Jakobi Calculation done
This commit is contained in:
		| @@ -165,7 +165,8 @@ struct Feature { | |||||||
|                   const CAMState& cam_state, |                   const CAMState& cam_state, | ||||||
|                   const StateIDType& cam_state_id, |                   const StateIDType& cam_state_id, | ||||||
|                   CameraCalibration& cam0, |                   CameraCalibration& cam0, | ||||||
|                   std::vector<float>& anchorPatch_estimate) const; |                   std::vector<double>& anchorPatch_estimate, | ||||||
|  |                   IlluminationParameter& estimatedIllumination) const; | ||||||
|  |  | ||||||
|   bool VisualizePatch( |   bool VisualizePatch( | ||||||
|                   const CAMState& cam_state, |                   const CAMState& cam_state, | ||||||
| @@ -202,6 +203,7 @@ inline Eigen::Vector3d projectPixelToPosition(cv::Point2f in_p, | |||||||
|  |  | ||||||
|   // NxN Patch of Anchor Image |   // NxN Patch of Anchor Image | ||||||
|   std::vector<double> anchorPatch; |   std::vector<double> anchorPatch; | ||||||
|  |   std::vector<cv::Point2f> anchorPatch_ideal; | ||||||
|  |  | ||||||
|   // Position of NxN Patch in 3D space |   // Position of NxN Patch in 3D space | ||||||
|   std::vector<Eigen::Vector3d> anchorPatch_3d; |   std::vector<Eigen::Vector3d> anchorPatch_3d; | ||||||
| @@ -365,7 +367,8 @@ bool Feature::estimate_FrameIrradiance( | |||||||
|                   const CAMState& cam_state, |                   const CAMState& cam_state, | ||||||
|                   const StateIDType& cam_state_id, |                   const StateIDType& cam_state_id, | ||||||
|                   CameraCalibration& cam0, |                   CameraCalibration& cam0, | ||||||
|                   std::vector<float>& anchorPatch_estimate) const |                   std::vector<double>& anchorPatch_estimate, | ||||||
|  |                   IlluminationParameter& estimated_illumination) const | ||||||
| { | { | ||||||
|   // get irradiance of patch in anchor frame |   // get irradiance of patch in anchor frame | ||||||
|   // subtract estimated b and divide by a of anchor frame |   // subtract estimated b and divide by a of anchor frame | ||||||
| @@ -384,12 +387,16 @@ bool Feature::estimate_FrameIrradiance( | |||||||
|   double a_l = frameExposureTime_ms; |   double a_l = frameExposureTime_ms; | ||||||
|   double b_l = 0; |   double b_l = 0; | ||||||
|  |  | ||||||
|  |   estimated_illumination.frame_gain = a_l; | ||||||
|  |   estimated_illumination.frame_bias = b_l; | ||||||
|  |   estimated_illumination.feature_gain = 1; | ||||||
|  |   estimated_illumination.feature_bias = 0; | ||||||
|   //printf("frames: %lld, %lld\n", anchor->first, cam_state_id); |   //printf("frames: %lld, %lld\n", anchor->first, cam_state_id); | ||||||
|   //printf("exposure: %f, %f\n", a_A, a_l); |   //printf("exposure: %f, %f\n", a_A, a_l); | ||||||
|    |    | ||||||
|   for (double anchorPixel : anchorPatch) |   for (double anchorPixel : anchorPatch) | ||||||
|   { |   { | ||||||
|     float irradiance = ((anchorPixel - b_A) / a_A ) * a_l - b_l; |     float irradiance = (anchorPixel - b_A) / a_A ; | ||||||
|     anchorPatch_estimate.push_back(irradiance); |     anchorPatch_estimate.push_back(irradiance); | ||||||
|   } |   } | ||||||
|  |  | ||||||
| @@ -536,6 +543,8 @@ bool Feature::initializeAnchor( | |||||||
|  |  | ||||||
|   // save anchor position for later visualisaztion |   // save anchor position for later visualisaztion | ||||||
|   anchor_center_pos = vec[4]; |   anchor_center_pos = vec[4]; | ||||||
|  |  | ||||||
|  |   // save true pixel Patch position | ||||||
|   for(auto point : vec) |   for(auto point : vec) | ||||||
|   { |   { | ||||||
|     if(point.x - n < 0 || point.x + n >= cam.resolution(0) || point.y - n < 0 || point.y + n >= cam.resolution(1)) |     if(point.x - n < 0 || point.x + n >= cam.resolution(0) || point.y - n < 0 || point.y + n >= cam.resolution(1)) | ||||||
| @@ -546,8 +555,10 @@ bool Feature::initializeAnchor( | |||||||
|  |  | ||||||
|   // project patch pixel to 3D space |   // project patch pixel to 3D space | ||||||
|   for(auto point : und_v) |   for(auto point : und_v) | ||||||
|  |   { | ||||||
|  |     anchorPatch_ideal.push_back(point); | ||||||
|     anchorPatch_3d.push_back(projectPixelToPosition(point, cam)); |     anchorPatch_3d.push_back(projectPixelToPosition(point, cam)); | ||||||
|  |   } | ||||||
|   is_anchored = true; |   is_anchored = true; | ||||||
|   return true; |   return true; | ||||||
| } | } | ||||||
|   | |||||||
| @@ -901,11 +901,8 @@ void MsckfVio::PhotometricMeasurementJacobian( | |||||||
|   // And its observation with the stereo cameras. |   // And its observation with the stereo cameras. | ||||||
|   const Vector3d& p_w = feature.position; |   const Vector3d& p_w = feature.position; | ||||||
|  |  | ||||||
|   //observation |  | ||||||
|   const Vector4d& z = feature.observations.find(cam_state_id)->second; |  | ||||||
|  |  | ||||||
|   //photometric observation |   //photometric observation | ||||||
|   std::vector<float> photo_z; |   std::vector<double> photo_z; | ||||||
|  |  | ||||||
|   // individual Jacobians |   // individual Jacobians | ||||||
|   Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero(); |   Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero(); | ||||||
| @@ -921,17 +918,17 @@ void MsckfVio::PhotometricMeasurementJacobian( | |||||||
|   Eigen::Matrix<double, 1, 6> H_pAj; |   Eigen::Matrix<double, 1, 6> H_pAj; | ||||||
|  |  | ||||||
|   // combined Jacobians |   // combined Jacobians | ||||||
|   Eigen::MatrixXd H_rho(N*N, 3); |   Eigen::MatrixXd H_rho(N*N, 1); | ||||||
|   Eigen::MatrixXd H_pl(N*N, 6); |   Eigen::MatrixXd H_pl(N*N, 6); | ||||||
|   Eigen::MatrixXd H_pA(N*N, 6); |   Eigen::MatrixXd H_pA(N*N, 6); | ||||||
|  |  | ||||||
|   auto frame = cam0.moving_window.find(cam_state_id)->second.image; |   auto frame = cam0.moving_window.find(cam_state_id)->second.image; | ||||||
|  |  | ||||||
|   int count = 0; |   int count = 0; | ||||||
|   float dx, dy; |   double dx, dy; | ||||||
|   for (auto point : feature.anchorPatch_3d) |   for (auto point : feature.anchorPatch_3d) | ||||||
|   { |   { | ||||||
|  |     Eigen::Vector3d p_c0 = R_w_c0 * (p_w-t_c0_w); | ||||||
|     cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point); |     cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point); | ||||||
|  |  | ||||||
|     //add observation |     //add observation | ||||||
| @@ -947,8 +944,8 @@ void MsckfVio::PhotometricMeasurementJacobian( | |||||||
|      |      | ||||||
|     //dh / d{}^Cp_{ij} |     //dh / d{}^Cp_{ij} | ||||||
|     dh_dCpij.block<2, 2>(0, 0) = Eigen::Matrix<double, 2, 2>::Identity(); |     dh_dCpij.block<2, 2>(0, 0) = Eigen::Matrix<double, 2, 2>::Identity(); | ||||||
|     dh_dCpij(0, 2) = -(point(0))/(point(2)*point(2)); |     dh_dCpij(0, 2) = -(p_c0(0))/(p_c0(2)*p_c0(2)); | ||||||
|     dh_dCpij(1, 2) = -(point(1))/(point(2)*point(2)); |     dh_dCpij(1, 2) = -(p_c0(1))/(p_c0(2)*p_c0(2)); | ||||||
|     dh_dGpij = dh_dCpij * quaternionToRotation(cam_state.orientation).transpose(); |     dh_dGpij = dh_dCpij * quaternionToRotation(cam_state.orientation).transpose(); | ||||||
|  |  | ||||||
|     //dh / d X_{pl} |     //dh / d X_{pl} | ||||||
| @@ -957,9 +954,9 @@ void MsckfVio::PhotometricMeasurementJacobian( | |||||||
|  |  | ||||||
|     //d{}^Gp_P{ij} / \rho_i |     //d{}^Gp_P{ij} / \rho_i | ||||||
|     double rho = feature.anchor_rho; |     double rho = feature.anchor_rho; | ||||||
|     dGpi_drhoj = feature.T_anchor_w.linear() * Eigen::Vector3d(p_in_c0.x/(rho*rho), p_in_c0.y/(rho*rho), 1/(rho*rho)); |     dGpi_drhoj = feature.T_anchor_w.linear() * Eigen::Vector3d(-feature.anchorPatch_ideal[count].x/(rho*rho), -feature.anchorPatch_ideal[count].y/(rho*rho), 1/(rho*rho)); | ||||||
|  |  | ||||||
|     dGpi_XpAj.block<3, 3>(3, 0) = skewSymmetric(Eigen::Vector3d(p_in_c0.x/(rho), p_in_c0.y/(rho), 1/(rho))); |     dGpi_XpAj.block<3, 3>(3, 0) = skewSymmetric(Eigen::Vector3d(feature.anchorPatch_ideal[count].x/(rho), feature.anchorPatch_ideal[count].y/(rho), 1/(rho))); | ||||||
|     dGpi_XpAj.block<3, 3>(3, 3) = Matrix<double, 3, 3>::Identity(); |     dGpi_XpAj.block<3, 3>(3, 3) = Matrix<double, 3, 3>::Identity(); | ||||||
|  |  | ||||||
|     // Intermediate Jakobians |     // Intermediate Jakobians | ||||||
| @@ -974,25 +971,69 @@ void MsckfVio::PhotometricMeasurementJacobian( | |||||||
|     count++; |     count++; | ||||||
|   } |   } | ||||||
|  |  | ||||||
|  |   // calculate residual | ||||||
|  |  | ||||||
|  |   // visu -residual | ||||||
|  |   //printf("-----\n"); | ||||||
|  |  | ||||||
|  |   //observation | ||||||
|  |   const Vector4d& z = feature.observations.find(cam_state_id)->second; | ||||||
|  |  | ||||||
|  |   //estimate photometric measurement | ||||||
|  |   std::vector<double> estimate_irradiance; | ||||||
|  |   std::vector<double> estimate_photo_z; | ||||||
|  |   IlluminationParameter estimated_illumination; | ||||||
|  |   feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_irradiance, estimated_illumination); | ||||||
|  |   for (auto& estimate_irradiance_j : estimate_irradiance) | ||||||
|  |             estimate_photo_z.push_back(estimate_irradiance_j *  | ||||||
|  |                     estimated_illumination.frame_gain * estimated_illumination.feature_gain + | ||||||
|  |                     estimated_illumination.frame_bias + estimated_illumination.feature_bias); | ||||||
|  |  | ||||||
|  |   std::vector<double> photo_r; | ||||||
|  |    | ||||||
|  |   //calculate photom. residual | ||||||
|  |   for(int i = 0; i < photo_z.size(); i++) | ||||||
|  |     photo_r.push_back(photo_z[i] - estimate_photo_z[i]); | ||||||
|  |  | ||||||
|  |   // visu- residual | ||||||
|  |   //for(int i = 0; i < photo_z.size(); i++) | ||||||
|  |   //  printf("%.4f = %.4f - %.4f\n",photo_r[i], photo_z[i], estimate_photo_z[i]); | ||||||
|  |  | ||||||
|   //Final Jakobians |   //Final Jakobians | ||||||
|  |   // cout << "------------------------" << endl; | ||||||
|  |   // cout << "rho" << H_rho.rows() << "x" << H_rho.cols() << "\n" << H_rho << endl; | ||||||
|  |   // cout << "l" << H_pl.rows() << "x" << H_pl.cols()  << "\n" << H_pl << endl; | ||||||
|  |   // cout << "A" << H_pA.rows() << "x" << H_pA.cols()  << "\n" << H_pA << endl; | ||||||
|  |  | ||||||
|   MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7); |   MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7); | ||||||
|   MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+2); |   MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+state_server.cam_states.size()+1); | ||||||
|   auto cam_state_iter = state_server.cam_states.find(feature.observations.begin()->first); |  | ||||||
|   int cam_state_cntr = std::distance(state_server.cam_states.begin(), state_server.cam_states.find(cam_state_id)); |  | ||||||
|  |  | ||||||
|   // set anchor Jakobi |   // set anchor Jakobi | ||||||
|   H_xl.block<N*N, 6>(0,21+cam_state_cntr*7) = -H_pA;  |     // get position of anchor in cam states | ||||||
|   //H_yl |   auto cam_state_anchor = state_server.cam_states.find(feature.observations.begin()->first); | ||||||
|  |   int cam_state_cntr_anchor = std::distance(state_server.cam_states.begin(), cam_state_anchor); | ||||||
|   cam_state_iter = state_server.cam_states.find(cam_state_id); |   H_xl.block(0, 21+cam_state_cntr_anchor*7, N*N, 6) = -H_pA;  | ||||||
|   cam_state_cntr = std::distance(state_server.cam_states.begin(), state_server.cam_states.find(cam_state_id)); |  | ||||||
|  |  | ||||||
|   // set frame Jakobi |   // set frame Jakobi | ||||||
|   H_xl.block(N*N, 6, 0, 21+cam_state_cntr*7) = -H_pl; |     //get position of current frame in cam states | ||||||
|  |   auto cam_state_iter = state_server.cam_states.find(cam_state_id); | ||||||
|  |   int cam_state_cntr = std::distance(state_server.cam_states.begin(), cam_state_iter); | ||||||
|    |    | ||||||
|   H_xl.block(N*N, 1, 0, 21+cam_state_cntr*7) = Eigen::ArrayXd::Ones(N*N); |     // set jakobi of state | ||||||
|  |   H_xl.block(0, 21+cam_state_cntr*7, N*N, 6) = -H_pl; | ||||||
|  |  | ||||||
|  |     // set ones for irradiance bias | ||||||
|  |   H_xl.block(0, 21+cam_state_cntr*7+6, N*N, 1) = Eigen::ArrayXd::Ones(N*N); | ||||||
|  |  | ||||||
|  |   // set irradiance error Block | ||||||
|  |   H_yl.block(0, 0,N*N, N*N) = estimated_illumination.feature_gain * estimated_illumination.frame_gain * Eigen::MatrixXd::Identity(N*N, N*N); | ||||||
|  |    | ||||||
|  |   // TODO make this calculation more fluent | ||||||
|  |   for(int i = 0; i< N*N; i++) | ||||||
|  |     H_yl(i, N*N+cam_state_cntr) = estimate_irradiance[i]; | ||||||
|  |   H_yl.block(0, N*N+state_server.cam_states.size(), N*N, 1) = -H_rho; | ||||||
|  |  | ||||||
|  |   // Original calculation | ||||||
|  |  | ||||||
|   // Convert the feature position from the world frame to |   // Convert the feature position from the world frame to | ||||||
|   // the cam0 and cam1 frame. |   // the cam0 and cam1 frame. | ||||||
| @@ -1003,21 +1044,33 @@ void MsckfVio::PhotometricMeasurementJacobian( | |||||||
|   r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2), |   r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2), | ||||||
|       p_c1(0)/p_c1(2), p_c1(1)/p_c1(2)); |       p_c1(0)/p_c1(2), p_c1(1)/p_c1(2)); | ||||||
|  |  | ||||||
|   // visu -residual |  | ||||||
|   //printf("-----\n"); |  | ||||||
|  |  | ||||||
|   //estimate photometric measurement | // Compute the Jacobians. | ||||||
|   std::vector<float> estimate_photo_z; |   Matrix<double, 4, 3> dz_dpc0 = Matrix<double, 4, 3>::Zero(); | ||||||
|   feature.estimate_FrameIrradiance(cam_state, cam_state_id, cam0, estimate_photo_z); |   dz_dpc0(0, 0) = 1 / p_c0(2); | ||||||
|   std::vector<float> photo_r; |   dz_dpc0(1, 1) = 1 / p_c0(2); | ||||||
|  |   dz_dpc0(0, 2) = -p_c0(0) / (p_c0(2)*p_c0(2)); | ||||||
|  |   dz_dpc0(1, 2) = -p_c0(1) / (p_c0(2)*p_c0(2)); | ||||||
|  |  | ||||||
|   //calculate photom. residual |   Matrix<double, 4, 3> dz_dpc1 = Matrix<double, 4, 3>::Zero(); | ||||||
|   for(int i = 0; i < photo_z.size(); i++) |   dz_dpc1(2, 0) = 1 / p_c1(2); | ||||||
|     photo_r.push_back(photo_z[i] - estimate_photo_z[i]); |   dz_dpc1(3, 1) = 1 / p_c1(2); | ||||||
|  |   dz_dpc1(2, 2) = -p_c1(0) / (p_c1(2)*p_c1(2)); | ||||||
|  |   dz_dpc1(3, 2) = -p_c1(1) / (p_c1(2)*p_c1(2)); | ||||||
|  |  | ||||||
|   // visu- residual |   Matrix<double, 3, 6> dpc0_dxc = Matrix<double, 3, 6>::Zero(); | ||||||
|   //for(int i = 0; i < photo_z.size(); i++) |   dpc0_dxc.leftCols(3) = skewSymmetric(p_c0); | ||||||
|   //  printf("%.4f = %.4f - %.4f\n",photo_r[i], photo_z[i], estimate_photo_z[i]); |   dpc0_dxc.rightCols(3) = -R_w_c0; | ||||||
|  |  | ||||||
|  |   Matrix<double, 3, 6> dpc1_dxc = Matrix<double, 3, 6>::Zero(); | ||||||
|  |   dpc1_dxc.leftCols(3) = R_c0_c1 * skewSymmetric(p_c0); | ||||||
|  |   dpc1_dxc.rightCols(3) = -R_w_c1; | ||||||
|  |  | ||||||
|  |   Matrix3d dpc0_dpg = R_w_c0; | ||||||
|  |   Matrix3d dpc1_dpg = R_w_c1; | ||||||
|  |  | ||||||
|  |   H_x = dz_dpc0*dpc0_dxc + dz_dpc1*dpc1_dxc; | ||||||
|  |   H_f = dz_dpc0*dpc0_dpg + dz_dpc1*dpc1_dpg; | ||||||
|  |  | ||||||
|   photo_z.clear(); |   photo_z.clear(); | ||||||
|   return; |   return; | ||||||
| @@ -1051,7 +1104,7 @@ void MsckfVio::PhotometricFeatureJacobian( | |||||||
|  |  | ||||||
|  |  | ||||||
|   // visu - residual |   // visu - residual | ||||||
|   //printf("_____FEATURE:_____\n"); |   printf("_____FEATURE:_____\n"); | ||||||
|   // visu - feature |   // visu - feature | ||||||
|   //cam0.featureVisu.release(); |   //cam0.featureVisu.release(); | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user