added jakobi x calculation, y calculation (of photometric update) still missing
This commit is contained in:
		| @@ -167,11 +167,10 @@ struct Feature { | ||||
|                   CameraCalibration& cam0, | ||||
|                   std::vector<float>& anchorPatch_estimate) const; | ||||
|  | ||||
|   bool FrameIrradiance( | ||||
|   bool VisualizePatch( | ||||
|                   const CAMState& cam_state, | ||||
|                   const StateIDType& cam_state_id, | ||||
|                   CameraCalibration& cam0, | ||||
|                   std::vector<float>& anchorPatch_measurement) const; | ||||
|                   CameraCalibration& cam0) const; | ||||
|  | ||||
|   /* | ||||
|   * @brief projectPixelToPosition uses the calcualted pixels | ||||
| @@ -396,48 +395,41 @@ bool Feature::estimate_FrameIrradiance( | ||||
|  | ||||
| } | ||||
|  | ||||
| bool Feature::FrameIrradiance( | ||||
|  | ||||
| bool Feature::VisualizePatch( | ||||
|                   const CAMState& cam_state, | ||||
|                   const StateIDType& cam_state_id, | ||||
|                   CameraCalibration& cam0, | ||||
|                   std::vector<float>& anchorPatch_measurement) const | ||||
|                   CameraCalibration& cam0) const | ||||
| { | ||||
|  | ||||
|   // visu - feature | ||||
|   /*cv::Mat current_image = cam0.moving_window.find(cam_state_id)->second.image; | ||||
|   cv::Mat current_image = cam0.moving_window.find(cam_state_id)->second.image; | ||||
|   cv::Mat dottedFrame(current_image.size(), CV_8UC3); | ||||
|   cv::cvtColor(current_image, dottedFrame, CV_GRAY2RGB); | ||||
|   */ | ||||
|  | ||||
|   // project every point in anchorPatch_3d. | ||||
|   for (auto point : anchorPatch_3d) | ||||
|   auto frame = cam0.moving_window.find(cam_state_id)->second.image; | ||||
|    | ||||
|   for(auto point : anchorPatch_3d) | ||||
|   { | ||||
|  | ||||
|     cv::Point2f p_in_c0 = projectPositionToCamera(cam_state, cam_state_id, cam0, point); | ||||
|  | ||||
|     // visu - feature | ||||
|     /*cv::Point xs(p_in_c0.x, p_in_c0.y); | ||||
|     cv::Point xs(p_in_c0.x, p_in_c0.y); | ||||
|     cv::Point ys(p_in_c0.x, p_in_c0.y); | ||||
|     cv::rectangle(dottedFrame, xs, ys, cv::Scalar(0,255,0)); | ||||
|   */ | ||||
|     float irradiance = PixelIrradiance(p_in_c0, cam0.moving_window.find(cam_state_id)->second.image); | ||||
|     anchorPatch_measurement.push_back(irradiance); | ||||
|      | ||||
|     // testing | ||||
|     //if(cam_state_id == observations.begin()->first) | ||||
|       //if(count++ == 4) | ||||
|         //printf("dist:\n \tpos: %f, %f\n\ttrue pos: %f, %f\n\n", p_in_c0.x, p_in_c0.y, anchor_center_pos.x, anchor_center_pos.y); | ||||
|      | ||||
|   } | ||||
|   }   | ||||
|   // testing | ||||
|   //if(cam_state_id == observations.begin()->first) | ||||
|     //if(count++ == 4) | ||||
|       //printf("dist:\n \tpos: %f, %f\n\ttrue pos: %f, %f\n\n", p_in_c0.x, p_in_c0.y, anchor_center_pos.x, anchor_center_pos.y); | ||||
|  | ||||
|   // visu - feature | ||||
|   //cv::resize(dottedFrame, dottedFrame, cv::Size(dottedFrame.cols*0.2, dottedFrame.rows*0.2)); | ||||
|   /*if(cam0.featureVisu.empty()) | ||||
|   cv::resize(dottedFrame, dottedFrame, cv::Size(dottedFrame.cols*0.2, dottedFrame.rows*0.2)); | ||||
|   if(cam0.featureVisu.empty()) | ||||
|     cam0.featureVisu = dottedFrame.clone(); | ||||
|   else | ||||
|     cv::hconcat(cam0.featureVisu, dottedFrame, cam0.featureVisu); | ||||
|   */ | ||||
|  | ||||
| } | ||||
|  | ||||
| float Feature::PixelIrradiance(cv::Point2f pose, cv::Mat image) const | ||||
|   | ||||
| @@ -207,7 +207,7 @@ class MsckfVio { | ||||
|     StateServer state_server; | ||||
|     // Maximum number of camera states | ||||
|     int max_cam_state_size; | ||||
|  | ||||
|      | ||||
|     // Features used | ||||
|     MapServer map_server; | ||||
|  | ||||
|   | ||||
| @@ -190,7 +190,7 @@ bool MsckfVio::loadParameters() { | ||||
|  | ||||
|   // Maximum number of camera states to be stored | ||||
|   nh.param<int>("max_cam_state_size", max_cam_state_size, 30); | ||||
|  | ||||
|   //cam_state_size = max_cam_state_size; | ||||
|   ROS_INFO("==========================================="); | ||||
|   ROS_INFO("fixed frame id: %s", fixed_frame_id.c_str()); | ||||
|   ROS_INFO("child frame id: %s", child_frame_id.c_str()); | ||||
| @@ -684,25 +684,6 @@ void MsckfVio::processModel(const double& time, | ||||
|   // Propogate the state using 4th order Runge-Kutta | ||||
|   predictNewState(dtime, gyro, acc); | ||||
|  | ||||
|   // Modify the transition matrix | ||||
|   Matrix3d R_kk_1 = quaternionToRotation(imu_state.orientation_null); | ||||
|   Phi.block<3, 3>(0, 0) = | ||||
|     quaternionToRotation(imu_state.orientation) * R_kk_1.transpose(); | ||||
|  | ||||
|   Vector3d u = R_kk_1 * IMUState::gravity; | ||||
|   RowVector3d s = (u.transpose()*u).inverse() * u.transpose(); | ||||
|  | ||||
|   Matrix3d A1 = Phi.block<3, 3>(6, 0); | ||||
|   Vector3d w1 = skewSymmetric( | ||||
|       imu_state.velocity_null-imu_state.velocity) * IMUState::gravity; | ||||
|   Phi.block<3, 3>(6, 0) = A1 - (A1*u-w1)*s; | ||||
|  | ||||
|   Matrix3d A2 = Phi.block<3, 3>(12, 0); | ||||
|   Vector3d w2 = skewSymmetric( | ||||
|       dtime*imu_state.velocity_null+imu_state.position_null- | ||||
|       imu_state.position) * IMUState::gravity; | ||||
|   Phi.block<3, 3>(12, 0) = A2 - (A2*u-w2)*s; | ||||
|  | ||||
|   // Propogate the state covariance matrix. | ||||
|   Matrix<double, 21, 21> Q = Phi*G*state_server.continuous_noise_cov* | ||||
|     G.transpose()*Phi.transpose()*dtime; | ||||
| @@ -908,6 +889,9 @@ void MsckfVio::PhotometricMeasurementJacobian( | ||||
|   Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation); | ||||
|   const Vector3d& t_c0_w = cam_state.position; | ||||
|  | ||||
|   //temp N | ||||
|   const int N = 3; | ||||
|  | ||||
|   // Cam1 pose. | ||||
|   Matrix3d R_c0_c1 = CAMState::T_cam0_cam1.linear(); | ||||
|   Matrix3d R_w_c1 = CAMState::T_cam0_cam1.linear() * R_w_c0; | ||||
| @@ -922,57 +906,99 @@ void MsckfVio::PhotometricMeasurementJacobian( | ||||
|  | ||||
|   //photometric observation | ||||
|   std::vector<float> photo_z; | ||||
|   feature.FrameIrradiance(cam_state, cam_state_id, cam0, photo_z); | ||||
|  | ||||
|   // individual Jacobians | ||||
|   Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero(); | ||||
|   Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero(); | ||||
|   Matrix<double, 2, 3> dh_dGpij = Matrix<double, 2, 3>::Zero(); | ||||
|   Matrix<double, 2, 6> dh_dXplj = Matrix<double, 2, 6>::Zero(); | ||||
|   Matrix<double, 3, 1> dGpi_drhoj = Matrix<double, 3, 1>::Zero(); | ||||
|   Matrix<double, 3, 6> dGpi_XpAj = Matrix<double, 3, 6>::Zero(); | ||||
|    | ||||
|   // one line of the NxN Jacobians | ||||
|   Eigen::Matrix<double, 1, 1> H_rhoj; | ||||
|   Eigen::Matrix<double, 1, 6> H_plj; | ||||
|   Eigen::Matrix<double, 1, 6> H_pAj; | ||||
|  | ||||
|   // combined Jacobians | ||||
|   Eigen::MatrixXd H_rho(N*N, 3); | ||||
|   Eigen::MatrixXd H_pl(N*N, 6); | ||||
|   Eigen::MatrixXd H_pA(N*N, 6); | ||||
|  | ||||
|   auto frame = cam0.moving_window.find(cam_state_id)->second.image; | ||||
|  | ||||
|   int count = 0; | ||||
|   float dx, dy; | ||||
|   for (auto point : feature.anchorPatch_3d) | ||||
|   { | ||||
|  | ||||
|     cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point); | ||||
|  | ||||
|     //add observation | ||||
|     photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame)); | ||||
|  | ||||
|     //add jacobian | ||||
|  | ||||
|     // frame derivative calculated convoluting with kernel [-1, 0, 1] | ||||
|     dx = feature.PixelIrradiance(cv::Point2f(p_in_c0.x+1, p_in_c0.y), frame)- feature.PixelIrradiance(cv::Point2f(p_in_c0.x-1, p_in_c0.y), frame); | ||||
|     dy = feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y+1), frame)- feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y-1), frame); | ||||
|     dI_dhj(0, 0) = dx; | ||||
|     dI_dhj(1, 0) = dy; | ||||
|      | ||||
|     //dh / d{}^Cp_{ij} | ||||
|     dh_dCpij.block<2, 2>(0, 0) = Eigen::Matrix<double, 2, 2>::Identity(); | ||||
|     dh_dCpij(0, 2) = -(point(0))/(point(2)*point(2)); | ||||
|     dh_dCpij(1, 2) = -(point(1))/(point(2)*point(2)); | ||||
|     dh_dGpij = dh_dCpij * quaternionToRotation(cam_state.orientation).transpose(); | ||||
|  | ||||
|     //dh / d X_{pl} | ||||
|     dh_dXplj.block<2, 3>(3, 0) = dh_dCpij * skewSymmetric(point); | ||||
|     dh_dXplj.block<2, 3>(3, 3) = dh_dCpij * -quaternionToRotation(cam_state.orientation).transpose(); | ||||
|  | ||||
|     //d{}^Gp_P{ij} / \rho_i | ||||
|     double rho = feature.anchor_rho; | ||||
|     dGpi_drhoj = feature.T_anchor_w.linear() * Eigen::Vector3d(p_in_c0.x/(rho*rho), p_in_c0.y/(rho*rho), 1/(rho*rho)); | ||||
|  | ||||
|     dGpi_XpAj.block<3, 3>(3, 0) = skewSymmetric(Eigen::Vector3d(p_in_c0.x/(rho), p_in_c0.y/(rho), 1/(rho))); | ||||
|     dGpi_XpAj.block<3, 3>(3, 3) = Matrix<double, 3, 3>::Identity(); | ||||
|  | ||||
|     // Intermediate Jakobians | ||||
|     H_rhoj = dI_dhj * dh_dGpij * dGpi_drhoj; // 1 x 3 | ||||
|     H_plj = dI_dhj * dh_dXplj; // 1 x 6 | ||||
|     H_pAj = dI_dhj * dh_dGpij * dGpi_XpAj; // 1 x 6 | ||||
|  | ||||
|     H_rho.block<1, 1>(count, 0) = H_rhoj; | ||||
|     H_pl.block<1, 6>(count, 0) = H_plj; | ||||
|     H_pA.block<1, 6>(count, 0) = H_pAj; | ||||
|  | ||||
|     count++; | ||||
|   } | ||||
|  | ||||
|  | ||||
|    | ||||
|   //Final Jakobians | ||||
|   MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7); | ||||
|   MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+2); | ||||
|   auto cam_state_iter = state_server.cam_states.find(feature.observations.begin()->first); | ||||
|   int cam_state_cntr = std::distance(state_server.cam_states.begin(), state_server.cam_states.find(cam_state_id)); | ||||
|  | ||||
|   // set anchor Jakobi | ||||
|   H_xl.block<N*N, 6>(0,21+cam_state_cntr*7) = -H_pA;  | ||||
|   //H_yl | ||||
|  | ||||
|   cam_state_iter = state_server.cam_states.find(cam_state_id); | ||||
|   cam_state_cntr = std::distance(state_server.cam_states.begin(), state_server.cam_states.find(cam_state_id)); | ||||
|  | ||||
|   // set frame Jakobi | ||||
|   H_xl.block(N*N, 6, 0, 21+cam_state_cntr*7) = -H_pl; | ||||
|  | ||||
|   H_xl.block(N*N, 1, 0, 21+cam_state_cntr*7) = Eigen::ArrayXd::Ones(N*N); | ||||
|  | ||||
|   // Convert the feature position from the world frame to | ||||
|   // the cam0 and cam1 frame. | ||||
|   Vector3d p_c0 = R_w_c0 * (p_w-t_c0_w); | ||||
|   Vector3d p_c1 = R_w_c1 * (p_w-t_c1_w); | ||||
|  | ||||
|  | ||||
|   //compute resulting esimtated position in image | ||||
|   cv::Point2f out_p = cv::Point2f(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2)); | ||||
|   std::vector<cv::Point2f> out_v; | ||||
|   out_v.push_back(out_p); | ||||
|  | ||||
|   // Compute the Jacobians. | ||||
|   Matrix<double, 4, 3> dz_dpc0 = Matrix<double, 4, 3>::Zero(); | ||||
|   dz_dpc0(0, 0) = 1 / p_c0(2); | ||||
|   dz_dpc0(1, 1) = 1 / p_c0(2); | ||||
|   dz_dpc0(0, 2) = -p_c0(0) / (p_c0(2)*p_c0(2)); | ||||
|   dz_dpc0(1, 2) = -p_c0(1) / (p_c0(2)*p_c0(2)); | ||||
|  | ||||
|   Matrix<double, 4, 3> dz_dpc1 = Matrix<double, 4, 3>::Zero(); | ||||
|   dz_dpc1(2, 0) = 1 / p_c1(2); | ||||
|   dz_dpc1(3, 1) = 1 / p_c1(2); | ||||
|   dz_dpc1(2, 2) = -p_c1(0) / (p_c1(2)*p_c1(2)); | ||||
|   dz_dpc1(3, 2) = -p_c1(1) / (p_c1(2)*p_c1(2)); | ||||
|  | ||||
|   Matrix<double, 3, 6> dpc0_dxc = Matrix<double, 3, 6>::Zero(); | ||||
|   dpc0_dxc.leftCols(3) = skewSymmetric(p_c0); | ||||
|   dpc0_dxc.rightCols(3) = -R_w_c0; | ||||
|  | ||||
|   Matrix<double, 3, 6> dpc1_dxc = Matrix<double, 3, 6>::Zero(); | ||||
|   dpc1_dxc.leftCols(3) = R_c0_c1 * skewSymmetric(p_c0); | ||||
|   dpc1_dxc.rightCols(3) = -R_w_c1; | ||||
|  | ||||
|   Matrix3d dpc0_dpg = R_w_c0; | ||||
|   Matrix3d dpc1_dpg = R_w_c1; | ||||
|  | ||||
|   H_x = dz_dpc0*dpc0_dxc + dz_dpc1*dpc1_dxc; | ||||
|   H_f = dz_dpc0*dpc0_dpg + dz_dpc1*dpc1_dpg; | ||||
|  | ||||
|   // Modifty the measurement Jacobian to ensure | ||||
|   // observability constrain. | ||||
|   Matrix<double, 4, 6> A = H_x; | ||||
|   Matrix<double, 6, 1> u = Matrix<double, 6, 1>::Zero(); | ||||
|   u.block<3, 1>(0, 0) = quaternionToRotation( | ||||
|       cam_state.orientation_null) * IMUState::gravity; | ||||
|   u.block<3, 1>(3, 0) = skewSymmetric( | ||||
|       p_w-cam_state.position_null) * IMUState::gravity; | ||||
|   H_x = A - A*u*(u.transpose()*u).inverse()*u.transpose(); | ||||
|   H_f = -H_x.block<4, 3>(0, 3); | ||||
|  | ||||
|   // Compute the residual. | ||||
|   r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2), | ||||
|       p_c1(0)/p_c1(2), p_c1(1)/p_c1(2)); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user