minor output changes, added arrows for gradient and residual visualization

This commit is contained in:
2019-05-21 13:34:58 +02:00
parent 9c7f67d2fd
commit 0f96c916f1
4 changed files with 151 additions and 80 deletions

View File

@ -1238,6 +1238,8 @@ void MsckfVio::PhotometricMeasurementJacobian(
//photometric observation
std::vector<double> photo_z;
std::vector<double> photo_r;
// individual Jacobians
Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
@ -1262,9 +1264,31 @@ void MsckfVio::PhotometricMeasurementJacobian(
auto frame = cam0.moving_window.find(cam_state_id)->second.image;
//observation
const Vector4d& z = feature.observations.find(cam_state_id)->second;
//estimate photometric measurement
std::vector<double> estimate_irradiance;
std::vector<double> estimate_photo_z;
IlluminationParameter estimated_illumination;
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
// calculated here, because we need true 'estimate_irradiance' later for jacobi
for (auto& estimate_irradiance_j : estimate_irradiance)
estimate_photo_z.push_back (estimate_irradiance_j *
estimated_illumination.frame_gain * estimated_illumination.feature_gain +
estimated_illumination.frame_bias + estimated_illumination.feature_bias);
int count = 0;
double dx, dy;
// gradient visualization parameters
cv::Point2f gradientVector(0,0);
// residual change visualization
cv::Point2f residualVector(0,0);
double res_sum = 0;
for (auto point : feature.anchorPatch_3d)
{
Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
@ -1273,14 +1297,24 @@ void MsckfVio::PhotometricMeasurementJacobian(
//add observation
photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
// add jacobian
//calculate photom. residual
photo_r.push_back(photo_z[count] - estimate_photo_z[count]);
// add jacobians
// frame derivative calculated convoluting with kernel [-1, 0, 1]
dx = feature.PixelIrradiance(cv::Point2f(p_in_c0.x+1, p_in_c0.y), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x-1, p_in_c0.y), frame);
dy = feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y+1), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y-1), frame);
dI_dhj(0, 0) = dx;
dI_dhj(0, 1) = dy;
gradientVector.x += dx;
gradientVector.y += dy;
residualVector.x += dx * photo_r[count];
residualVector.y += dy * photo_r[count];
res_sum += photo_r[count];
//dh / d{}^Cp_{ij}
dh_dCpij(0, 0) = 1 / p_c0(2);
dh_dCpij(1, 1) = 1 / p_c0(2);
@ -1320,28 +1354,6 @@ void MsckfVio::PhotometricMeasurementJacobian(
count++;
}
// calculate residual
//observation
const Vector4d& z = feature.observations.find(cam_state_id)->second;
//estimate photometric measurement
std::vector<double> estimate_irradiance;
std::vector<double> estimate_photo_z;
IlluminationParameter estimated_illumination;
feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
// calculated here, because we need true 'estimate_irradiance' later for jacobi
for (auto& estimate_irradiance_j : estimate_irradiance)
estimate_photo_z.push_back (estimate_irradiance_j *
estimated_illumination.frame_gain * estimated_illumination.feature_gain +
estimated_illumination.frame_bias + estimated_illumination.feature_bias);
std::vector<double> photo_r;
//calculate photom. residual
for(int i = 0; i < photo_z.size(); i++)
photo_r.push_back(photo_z[i] - estimate_photo_z[i]);
MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+state_server.cam_states.size()+1);
@ -1379,12 +1391,13 @@ void MsckfVio::PhotometricMeasurementJacobian(
count = 0;
for(auto data : photo_r)
r[count++] = data;
std::stringstream ss;
ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << " frame: " << cam_state_cntr;
if(PRINTIMAGES)
{
feature.MarkerGeneration(marker_pub, state_server.cam_states);
feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss);
feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss, gradientVector, residualVector);
}
return;
@ -1481,13 +1494,11 @@ void MsckfVio::PhotometricFeatureJacobian(
H_x = A_null_space.transpose() * H_xi;
r = A_null_space.transpose() * r_i;
ofstream myfile;
myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
myfile << "-- residual -- \n" << r << "\n---- H ----\n" << H_x << "\n---- state cov ----\n" << state_server.state_cov <<endl;
myfile << "Hx\n" << H_x << "r\n" << r << "from residual estimated error state: " << H_x. * r << endl;
myfile.close();
cout << "---------- LOGGED -------- " << endl;
if(PRINTIMAGES)
{
@ -1631,13 +1642,11 @@ void MsckfVio::featureJacobian(
ofstream myfile;
myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
myfile << "-- residual -- \n" << r << "\n---- H ----\n" << H_x << "\n---- state cov ----\n" << state_server.state_cov <<endl;
myfile << "Hx\n" << H_x << "r\n" << r << "from residual estimated error state: " << H_x.ldlt().solve(r) << endl;
myfile.close();
cout << "---------- LOGGED -------- " << endl;
nh.setParam("/play_bag", false);
return;
}
void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
@ -1648,7 +1657,11 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
// complexity as in Equation (28), (29).
MatrixXd H_thin;
VectorXd r_thin;
int augmentationSize = 6;
if(PHOTOMETRIC)
augmentationSize = 7;
/*
if (H.rows() > H.cols()) {
// Convert H to a sparse matrix.
SparseMatrix<double> H_sparse = H.sparseView();
@ -1663,8 +1676,8 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
(spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);
(spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);
H_thin = H_temp.topRows(21+state_server.cam_states.size()*6);
r_thin = r_temp.head(21+state_server.cam_states.size()*6);
H_thin = H_temp.topRows(21+state_server.cam_states.size()*augmentationSize);
r_thin = r_temp.head(21+state_server.cam_states.size()*augmentationSize);
//HouseholderQR<MatrixXd> qr_helper(H);
//MatrixXd Q = qr_helper.householderQ();
@ -1676,18 +1689,19 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
H_thin = H;
r_thin = r;
}
*/
// Compute the Kalman gain.
const MatrixXd& P = state_server.state_cov;
MatrixXd S = H_thin*P*H_thin.transpose() +
MatrixXd S = H*P*H.transpose() +
Feature::observation_noise*MatrixXd::Identity(
H_thin.rows(), H_thin.rows());
//MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H_thin*P);
MatrixXd K_transpose = S.ldlt().solve(H_thin*P);
H.rows(), H.rows());
//MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H*P);
MatrixXd K_transpose = S.ldlt().solve(H*P);
MatrixXd K = K_transpose.transpose();
// Compute the error of the state.
VectorXd delta_x = K * r_thin;
VectorXd delta_x = K * r;
// Update the IMU state.
const VectorXd& delta_x_imu = delta_x.head<21>();
@ -1722,7 +1736,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
auto cam_state_iter = state_server.cam_states.begin();
for (int i = 0; i < state_server.cam_states.size();
++i, ++cam_state_iter) {
const VectorXd& delta_x_cam = delta_x.segment<6>(21+i*6);
const VectorXd& delta_x_cam = delta_x.segment(21+i*augmentationSize, augmentationSize);
const Vector4d dq_cam = smallAngleQuaternion(delta_x_cam.head<3>());
cam_state_iter->second.orientation = quaternionMultiplication(
dq_cam, cam_state_iter->second.orientation);
@ -1730,7 +1744,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
}
// Update state covariance.
MatrixXd I_KH = MatrixXd::Identity(K.rows(), H_thin.cols()) - K*H_thin;
MatrixXd I_KH = MatrixXd::Identity(K.rows(), H.cols()) - K*H;
//state_server.state_cov = I_KH*state_server.state_cov*I_KH.transpose() +
// K*K.transpose()*Feature::observation_noise;
state_server.state_cov = I_KH*state_server.state_cov;
@ -1744,7 +1758,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
}
bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
return true;
MatrixXd P1 = H * state_server.state_cov * H.transpose();