minor output changes, added arrows for gradient and residual visualization

This commit is contained in:
Raphael Maenle 2019-05-21 13:34:58 +02:00
parent 9c7f67d2fd
commit 0f96c916f1
4 changed files with 151 additions and 80 deletions

View File

@ -15,7 +15,7 @@
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <Eigen/StdVector>
#include <math.h>
#include <visualization_msgs/Marker.h>
#include <visualization_msgs/MarkerArray.h>
#include <geometry_msgs/Point.h>
@ -182,12 +182,14 @@ bool MarkerGeneration(
const StateIDType& cam_state_id,
CameraCalibration& cam0,
const std::vector<double> photo_r,
std::stringstream& ss) const;
std::stringstream& ss,
cv::Point2f gradientVector,
cv::Point2f residualVector) const;
/*
* @brief projectPixelToPosition uses the calcualted pixels
* @brief AnchorPixelToPosition uses the calcualted pixels
* of the anchor patch to generate 3D positions of all of em
*/
inline Eigen::Vector3d projectPixelToPosition(cv::Point2f in_p,
inline Eigen::Vector3d AnchorPixelToPosition(cv::Point2f in_p,
const CameraCalibration& cam);
/*
@ -533,7 +535,9 @@ bool Feature::VisualizePatch(
const StateIDType& cam_state_id,
CameraCalibration& cam0,
const std::vector<double> photo_r,
std::stringstream& ss) const
std::stringstream& ss,
cv::Point2f gradientVector,
cv::Point2f residualVector) const
{
double rescale = 1;
@ -573,45 +577,107 @@ bool Feature::VisualizePatch(
cv::hconcat(cam0.featureVisu, dottedFrame, cam0.featureVisu);
// irradiance grid anchor
// patches visualization
int N = sqrt(anchorPatch_3d.size());
int scale = 20;
int scale = 30;
cv::Mat irradianceFrame(anchorImage.size(), CV_8UC3, cv::Scalar(255, 240, 255));
cv::resize(irradianceFrame, irradianceFrame, cv::Size(), rescale, rescale);
// irradiance grid anchor
std::stringstream namer;
namer << "anchor";
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 25),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
for(int i = 0; i<N; i++)
for(int j = 0; j<N; j++)
cv::rectangle(irradianceFrame,
cv::Point(10+scale*(i+1), 10+scale*j),
cv::Point(10+scale*i, 10+scale*(j+1)),
cv::Point(30+scale*(i+1), 30+scale*j),
cv::Point(30+scale*i, 30+scale*(j+1)),
cv::Scalar(anchorPatch[i*N+j]*255, anchorPatch[i*N+j]*255, anchorPatch[i*N+j]*255),
CV_FILLED);
// irradiance grid projection
namer.str(std::string());
namer << "projection";
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 45+scale*N),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
for(int i = 0; i<N; i++)
for(int j = 0; j<N ; j++)
cv::rectangle(irradianceFrame,
cv::Point(10+scale*(i+1), 20+scale*(N+j)),
cv::Point(10+scale*(i), 20+scale*(N+j+1)),
cv::Point(30+scale*(i+1), 50+scale*(N+j)),
cv::Point(30+scale*(i), 50+scale*(N+j+1)),
cv::Scalar(projectionPatch[i*N+j]*255, projectionPatch[i*N+j]*255, projectionPatch[i*N+j]*255),
CV_FILLED);
// true irradiance at feature
// get current observation
namer.str(std::string());
namer << "feature";
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 65+scale*2*N),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
cv::Point2f p_f(observations.find(cam_state_id)->second(0),observations.find(cam_state_id)->second(1));
// move to real pixels
p_f = image_handler::distortPoint(p_f, cam0.intrinsics, cam0.distortion_model, cam0.distortion_coeffs);
for(int i = 0; i<N; i++)
{
for(int j = 0; j<N ; j++)
{
float irr = PixelIrradiance(cv::Point2f(p_f.x + (i-(N-1)/2), p_f.y + (j-(N-1)/2)), current_image);
cv::rectangle(irradianceFrame,
cv::Point(30+scale*(i+1), 70+scale*(2*N+j)),
cv::Point(30+scale*(i), 70+scale*(2*N+j+1)),
cv::Scalar(irr*255, irr*255, irr*255),
CV_FILLED);
}
}
// residual grid projection, positive - red, negative - blue colored
namer.str(std::string());
namer << "residual";
cv::putText(irradianceFrame, namer.str() , cvPoint(30+scale*N, scale*N/2-5),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
for(int i = 0; i<N; i++)
for(int j = 0; j<N; j++)
if(photo_r[i*N+j]>0)
cv::rectangle(irradianceFrame,
cv::Point(20+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(20+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Scalar(255 - photo_r[i*N+j]*255, 255 - photo_r[i*N+j]*255, 255),
CV_FILLED);
else
cv::rectangle(irradianceFrame,
cv::Point(20+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(20+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Scalar(255, 255 + photo_r[i*N+j]*255, 255 + photo_r[i*N+j]*255),
CV_FILLED);
cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
// gradient arrow
/*
cv::arrowedLine(irradianceFrame,
cv::Point(30+scale*(N/2 +0.5), 50+scale*(N+(N/2)+0.5)),
cv::Point(30+scale*(N/2+0.5)+scale*gradientVector.x, 50+scale*(N+(N/2)+0.5)+scale*gradientVector.y),
cv::Scalar(100, 0, 255),
1);
*/
// residual gradient direction
cv::arrowedLine(irradianceFrame,
cv::Point(40+scale*(N+N/2+0.5), 15+scale*((N-0.5))),
cv::Point(40+scale*(N+N/2+0.5)+scale*residualVector.x, 15+scale*(N-0.5)+scale*residualVector.y),
cv::Scalar(0, 255, 175),
3);
cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
/*
// visualize position of used observations and resulting feature position
@ -703,7 +769,7 @@ cv::Point2f Feature::projectPositionToCamera(
return my_p;
}
Eigen::Vector3d Feature::projectPixelToPosition(cv::Point2f in_p, const CameraCalibration& cam)
Eigen::Vector3d Feature::AnchorPixelToPosition(cv::Point2f in_p, const CameraCalibration& cam)
{
// use undistorted position of point of interest
// project it back into 3D space using pinhole model
@ -742,27 +808,19 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
cv::Point2f und_pix_p = image_handler::distortPoint(cv::Point2f(u, v),
cam.intrinsics,
cam.distortion_model,
0);
cam.distortion_coeffs);
// create vector of patch in pixel plane
std::vector<cv::Point2f>und_pix_v;
for(double u_run = -n; u_run <= n; u_run++)
for(double v_run = -n; v_run <= n; v_run++)
und_pix_v.push_back(cv::Point2f(und_pix_p.x+u_run, und_pix_p.y+v_run));
anchorPatch_real.push_back(cv::Point2f(und_pix_p.x+u_run, und_pix_p.y+v_run));
//create undistorted pure points
std::vector<cv::Point2f> und_v;
image_handler::undistortPoints(und_pix_v,
image_handler::undistortPoints(anchorPatch_real,
cam.intrinsics,
cam.distortion_model,
0,
und_v);
//create distorted pixel points
anchorPatch_real = image_handler::distortPoints(und_v,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
cam.distortion_coeffs,
anchorPatch_ideal);
// save anchor position for later visualisaztion
@ -770,19 +828,16 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
// save true pixel Patch position
for(auto point : anchorPatch_real)
{
if(point.x - n < 0 || point.x + n >= cam.resolution(0) || point.y - n < 0 || point.y + n >= cam.resolution(1))
return false;
}
for(auto point : anchorPatch_real)
anchorPatch.push_back(PixelIrradiance(point, anchorImage));
// project patch pixel to 3D space in camera coordinate system
for(auto point : und_v)
{
anchorPatch_ideal.push_back(point);
anchorPatch_3d.push_back(projectPixelToPosition(point, cam));
}
for(auto point : anchorPatch_ideal)
anchorPatch_3d.push_back(AnchorPixelToPosition(point, cam));
is_anchored = true;
return true;
}

View File

@ -14,7 +14,7 @@
#include <string>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <math.h>
#include <boost/shared_ptr.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/video.hpp>
@ -38,6 +38,8 @@
#include <message_filters/subscriber.h>
#include <message_filters/time_synchronizer.h>
#define PI 3.14159265
namespace msckf_vio {
/*
* @brief MsckfVio Implements the algorithm in

View File

@ -24,7 +24,7 @@
<param name="PrintImages" value="true"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="7"/>
<param name="patch_size_n" value="5"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>

View File

@ -1238,6 +1238,8 @@ void MsckfVio::PhotometricMeasurementJacobian(
//photometric observation
std::vector<double> photo_z;
std::vector<double> photo_r;
// individual Jacobians
Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
@ -1262,9 +1264,31 @@ void MsckfVio::PhotometricMeasurementJacobian(
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
//observation
const Vector4d& z = feature.observations.find(cam_state_id)->second;
//estimate photometric measurement
std::vector<double> estimate_irradiance;
std::vector<double> estimate_photo_z;
IlluminationParameter estimated_illumination;
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
// calculated here, because we need true 'estimate_irradiance' later for jacobi
for (auto& estimate_irradiance_j : estimate_irradiance)
estimate_photo_z.push_back (estimate_irradiance_j *
estimated_illumination.frame_gain * estimated_illumination.feature_gain +
estimated_illumination.frame_bias + estimated_illumination.feature_bias);
int count = 0;
double dx, dy;
// gradient visualization parameters
cv::Point2f gradientVector(0,0);
// residual change visualization
cv::Point2f residualVector(0,0);
double res_sum = 0;
for (auto point : feature.anchorPatch_3d)
{
Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
@ -1273,14 +1297,24 @@ void MsckfVio::PhotometricMeasurementJacobian(
//add observation
photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
// add jacobian
//calculate photom. residual
photo_r.push_back(photo_z[count] - estimate_photo_z[count]);
// add jacobians
// frame derivative calculated convoluting with kernel [-1, 0, 1]
dx = feature.PixelIrradiance(cv::Point2f(p_in_c0.x+1, p_in_c0.y), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x-1, p_in_c0.y), frame);
dy = feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y+1), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y-1), frame);
dI_dhj(0, 0) = dx;
dI_dhj(0, 1) = dy;
gradientVector.x += dx;
gradientVector.y += dy;
residualVector.x += dx * photo_r[count];
residualVector.y += dy * photo_r[count];
res_sum += photo_r[count];
//dh / d{}^Cp_{ij}
dh_dCpij(0, 0) = 1 / p_c0(2);
dh_dCpij(1, 1) = 1 / p_c0(2);
@ -1320,28 +1354,6 @@ void MsckfVio::PhotometricMeasurementJacobian(
count++;
}
// calculate residual
//observation
const Vector4d& z = feature.observations.find(cam_state_id)->second;
//estimate photometric measurement
std::vector<double> estimate_irradiance;
std::vector<double> estimate_photo_z;
IlluminationParameter estimated_illumination;
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
// calculated here, because we need true 'estimate_irradiance' later for jacobi
for (auto& estimate_irradiance_j : estimate_irradiance)
estimate_photo_z.push_back (estimate_irradiance_j *
estimated_illumination.frame_gain * estimated_illumination.feature_gain +
estimated_illumination.frame_bias + estimated_illumination.feature_bias);
std::vector<double> photo_r;
//calculate photom. residual
for(int i = 0; i < photo_z.size(); i++)
photo_r.push_back(photo_z[i] - estimate_photo_z[i]);
MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+state_server.cam_states.size()+1);
@ -1379,12 +1391,13 @@ void MsckfVio::PhotometricMeasurementJacobian(
count = 0;
for(auto data : photo_r)
r[count++] = data;
std::stringstream ss;
ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr;
if(PRINTIMAGES)
{
feature.MarkerGeneration(marker_pub, state_server.cam_states);
feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss);
feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss, gradientVector, residualVector);
}
return;
@ -1481,13 +1494,11 @@ void MsckfVio::PhotometricFeatureJacobian(
H_x = A_null_space.transpose() * H_xi;
r = A_null_space.transpose() * r_i;
ofstream myfile;
myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
myfile << "-- residual -- \n" << r << "\n---- H ----\n" << H_x << "\n---- state cov ----\n" << state_server.state_cov <<endl;
myfile << "Hx\n" << H_x << "r\n" << r << "from residual estimated error state: " << H_x. * r << endl;
myfile.close();
cout << "---------- LOGGED -------- " << endl;
if(PRINTIMAGES)
{
@ -1631,13 +1642,11 @@ void MsckfVio::featureJacobian(
ofstream myfile;
myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
myfile << "-- residual -- \n" << r << "\n---- H ----\n" << H_x << "\n---- state cov ----\n" << state_server.state_cov <<endl;
myfile << "Hx\n" << H_x << "r\n" << r << "from residual estimated error state: " << H_x.ldlt().solve(r) << endl;
myfile.close();
cout << "---------- LOGGED -------- " << endl;
nh.setParam("/play_bag", false);
return;
}
void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
@ -1648,7 +1657,11 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
// complexity as in Equation (28), (29).
MatrixXd H_thin;
VectorXd r_thin;
int augmentationSize = 6;
if(PHOTOMETRIC)
augmentationSize = 7;
/*
if (H.rows() > H.cols()) {
// Convert H to a sparse matrix.
SparseMatrix<double> H_sparse = H.sparseView();
@ -1663,8 +1676,8 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
(spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);
(spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);
H_thin = H_temp.topRows(21+state_server.cam_states.size()*6);
r_thin = r_temp.head(21+state_server.cam_states.size()*6);
H_thin = H_temp.topRows(21+state_server.cam_states.size()*augmentationSize);
r_thin = r_temp.head(21+state_server.cam_states.size()*augmentationSize);
//HouseholderQR<MatrixXd> qr_helper(H);
//MatrixXd Q = qr_helper.householderQ();
@ -1676,18 +1689,19 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
H_thin = H;
r_thin = r;
}
*/
// Compute the Kalman gain.
const MatrixXd& P = state_server.state_cov;
MatrixXd S = H_thin*P*H_thin.transpose() +
MatrixXd S = H*P*H.transpose() +
Feature::observation_noise*MatrixXd::Identity(
H_thin.rows(), H_thin.rows());
//MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H_thin*P);
MatrixXd K_transpose = S.ldlt().solve(H_thin*P);
H.rows(), H.rows());
//MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H*P);
MatrixXd K_transpose = S.ldlt().solve(H*P);
MatrixXd K = K_transpose.transpose();
// Compute the error of the state.
VectorXd delta_x = K * r_thin;
VectorXd delta_x = K * r;
// Update the IMU state.
const VectorXd& delta_x_imu = delta_x.head<21>();
@ -1722,7 +1736,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
auto cam_state_iter = state_server.cam_states.begin();
for (int i = 0; i < state_server.cam_states.size();
++i, ++cam_state_iter) {
const VectorXd& delta_x_cam = delta_x.segment<6>(21+i*6);
const VectorXd& delta_x_cam = delta_x.segment(21+i*augmentationSize, augmentationSize);
const Vector4d dq_cam = smallAngleQuaternion(delta_x_cam.head<3>());
cam_state_iter->second.orientation = quaternionMultiplication(
dq_cam, cam_state_iter->second.orientation);
@ -1730,7 +1744,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
}
// Update state covariance.
MatrixXd I_KH = MatrixXd::Identity(K.rows(), H_thin.cols()) - K*H_thin;
MatrixXd I_KH = MatrixXd::Identity(K.rows(), H.cols()) - K*H;
//state_server.state_cov = I_KH*state_server.state_cov*I_KH.transpose() +
// K*K.transpose()*Feature::observation_noise;
state_server.state_cov = I_KH*state_server.state_cov;
@ -1744,7 +1758,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
}
bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
return true;
MatrixXd P1 = H * state_server.state_cov * H.transpose();