minor output changes, added arrows for gradient and residual visualization
This commit is contained in:
		@@ -15,7 +15,7 @@
 | 
			
		||||
#include <Eigen/Dense>
 | 
			
		||||
#include <Eigen/Geometry>
 | 
			
		||||
#include <Eigen/StdVector>
 | 
			
		||||
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <visualization_msgs/Marker.h>
 | 
			
		||||
#include <visualization_msgs/MarkerArray.h>
 | 
			
		||||
#include <geometry_msgs/Point.h>
 | 
			
		||||
@@ -182,12 +182,14 @@ bool MarkerGeneration(
 | 
			
		||||
                  const StateIDType& cam_state_id,
 | 
			
		||||
                  CameraCalibration& cam0,
 | 
			
		||||
                  const std::vector<double> photo_r,
 | 
			
		||||
                  std::stringstream& ss) const;
 | 
			
		||||
                  std::stringstream& ss,
 | 
			
		||||
                  cv::Point2f gradientVector,
 | 
			
		||||
                  cv::Point2f residualVector) const;
 | 
			
		||||
  /*
 | 
			
		||||
  * @brief projectPixelToPosition uses the calcualted pixels
 | 
			
		||||
  * @brief AnchorPixelToPosition uses the calcualted pixels
 | 
			
		||||
  *     of the anchor patch to generate 3D positions of all of em
 | 
			
		||||
  */
 | 
			
		||||
inline Eigen::Vector3d projectPixelToPosition(cv::Point2f in_p,
 | 
			
		||||
inline Eigen::Vector3d AnchorPixelToPosition(cv::Point2f in_p,
 | 
			
		||||
          const CameraCalibration& cam);
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
@@ -533,7 +535,9 @@ bool Feature::VisualizePatch(
 | 
			
		||||
                  const StateIDType& cam_state_id,
 | 
			
		||||
                  CameraCalibration& cam0,
 | 
			
		||||
                  const std::vector<double> photo_r,
 | 
			
		||||
                  std::stringstream& ss) const
 | 
			
		||||
                  std::stringstream& ss,
 | 
			
		||||
                  cv::Point2f gradientVector,
 | 
			
		||||
                  cv::Point2f residualVector) const
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  double rescale = 1;
 | 
			
		||||
@@ -573,45 +577,107 @@ bool Feature::VisualizePatch(
 | 
			
		||||
 | 
			
		||||
  cv::hconcat(cam0.featureVisu, dottedFrame, cam0.featureVisu);
 | 
			
		||||
 | 
			
		||||
  // irradiance grid anchor
 | 
			
		||||
 | 
			
		||||
  // patches visualization
 | 
			
		||||
  int N = sqrt(anchorPatch_3d.size());
 | 
			
		||||
  int scale = 20;
 | 
			
		||||
  int scale = 30;
 | 
			
		||||
  cv::Mat irradianceFrame(anchorImage.size(), CV_8UC3, cv::Scalar(255, 240, 255));
 | 
			
		||||
  cv::resize(irradianceFrame, irradianceFrame, cv::Size(), rescale, rescale);
 | 
			
		||||
  
 | 
			
		||||
  // irradiance grid anchor
 | 
			
		||||
  std::stringstream namer;
 | 
			
		||||
  namer << "anchor";
 | 
			
		||||
  cv::putText(irradianceFrame, namer.str() , cvPoint(30, 25), 
 | 
			
		||||
    cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  for(int i = 0; i<N; i++)
 | 
			
		||||
    for(int j = 0; j<N; j++)
 | 
			
		||||
      cv::rectangle(irradianceFrame, 
 | 
			
		||||
                    cv::Point(10+scale*(i+1), 10+scale*j), 
 | 
			
		||||
                    cv::Point(10+scale*i, 10+scale*(j+1)), 
 | 
			
		||||
                    cv::Point(30+scale*(i+1), 30+scale*j), 
 | 
			
		||||
                    cv::Point(30+scale*i, 30+scale*(j+1)), 
 | 
			
		||||
                    cv::Scalar(anchorPatch[i*N+j]*255, anchorPatch[i*N+j]*255, anchorPatch[i*N+j]*255),  
 | 
			
		||||
                    CV_FILLED);
 | 
			
		||||
 | 
			
		||||
  // irradiance grid projection
 | 
			
		||||
 | 
			
		||||
  namer.str(std::string());
 | 
			
		||||
  namer << "projection";
 | 
			
		||||
  cv::putText(irradianceFrame, namer.str() , cvPoint(30, 45+scale*N), 
 | 
			
		||||
    cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
 | 
			
		||||
 | 
			
		||||
  for(int i = 0; i<N; i++)
 | 
			
		||||
    for(int j = 0; j<N ; j++)
 | 
			
		||||
      cv::rectangle(irradianceFrame, 
 | 
			
		||||
                    cv::Point(10+scale*(i+1), 20+scale*(N+j)), 
 | 
			
		||||
                    cv::Point(10+scale*(i), 20+scale*(N+j+1)), 
 | 
			
		||||
                    cv::Point(30+scale*(i+1), 50+scale*(N+j)), 
 | 
			
		||||
                    cv::Point(30+scale*(i), 50+scale*(N+j+1)), 
 | 
			
		||||
                    cv::Scalar(projectionPatch[i*N+j]*255, projectionPatch[i*N+j]*255, projectionPatch[i*N+j]*255),  
 | 
			
		||||
                    CV_FILLED);
 | 
			
		||||
 | 
			
		||||
  // true irradiance at feature
 | 
			
		||||
  // get current observation
 | 
			
		||||
 | 
			
		||||
  namer.str(std::string());
 | 
			
		||||
  namer << "feature";
 | 
			
		||||
  cv::putText(irradianceFrame, namer.str() , cvPoint(30, 65+scale*2*N), 
 | 
			
		||||
    cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
 | 
			
		||||
 | 
			
		||||
  cv::Point2f p_f(observations.find(cam_state_id)->second(0),observations.find(cam_state_id)->second(1));
 | 
			
		||||
  // move to real pixels
 | 
			
		||||
  p_f = image_handler::distortPoint(p_f, cam0.intrinsics, cam0.distortion_model, cam0.distortion_coeffs);
 | 
			
		||||
 | 
			
		||||
  for(int i = 0; i<N; i++)
 | 
			
		||||
  {
 | 
			
		||||
    for(int j = 0; j<N ; j++)
 | 
			
		||||
    {
 | 
			
		||||
      float irr = PixelIrradiance(cv::Point2f(p_f.x + (i-(N-1)/2), p_f.y + (j-(N-1)/2)), current_image);
 | 
			
		||||
      cv::rectangle(irradianceFrame, 
 | 
			
		||||
                    cv::Point(30+scale*(i+1), 70+scale*(2*N+j)), 
 | 
			
		||||
                    cv::Point(30+scale*(i), 70+scale*(2*N+j+1)), 
 | 
			
		||||
                    cv::Scalar(irr*255, irr*255, irr*255),  
 | 
			
		||||
                    CV_FILLED);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // residual grid projection, positive - red, negative - blue colored 
 | 
			
		||||
  namer.str(std::string());
 | 
			
		||||
  namer << "residual";
 | 
			
		||||
  cv::putText(irradianceFrame, namer.str() , cvPoint(30+scale*N, scale*N/2-5), 
 | 
			
		||||
    cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
 | 
			
		||||
 | 
			
		||||
  for(int i = 0; i<N; i++)
 | 
			
		||||
    for(int j = 0; j<N; j++)
 | 
			
		||||
      if(photo_r[i*N+j]>0)
 | 
			
		||||
        cv::rectangle(irradianceFrame, 
 | 
			
		||||
                      cv::Point(20+scale*(N+i+1), 15+scale*(N/2+j)), 
 | 
			
		||||
                      cv::Point(20+scale*(N+i), 15+scale*(N/2+j+1)), 
 | 
			
		||||
                      cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)), 
 | 
			
		||||
                      cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)), 
 | 
			
		||||
                      cv::Scalar(255 - photo_r[i*N+j]*255, 255 - photo_r[i*N+j]*255, 255),  
 | 
			
		||||
                      CV_FILLED);
 | 
			
		||||
      else
 | 
			
		||||
        cv::rectangle(irradianceFrame, 
 | 
			
		||||
                      cv::Point(20+scale*(N+i+1), 15+scale*(N/2+j)), 
 | 
			
		||||
                      cv::Point(20+scale*(N+i), 15+scale*(N/2+j+1)), 
 | 
			
		||||
                      cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)), 
 | 
			
		||||
                      cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)), 
 | 
			
		||||
                      cv::Scalar(255, 255 + photo_r[i*N+j]*255, 255 + photo_r[i*N+j]*255), 
 | 
			
		||||
                      CV_FILLED);
 | 
			
		||||
 | 
			
		||||
      cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
 | 
			
		||||
  // gradient arrow
 | 
			
		||||
  /*
 | 
			
		||||
  cv::arrowedLine(irradianceFrame,
 | 
			
		||||
                  cv::Point(30+scale*(N/2 +0.5), 50+scale*(N+(N/2)+0.5)),
 | 
			
		||||
                  cv::Point(30+scale*(N/2+0.5)+scale*gradientVector.x, 50+scale*(N+(N/2)+0.5)+scale*gradientVector.y),
 | 
			
		||||
                  cv::Scalar(100, 0, 255),
 | 
			
		||||
                  1);
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  // residual gradient direction
 | 
			
		||||
  cv::arrowedLine(irradianceFrame,
 | 
			
		||||
                  cv::Point(40+scale*(N+N/2+0.5), 15+scale*((N-0.5))),
 | 
			
		||||
                  cv::Point(40+scale*(N+N/2+0.5)+scale*residualVector.x, 15+scale*(N-0.5)+scale*residualVector.y),
 | 
			
		||||
                  cv::Scalar(0, 255, 175),
 | 
			
		||||
                  3);
 | 
			
		||||
                  
 | 
			
		||||
 | 
			
		||||
  cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
 | 
			
		||||
      
 | 
			
		||||
/*
 | 
			
		||||
  // visualize position of used observations and resulting feature position
 | 
			
		||||
@@ -703,7 +769,7 @@ cv::Point2f Feature::projectPositionToCamera(
 | 
			
		||||
  return my_p;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Eigen::Vector3d Feature::projectPixelToPosition(cv::Point2f in_p, const CameraCalibration& cam)
 | 
			
		||||
Eigen::Vector3d Feature::AnchorPixelToPosition(cv::Point2f in_p, const CameraCalibration& cam)
 | 
			
		||||
{
 | 
			
		||||
  // use undistorted position of point of interest
 | 
			
		||||
  // project it back into 3D space using pinhole model
 | 
			
		||||
@@ -742,27 +808,19 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
 | 
			
		||||
  cv::Point2f und_pix_p = image_handler::distortPoint(cv::Point2f(u, v), 
 | 
			
		||||
                                                    cam.intrinsics, 
 | 
			
		||||
                                                    cam.distortion_model, 
 | 
			
		||||
                                                    0);
 | 
			
		||||
                                                    cam.distortion_coeffs);
 | 
			
		||||
  // create vector of patch in pixel plane
 | 
			
		||||
  std::vector<cv::Point2f>und_pix_v;
 | 
			
		||||
  for(double u_run = -n; u_run <= n; u_run++)
 | 
			
		||||
    for(double v_run = -n; v_run <= n; v_run++)
 | 
			
		||||
      und_pix_v.push_back(cv::Point2f(und_pix_p.x+u_run, und_pix_p.y+v_run));
 | 
			
		||||
      anchorPatch_real.push_back(cv::Point2f(und_pix_p.x+u_run, und_pix_p.y+v_run));
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //create undistorted pure points    
 | 
			
		||||
  std::vector<cv::Point2f> und_v;
 | 
			
		||||
  image_handler::undistortPoints(und_pix_v,
 | 
			
		||||
  image_handler::undistortPoints(anchorPatch_real,
 | 
			
		||||
                                cam.intrinsics,
 | 
			
		||||
                                cam.distortion_model,
 | 
			
		||||
                                0,
 | 
			
		||||
                                und_v);
 | 
			
		||||
 | 
			
		||||
  //create distorted pixel points
 | 
			
		||||
  anchorPatch_real = image_handler::distortPoints(und_v,
 | 
			
		||||
                                                   cam.intrinsics,
 | 
			
		||||
                                                   cam.distortion_model,
 | 
			
		||||
                                                   cam.distortion_coeffs);
 | 
			
		||||
                                cam.distortion_coeffs,
 | 
			
		||||
                                anchorPatch_ideal);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // save anchor position for later visualisaztion
 | 
			
		||||
@@ -770,19 +828,16 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
 | 
			
		||||
 | 
			
		||||
  // save true pixel Patch position
 | 
			
		||||
  for(auto point : anchorPatch_real)
 | 
			
		||||
  {
 | 
			
		||||
    if(point.x - n < 0 || point.x + n >= cam.resolution(0) || point.y - n < 0 || point.y + n >= cam.resolution(1))
 | 
			
		||||
      return false;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(auto point : anchorPatch_real)
 | 
			
		||||
    anchorPatch.push_back(PixelIrradiance(point, anchorImage));
 | 
			
		||||
 | 
			
		||||
  // project patch pixel to 3D space in camera  coordinate system
 | 
			
		||||
  for(auto point : und_v)
 | 
			
		||||
  {
 | 
			
		||||
    anchorPatch_ideal.push_back(point);
 | 
			
		||||
    anchorPatch_3d.push_back(projectPixelToPosition(point, cam));
 | 
			
		||||
  }
 | 
			
		||||
  for(auto point : anchorPatch_ideal)
 | 
			
		||||
    anchorPatch_3d.push_back(AnchorPixelToPosition(point, cam));
 | 
			
		||||
 | 
			
		||||
  is_anchored = true;
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -14,7 +14,7 @@
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <Eigen/Dense>
 | 
			
		||||
#include <Eigen/Geometry>
 | 
			
		||||
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <boost/shared_ptr.hpp>
 | 
			
		||||
#include <opencv2/opencv.hpp>
 | 
			
		||||
#include <opencv2/video.hpp>
 | 
			
		||||
@@ -38,6 +38,8 @@
 | 
			
		||||
#include <message_filters/subscriber.h>
 | 
			
		||||
#include <message_filters/time_synchronizer.h>
 | 
			
		||||
 | 
			
		||||
#define PI 3.14159265
 | 
			
		||||
 | 
			
		||||
namespace msckf_vio {
 | 
			
		||||
/*
 | 
			
		||||
 * @brief MsckfVio Implements the algorithm in
 | 
			
		||||
 
 | 
			
		||||
@@ -24,7 +24,7 @@
 | 
			
		||||
      <param name="PrintImages" value="true"/>
 | 
			
		||||
      <param name="GroundTruth" value="false"/>
 | 
			
		||||
 | 
			
		||||
      <param name="patch_size_n" value="7"/>
 | 
			
		||||
      <param name="patch_size_n" value="5"/>
 | 
			
		||||
      <!-- Calibration parameters -->
 | 
			
		||||
      <rosparam command="load" file="$(arg calibration_file)"/>
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1238,6 +1238,8 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
  //photometric observation
 | 
			
		||||
  std::vector<double> photo_z;
 | 
			
		||||
 | 
			
		||||
  std::vector<double> photo_r;
 | 
			
		||||
 | 
			
		||||
  // individual Jacobians
 | 
			
		||||
  Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
 | 
			
		||||
  Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
 | 
			
		||||
@@ -1262,9 +1264,31 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
 | 
			
		||||
  auto frame = cam0.moving_window.find(cam_state_id)->second.image;
 | 
			
		||||
 | 
			
		||||
  //observation
 | 
			
		||||
  const Vector4d& z = feature.observations.find(cam_state_id)->second;
 | 
			
		||||
 | 
			
		||||
  //estimate photometric measurement
 | 
			
		||||
  std::vector<double> estimate_irradiance;
 | 
			
		||||
  std::vector<double> estimate_photo_z;
 | 
			
		||||
  IlluminationParameter estimated_illumination;
 | 
			
		||||
  feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
 | 
			
		||||
  
 | 
			
		||||
  // calculated here, because we need true 'estimate_irradiance' later for jacobi
 | 
			
		||||
  for (auto& estimate_irradiance_j : estimate_irradiance)
 | 
			
		||||
            estimate_photo_z.push_back (estimate_irradiance_j * 
 | 
			
		||||
                    estimated_illumination.frame_gain * estimated_illumination.feature_gain +
 | 
			
		||||
                    estimated_illumination.frame_bias + estimated_illumination.feature_bias);
 | 
			
		||||
 | 
			
		||||
  int count = 0;
 | 
			
		||||
  double dx, dy;
 | 
			
		||||
 | 
			
		||||
  // gradient visualization parameters
 | 
			
		||||
  cv::Point2f gradientVector(0,0);
 | 
			
		||||
 | 
			
		||||
  // residual change visualization
 | 
			
		||||
  cv::Point2f residualVector(0,0);
 | 
			
		||||
  double res_sum = 0;
 | 
			
		||||
 | 
			
		||||
  for (auto point : feature.anchorPatch_3d)
 | 
			
		||||
  {
 | 
			
		||||
    Eigen::Vector3d p_c0 = R_w_c0 * (point-t_c0_w);
 | 
			
		||||
@@ -1273,14 +1297,24 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
    //add observation
 | 
			
		||||
    photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
 | 
			
		||||
 | 
			
		||||
    // add jacobian
 | 
			
		||||
      //calculate photom. residual
 | 
			
		||||
    photo_r.push_back(photo_z[count] - estimate_photo_z[count]);
 | 
			
		||||
 | 
			
		||||
    // add jacobians
 | 
			
		||||
 | 
			
		||||
    // frame derivative calculated convoluting with kernel [-1, 0, 1]
 | 
			
		||||
    dx = feature.PixelIrradiance(cv::Point2f(p_in_c0.x+1, p_in_c0.y), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x-1, p_in_c0.y), frame);
 | 
			
		||||
    dy = feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y+1), frame) - feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y-1), frame);
 | 
			
		||||
    dI_dhj(0, 0) = dx;
 | 
			
		||||
    dI_dhj(0, 1) = dy;
 | 
			
		||||
 | 
			
		||||
    gradientVector.x += dx;
 | 
			
		||||
    gradientVector.y += dy; 
 | 
			
		||||
    
 | 
			
		||||
    residualVector.x += dx * photo_r[count];
 | 
			
		||||
    residualVector.y += dy * photo_r[count];
 | 
			
		||||
    res_sum += photo_r[count];
 | 
			
		||||
 | 
			
		||||
    //dh / d{}^Cp_{ij}
 | 
			
		||||
    dh_dCpij(0, 0) = 1 / p_c0(2);
 | 
			
		||||
    dh_dCpij(1, 1) = 1 / p_c0(2);
 | 
			
		||||
@@ -1320,28 +1354,6 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
 | 
			
		||||
    count++;
 | 
			
		||||
  }
 | 
			
		||||
  // calculate residual
 | 
			
		||||
 | 
			
		||||
  //observation
 | 
			
		||||
  const Vector4d& z = feature.observations.find(cam_state_id)->second;
 | 
			
		||||
 | 
			
		||||
  //estimate photometric measurement
 | 
			
		||||
  std::vector<double> estimate_irradiance;
 | 
			
		||||
  std::vector<double> estimate_photo_z;
 | 
			
		||||
  IlluminationParameter estimated_illumination;
 | 
			
		||||
  feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination);
 | 
			
		||||
  
 | 
			
		||||
  // calculated here, because we need true 'estimate_irradiance' later for jacobi
 | 
			
		||||
  for (auto& estimate_irradiance_j : estimate_irradiance)
 | 
			
		||||
            estimate_photo_z.push_back (estimate_irradiance_j * 
 | 
			
		||||
                    estimated_illumination.frame_gain * estimated_illumination.feature_gain +
 | 
			
		||||
                    estimated_illumination.frame_bias + estimated_illumination.feature_bias);
 | 
			
		||||
 | 
			
		||||
  std::vector<double> photo_r;
 | 
			
		||||
  
 | 
			
		||||
  //calculate photom. residual
 | 
			
		||||
  for(int i = 0; i < photo_z.size(); i++)
 | 
			
		||||
    photo_r.push_back(photo_z[i] - estimate_photo_z[i]);
 | 
			
		||||
 | 
			
		||||
  MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
 | 
			
		||||
  MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+state_server.cam_states.size()+1);
 | 
			
		||||
@@ -1379,12 +1391,13 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
  count = 0; 
 | 
			
		||||
  for(auto data : photo_r)
 | 
			
		||||
    r[count++] = data;
 | 
			
		||||
 | 
			
		||||
  std::stringstream ss;
 | 
			
		||||
  ss << "INFO:" << " anchor: " << cam_state_cntr_anchor << "  frame: " << cam_state_cntr;
 | 
			
		||||
  if(PRINTIMAGES)
 | 
			
		||||
  {  
 | 
			
		||||
    feature.MarkerGeneration(marker_pub, state_server.cam_states);
 | 
			
		||||
    feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss);
 | 
			
		||||
    feature.VisualizePatch(cam_state, cam_state_id, cam0, photo_r, ss, gradientVector, residualVector);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
@@ -1481,13 +1494,11 @@ void MsckfVio::PhotometricFeatureJacobian(
 | 
			
		||||
  H_x = A_null_space.transpose() * H_xi;
 | 
			
		||||
  r = A_null_space.transpose() * r_i;
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  ofstream myfile;
 | 
			
		||||
  myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
 | 
			
		||||
  myfile << "-- residual -- \n" << r << "\n---- H ----\n" << H_x << "\n---- state cov ----\n" << state_server.state_cov <<endl;
 | 
			
		||||
  myfile << "Hx\n" << H_x << "r\n" << r << "from residual estimated error state: " << H_x. * r << endl;
 | 
			
		||||
  myfile.close();
 | 
			
		||||
  cout << "---------- LOGGED -------- " << endl; 
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  if(PRINTIMAGES)
 | 
			
		||||
  {
 | 
			
		||||
@@ -1631,13 +1642,11 @@ void MsckfVio::featureJacobian(
 | 
			
		||||
  
 | 
			
		||||
  ofstream myfile;
 | 
			
		||||
  myfile.open ("/home/raphael/dev/MSCKF_ws/log.txt");
 | 
			
		||||
  myfile << "-- residual -- \n" << r << "\n---- H ----\n" << H_x << "\n---- state cov ----\n" << state_server.state_cov <<endl;
 | 
			
		||||
  myfile << "Hx\n" << H_x << "r\n" << r << "from residual estimated error state: " << H_x.ldlt().solve(r) << endl;
 | 
			
		||||
  myfile.close();
 | 
			
		||||
  cout << "---------- LOGGED -------- " << endl; 
 | 
			
		||||
  
 | 
			
		||||
  nh.setParam("/play_bag", false);
 | 
			
		||||
 | 
			
		||||
  return;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
			
		||||
@@ -1648,7 +1657,11 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
			
		||||
  // complexity as in Equation (28), (29).
 | 
			
		||||
  MatrixXd H_thin;
 | 
			
		||||
  VectorXd r_thin;
 | 
			
		||||
  int augmentationSize = 6;
 | 
			
		||||
  if(PHOTOMETRIC)
 | 
			
		||||
    augmentationSize = 7;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  if (H.rows() > H.cols()) {
 | 
			
		||||
    // Convert H to a sparse matrix.
 | 
			
		||||
    SparseMatrix<double> H_sparse = H.sparseView();
 | 
			
		||||
@@ -1663,8 +1676,8 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
			
		||||
    (spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);
 | 
			
		||||
    (spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);
 | 
			
		||||
 | 
			
		||||
    H_thin = H_temp.topRows(21+state_server.cam_states.size()*6);
 | 
			
		||||
    r_thin = r_temp.head(21+state_server.cam_states.size()*6);
 | 
			
		||||
    H_thin = H_temp.topRows(21+state_server.cam_states.size()*augmentationSize);
 | 
			
		||||
    r_thin = r_temp.head(21+state_server.cam_states.size()*augmentationSize);
 | 
			
		||||
 | 
			
		||||
    //HouseholderQR<MatrixXd> qr_helper(H);
 | 
			
		||||
    //MatrixXd Q = qr_helper.householderQ();
 | 
			
		||||
@@ -1676,18 +1689,19 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
			
		||||
    H_thin = H;
 | 
			
		||||
    r_thin = r;
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  // Compute the Kalman gain.
 | 
			
		||||
  const MatrixXd& P = state_server.state_cov;
 | 
			
		||||
  MatrixXd S = H_thin*P*H_thin.transpose() +
 | 
			
		||||
  MatrixXd S = H*P*H.transpose() +
 | 
			
		||||
      Feature::observation_noise*MatrixXd::Identity(
 | 
			
		||||
        H_thin.rows(), H_thin.rows());
 | 
			
		||||
  //MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H_thin*P);
 | 
			
		||||
  MatrixXd K_transpose = S.ldlt().solve(H_thin*P);
 | 
			
		||||
        H.rows(), H.rows());
 | 
			
		||||
  //MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H*P);
 | 
			
		||||
  MatrixXd K_transpose = S.ldlt().solve(H*P);
 | 
			
		||||
  MatrixXd K = K_transpose.transpose();
 | 
			
		||||
 | 
			
		||||
  // Compute the error of the state.
 | 
			
		||||
  VectorXd delta_x = K * r_thin;
 | 
			
		||||
  VectorXd delta_x = K * r;
 | 
			
		||||
 | 
			
		||||
  // Update the IMU state.
 | 
			
		||||
  const VectorXd& delta_x_imu = delta_x.head<21>();
 | 
			
		||||
@@ -1722,7 +1736,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
			
		||||
  auto cam_state_iter = state_server.cam_states.begin();
 | 
			
		||||
  for (int i = 0; i < state_server.cam_states.size();
 | 
			
		||||
      ++i, ++cam_state_iter) {
 | 
			
		||||
    const VectorXd& delta_x_cam = delta_x.segment<6>(21+i*6);
 | 
			
		||||
    const VectorXd& delta_x_cam = delta_x.segment(21+i*augmentationSize, augmentationSize);
 | 
			
		||||
    const Vector4d dq_cam = smallAngleQuaternion(delta_x_cam.head<3>());
 | 
			
		||||
    cam_state_iter->second.orientation = quaternionMultiplication(
 | 
			
		||||
        dq_cam, cam_state_iter->second.orientation);
 | 
			
		||||
@@ -1730,7 +1744,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Update state covariance.
 | 
			
		||||
  MatrixXd I_KH = MatrixXd::Identity(K.rows(), H_thin.cols()) - K*H_thin;
 | 
			
		||||
  MatrixXd I_KH = MatrixXd::Identity(K.rows(), H.cols()) - K*H;
 | 
			
		||||
  //state_server.state_cov = I_KH*state_server.state_cov*I_KH.transpose() +
 | 
			
		||||
  //  K*K.transpose()*Feature::observation_noise;
 | 
			
		||||
  state_server.state_cov = I_KH*state_server.state_cov;
 | 
			
		||||
@@ -1744,7 +1758,7 @@ void MsckfVio::measurementUpdate(const MatrixXd& H, const VectorXd& r) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool MsckfVio::gatingTest(const MatrixXd& H, const VectorXd& r, const int& dof) {
 | 
			
		||||
 | 
			
		||||
  return true;
 | 
			
		||||
  MatrixXd P1 = H * state_server.state_cov * H.transpose();
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user