
 | 
			
		||||
        wh = box_scales / 2.0
 | 
			
		||||
        # dim [N, HxW, 3, 4]. scheme xmin, ymin, xmax, ymax
 | 
			
		||||
        bbox = np.concatenate((box_centers - wh, box_centers + wh), axis=-1)
 | 
			
		||||
 | 
			
		||||
        detection_boxes = np.reshape(bbox, (BS, -1, 1, 4))  # dim [N, num_detections, 1, 4]
 | 
			
		||||
        detection_scores = np.reshape(class_score, (BS, -1, num_classes))  # dim [N, num_detections, 80]
 | 
			
		||||
 | 
			
		||||
        # switching scheme from xmin, ymin, xmanx, ymax to ymin, xmin, ymax, xmax:
 | 
			
		||||
        detection_boxes_tmp = np.zeros(detection_boxes.shape)
 | 
			
		||||
        detection_boxes_tmp[:, :, :, 0] = detection_boxes[:, :, :, 1]
 | 
			
		||||
        detection_boxes_tmp[:, :, :, 1] = detection_boxes[:, :, :, 0]
 | 
			
		||||
        detection_boxes_tmp[:, :, :, 2] = detection_boxes[:, :, :, 3]
 | 
			
		||||
        detection_boxes_tmp[:, :, :, 3] = detection_boxes[:, :, :, 2]
 | 
			
		||||
 | 
			
		||||
        detection_boxes = detection_boxes_tmp  # now scheme is: ymin, xmin, ymax, xmax
 | 
			
		||||
        return detection_boxes.astype(np.float32), detection_scores.astype(np.float32)
 | 
			
		||||
 | 
			
		||||
    def _yolo5_decode(self, raw_box_centers, raw_box_scales, objness, class_pred, anchors_for_stride, offsets, stride):
 | 
			
		||||
        box_centers = (raw_box_centers * 2. - 0.5 + offsets) * stride
 | 
			
		||||
        box_scales = (raw_box_scales * 2) ** 2 * anchors_for_stride  # dim [N, HxW, 3, 2]
 | 
			
		||||
        return box_centers, box_scales, objness, class_pred
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_face_detection_visualization_data(logits):
 | 
			
		||||
    boxes = logits['detection_boxes'][0]
 | 
			
		||||
    def postprocessing(self, endnodes):
 | 
			
		||||
        """
 | 
			
		||||
        endnodes is a list of 3 output tensors:
 | 
			
		||||
        endnodes[0] - stride 32 of input
 | 
			
		||||
        endnodes[1] - stride 16 of input
 | 
			
		||||
        endnodes[2] - stride 8 of input
 | 
			
		||||
        Returns:
 | 
			
		||||
        a tensor with dims: [BS, Total_num_of_detections_in_image, 6]
 | 
			
		||||
        where:
 | 
			
		||||
            total_num_of_detections_in_image = H*W*((1/32^2) + (1/16^2) + (1/8^2))*num_anchors*num_classes,
 | 
			
		||||
            with H, W as input dims.
 | 
			
		||||
            If H=W=608, num_anchors=3, num_classes=80 (coco 2017), we get:
 | 
			
		||||
            total_num_of_detections = 1819440 ~ 1.8M detections per image for the NMS
 | 
			
		||||
        """
 | 
			
		||||
        H_input = 640
 | 
			
		||||
        W_input = 640
 | 
			
		||||
        anchors_list = [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]]
 | 
			
		||||
        # TODO make prettier
 | 
			
		||||
        strides = [8, 16, 32]
 | 
			
		||||
 | 
			
		||||
    face_landmarks = logits.get('face_landmarks')
 | 
			
		||||
    if face_landmarks is not None:
 | 
			
		||||
        face_landmarks = face_landmarks[0].reshape((-1, 5, 2))[:, :, (1, 0)]
 | 
			
		||||
    boxes = boxes[:, (1, 0, 3, 2)]
 | 
			
		||||
    # No name to prevent clobbering the visualization
 | 
			
		||||
    labels = {1: {'id': 1, 'name': ''}}
 | 
			
		||||
    return boxes, labels, face_landmarks
 | 
			
		||||
        for output_ind, output_branch in enumerate(endnodes):  # iterating over the output layers:
 | 
			
		||||
            stride = strides[::-1][output_ind]
 | 
			
		||||
            anchors_for_stride = np.array(anchors_list[::-1][output_ind])
 | 
			
		||||
            anchors_for_stride = np.reshape(anchors_for_stride, (1, 1, -1, 2))  # dim [1, 1, 3, 2]
 | 
			
		||||
 | 
			
		||||
            detection_boxes, detection_scores = self.yolo_postprocess_numpy(output_branch, 
 | 
			
		||||
                                                                       anchors_for_stride,
 | 
			
		||||
                                                                       stride)
 | 
			
		||||
 | 
			
		||||
            # detection_boxes is a [BS, num_detections, 1, 4] tensor, detection_scores is a
 | 
			
		||||
            # [BS, num_detections, num_classes] tensor
 | 
			
		||||
            detection_boxes = detection_boxes / H_input  # normalization of box coordinates to 1
 | 
			
		||||
            BS = endnodes[0].shape[0]
 | 
			
		||||
            H = H_input // stride
 | 
			
		||||
            W = W_input // stride
 | 
			
		||||
            num_anchors = anchors_for_stride.size // 2
 | 
			
		||||
            num_detections = H * W * num_anchors
 | 
			
		||||
            # detection_boxes.set_shape((BS, num_detections, 1, 4))
 | 
			
		||||
            # detection_scores.set_shape((BS, num_detections, num_classes))
 | 
			
		||||
            # concatenating the detections from the different output layers:
 | 
			
		||||
            if output_ind == 0:
 | 
			
		||||
                detection_boxes_full = detection_boxes
 | 
			
		||||
                detection_scores_full = detection_scores
 | 
			
		||||
            else:
 | 
			
		||||
                detection_boxes_full = tf.concat([detection_boxes_full, detection_boxes], axis=1)
 | 
			
		||||
                detection_scores_full = tf.concat([detection_scores_full, detection_scores], axis=1)
 | 
			
		||||
 | 
			
		||||
        score_threshold = 0.5
 | 
			
		||||
        nms_iou_threshold = 0.5
 | 
			
		||||
        labels_offset = 1
 | 
			
		||||
 | 
			
		||||
        (nmsed_boxes, nmsed_scores, nmsed_classes, num_detections) = \
 | 
			
		||||
            combined_non_max_suppression(boxes=detection_boxes_full,
 | 
			
		||||
                                         scores=detection_scores_full,
 | 
			
		||||
                                         score_threshold=score_threshold,
 | 
			
		||||
                                         iou_threshold=nms_iou_threshold,
 | 
			
		||||
                                         max_output_size_per_class=100,
 | 
			
		||||
                                         max_total_size=100)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_coco_labels():
 | 
			
		||||
    coco_names = json.load(open(os.path.join(os.path.dirname(__file__), 'coco_names.json')))
 | 
			
		||||
    coco_names = {int(k): {'id': int(k), 'name': str(v)} for (k, v) in coco_names.items()}
 | 
			
		||||
    return coco_names
 | 
			
		||||
        # adding offset to the class prediction and cast to integer
 | 
			
		||||
        def translate_coco_2017_to_2014(nmsed_classes):
 | 
			
		||||
            return np.vectorize(COCO_17_14.get)(nmsed_classes).astype(np.int32)
 | 
			
		||||
 | 
			
		||||
        nmsed_classes = tf.cast(tf.add(nmsed_classes, labels_offset), tf.int16)
 | 
			
		||||
        nmsed_classes = translate_coco_2017_to_2014(nmsed_classes)
 | 
			
		||||
 | 
			
		||||
        return {'detection_boxes': nmsed_boxes,
 | 
			
		||||
                'detection_scores': nmsed_scores,
 | 
			
		||||
                'detection_classes': nmsed_classes,
 | 
			
		||||
                'num_detections': num_detections}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class HailoHandler:
 | 
			
		||||
    def __init__(self, hef_path='hef/yolov5m.hef'):
 | 
			
		||||
        target = PcieDevice()
 | 
			
		||||
 | 
			
		||||
        self.hef = HEF(hef_path)
 | 
			
		||||
 | 
			
		||||
        # Configure network groups
 | 
			
		||||
        configure_params = ConfigureParams.create_from_hef(hef=self.hef,
 | 
			
		||||
                                        interface=HailoStreamInterface.PCIe)
 | 
			
		||||
        network_groups = target.configure(self.hef, configure_params)
 | 
			
		||||
        self.network_group = network_groups[0]
 | 
			
		||||
 | 
			
		||||
        self.input_vstreams_params = InputVStreamParams.make(self.network_group,
 | 
			
		||||
                                                        quantized=False,
 | 
			
		||||
                                                        format_type=FormatType.FLOAT32)
 | 
			
		||||
 | 
			
		||||
        self.output_vstreams_params = OutputVStreamParams.make(self.network_group, quantized=False, format_type=FormatType.FLOAT32)
 | 
			
		||||
 | 
			
		||||
        self.input_vstream_info = self.hef.get_input_vstream_infos()[0]
 | 
			
		||||
        self.output_vstream_infos = self.hef.get_output_vstream_infos()
 | 
			
		||||
        self.network_group_params = self.network_group.create_params()
 | 
			
		||||
 | 
			
		||||
    def run_hailo(self, dataset):
 | 
			
		||||
 | 
			
		||||
        input_data = {self.input_vstream_info.name: dataset}
 | 
			
		||||
 | 
			
		||||
        with InferVStreams(self.network_group, self.input_vstreams_params, self.output_vstreams_params) as infer_pipeline:
 | 
			
		||||
            with self.network_group.activate(self.network_group_params):
 | 
			
		||||
                infer_results = infer_pipeline.infer(input_data)
 | 
			
		||||
 | 
			
		||||
        out = [infer_results[i.name] for i in self.output_vstream_infos]
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
def _get_labels(label_name):
 | 
			
		||||
    filename = os.path.join(os.path.dirname(__file__), label_name + '.json')
 | 
			
		||||
    names = json.load(open(filename))
 | 
			
		||||
    names = {int(k): {'id': int(k), 'name': str(v)} for (k, v) in names.items()}
 | 
			
		||||
    return names
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def process_yolo5():
 | 
			
		||||
 | 
			
		||||
    hef, network_group = init_hailo("yolov5m_22_2")
 | 
			
		||||
    imageMeta = ImageMeta(640, 640, 3)
 | 
			
		||||
    processor = YoloProcessing(imageMeta, classes=3)
 | 
			
		||||
    data = DataHandler('./minimal_data', imageMeta)
 | 
			
		||||
    data.load_data(processor.preproc)
 | 
			
		||||
 | 
			
		||||
    dataset, names = dataset_read(hef)
 | 
			
		||||
    hailo = HailoHandler('hef/yolov5m_22_2.hef')
 | 
			
		||||
    out = hailo.run_hailo(data.dataset)
 | 
			
		||||
 | 
			
		||||
    samples = 1000
 | 
			
		||||
    start_time = time.time()
 | 
			
		||||
    fps = 0
 | 
			
		||||
    while samples > 0:
 | 
			
		||||
        if start_time + 1 < time.time():
 | 
			
		||||
            print("fps: " + str(fps))
 | 
			
		||||
            start_time = time.time()
 | 
			
		||||
            fps = 0
 | 
			
		||||
 | 
			
		||||
        out, names, dataset, names = run_hailo(dataset, names, hef, network_group)
 | 
			
		||||
 | 
			
		||||
        logits = postprocessing(out)
 | 
			
		||||
 | 
			
		||||
        fps += 1
 | 
			
		||||
        samples -= 1
 | 
			
		||||
    logits = processor.postprocessing(out)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    labels = _get_labels("daria_names")
 | 
			
		||||
    labels = data._get_labels("daria_names")
 | 
			
		||||
    image = visualize_boxes_and_labels_on_image_array(
 | 
			
		||||
        dataset[0],
 | 
			
		||||
        data.dataset[0],
 | 
			
		||||
        logits['detection_boxes'].numpy()[0],
 | 
			
		||||
        logits['detection_classes'][0],
 | 
			
		||||
        logits['detection_scores'].numpy()[0],
 | 
			
		||||
@@ -324,16 +309,5 @@ def process_yolo5():
 | 
			
		||||
 | 
			
		||||
    Image.fromarray(np.uint8(image)).save('/home/maintenance/test.png')
 | 
			
		||||
 | 
			
		||||
COCO_2017_TO_2014_TRANSLATION = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10,
 | 
			
		||||
                                 11: 11, 12: 13, 13: 14, 14: 15, 15: 16, 16: 17, 17: 18, 18: 19,
 | 
			
		||||
                                 19: 20, 20: 21, 21: 22, 22: 23, 23: 24, 24: 25, 25: 27, 26: 28,
 | 
			
		||||
                                 27: 31, 28: 32, 29: 33, 30: 34, 31: 35, 32: 36, 33: 37, 34: 38,
 | 
			
		||||
                                 35: 39, 36: 40, 37: 41, 38: 42, 39: 43, 40: 44, 41: 46, 42: 47,
 | 
			
		||||
                                 43: 48, 44: 49, 45: 50, 46: 51, 47: 52, 48: 53, 49: 54, 50: 55,
 | 
			
		||||
                                 51: 56, 52: 57, 53: 58, 54: 59, 55: 60, 56: 61, 57: 62, 58: 63,
 | 
			
		||||
                                 59: 64, 60: 65, 61: 67, 62: 70, 63: 72, 64: 73, 65: 74, 66: 75,
 | 
			
		||||
                                 67: 76, 68: 77, 69: 78, 70: 79, 71: 80, 72: 81, 73: 82, 74: 84,
 | 
			
		||||
                                 75: 85, 76: 86, 77: 87, 78: 88, 79: 89, 80: 90}
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    process_yolo5()
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user