added jakobi x calculation, y calculation (of photometric update) still missing
This commit is contained in:
		@@ -190,7 +190,7 @@ bool MsckfVio::loadParameters() {
 | 
			
		||||
 | 
			
		||||
  // Maximum number of camera states to be stored
 | 
			
		||||
  nh.param<int>("max_cam_state_size", max_cam_state_size, 30);
 | 
			
		||||
 | 
			
		||||
  //cam_state_size = max_cam_state_size;
 | 
			
		||||
  ROS_INFO("===========================================");
 | 
			
		||||
  ROS_INFO("fixed frame id: %s", fixed_frame_id.c_str());
 | 
			
		||||
  ROS_INFO("child frame id: %s", child_frame_id.c_str());
 | 
			
		||||
@@ -684,25 +684,6 @@ void MsckfVio::processModel(const double& time,
 | 
			
		||||
  // Propogate the state using 4th order Runge-Kutta
 | 
			
		||||
  predictNewState(dtime, gyro, acc);
 | 
			
		||||
 | 
			
		||||
  // Modify the transition matrix
 | 
			
		||||
  Matrix3d R_kk_1 = quaternionToRotation(imu_state.orientation_null);
 | 
			
		||||
  Phi.block<3, 3>(0, 0) =
 | 
			
		||||
    quaternionToRotation(imu_state.orientation) * R_kk_1.transpose();
 | 
			
		||||
 | 
			
		||||
  Vector3d u = R_kk_1 * IMUState::gravity;
 | 
			
		||||
  RowVector3d s = (u.transpose()*u).inverse() * u.transpose();
 | 
			
		||||
 | 
			
		||||
  Matrix3d A1 = Phi.block<3, 3>(6, 0);
 | 
			
		||||
  Vector3d w1 = skewSymmetric(
 | 
			
		||||
      imu_state.velocity_null-imu_state.velocity) * IMUState::gravity;
 | 
			
		||||
  Phi.block<3, 3>(6, 0) = A1 - (A1*u-w1)*s;
 | 
			
		||||
 | 
			
		||||
  Matrix3d A2 = Phi.block<3, 3>(12, 0);
 | 
			
		||||
  Vector3d w2 = skewSymmetric(
 | 
			
		||||
      dtime*imu_state.velocity_null+imu_state.position_null-
 | 
			
		||||
      imu_state.position) * IMUState::gravity;
 | 
			
		||||
  Phi.block<3, 3>(12, 0) = A2 - (A2*u-w2)*s;
 | 
			
		||||
 | 
			
		||||
  // Propogate the state covariance matrix.
 | 
			
		||||
  Matrix<double, 21, 21> Q = Phi*G*state_server.continuous_noise_cov*
 | 
			
		||||
    G.transpose()*Phi.transpose()*dtime;
 | 
			
		||||
@@ -908,6 +889,9 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
  Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
 | 
			
		||||
  const Vector3d& t_c0_w = cam_state.position;
 | 
			
		||||
 | 
			
		||||
  //temp N
 | 
			
		||||
  const int N = 3;
 | 
			
		||||
 | 
			
		||||
  // Cam1 pose.
 | 
			
		||||
  Matrix3d R_c0_c1 = CAMState::T_cam0_cam1.linear();
 | 
			
		||||
  Matrix3d R_w_c1 = CAMState::T_cam0_cam1.linear() * R_w_c0;
 | 
			
		||||
@@ -922,57 +906,99 @@ void MsckfVio::PhotometricMeasurementJacobian(
 | 
			
		||||
 | 
			
		||||
  //photometric observation
 | 
			
		||||
  std::vector<float> photo_z;
 | 
			
		||||
  feature.FrameIrradiance(cam_state, cam_state_id, cam0, photo_z);
 | 
			
		||||
 | 
			
		||||
  // individual Jacobians
 | 
			
		||||
  Matrix<double, 1, 2> dI_dhj = Matrix<double, 1, 2>::Zero();
 | 
			
		||||
  Matrix<double, 2, 3> dh_dCpij = Matrix<double, 2, 3>::Zero();
 | 
			
		||||
  Matrix<double, 2, 3> dh_dGpij = Matrix<double, 2, 3>::Zero();
 | 
			
		||||
  Matrix<double, 2, 6> dh_dXplj = Matrix<double, 2, 6>::Zero();
 | 
			
		||||
  Matrix<double, 3, 1> dGpi_drhoj = Matrix<double, 3, 1>::Zero();
 | 
			
		||||
  Matrix<double, 3, 6> dGpi_XpAj = Matrix<double, 3, 6>::Zero();
 | 
			
		||||
  
 | 
			
		||||
  // one line of the NxN Jacobians
 | 
			
		||||
  Eigen::Matrix<double, 1, 1> H_rhoj;
 | 
			
		||||
  Eigen::Matrix<double, 1, 6> H_plj;
 | 
			
		||||
  Eigen::Matrix<double, 1, 6> H_pAj;
 | 
			
		||||
 | 
			
		||||
  // combined Jacobians
 | 
			
		||||
  Eigen::MatrixXd H_rho(N*N, 3);
 | 
			
		||||
  Eigen::MatrixXd H_pl(N*N, 6);
 | 
			
		||||
  Eigen::MatrixXd H_pA(N*N, 6);
 | 
			
		||||
 | 
			
		||||
  auto frame = cam0.moving_window.find(cam_state_id)->second.image;
 | 
			
		||||
 | 
			
		||||
  int count = 0;
 | 
			
		||||
  float dx, dy;
 | 
			
		||||
  for (auto point : feature.anchorPatch_3d)
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    cv::Point2f p_in_c0 = feature.projectPositionToCamera(cam_state, cam_state_id, cam0, point);
 | 
			
		||||
 | 
			
		||||
    //add observation
 | 
			
		||||
    photo_z.push_back(feature.PixelIrradiance(p_in_c0, frame));
 | 
			
		||||
 | 
			
		||||
    //add jacobian
 | 
			
		||||
 | 
			
		||||
    // frame derivative calculated convoluting with kernel [-1, 0, 1]
 | 
			
		||||
    dx = feature.PixelIrradiance(cv::Point2f(p_in_c0.x+1, p_in_c0.y), frame)- feature.PixelIrradiance(cv::Point2f(p_in_c0.x-1, p_in_c0.y), frame);
 | 
			
		||||
    dy = feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y+1), frame)- feature.PixelIrradiance(cv::Point2f(p_in_c0.x, p_in_c0.y-1), frame);
 | 
			
		||||
    dI_dhj(0, 0) = dx;
 | 
			
		||||
    dI_dhj(1, 0) = dy;
 | 
			
		||||
    
 | 
			
		||||
    //dh / d{}^Cp_{ij}
 | 
			
		||||
    dh_dCpij.block<2, 2>(0, 0) = Eigen::Matrix<double, 2, 2>::Identity();
 | 
			
		||||
    dh_dCpij(0, 2) = -(point(0))/(point(2)*point(2));
 | 
			
		||||
    dh_dCpij(1, 2) = -(point(1))/(point(2)*point(2));
 | 
			
		||||
    dh_dGpij = dh_dCpij * quaternionToRotation(cam_state.orientation).transpose();
 | 
			
		||||
 | 
			
		||||
    //dh / d X_{pl}
 | 
			
		||||
    dh_dXplj.block<2, 3>(3, 0) = dh_dCpij * skewSymmetric(point);
 | 
			
		||||
    dh_dXplj.block<2, 3>(3, 3) = dh_dCpij * -quaternionToRotation(cam_state.orientation).transpose();
 | 
			
		||||
 | 
			
		||||
    //d{}^Gp_P{ij} / \rho_i
 | 
			
		||||
    double rho = feature.anchor_rho;
 | 
			
		||||
    dGpi_drhoj = feature.T_anchor_w.linear() * Eigen::Vector3d(p_in_c0.x/(rho*rho), p_in_c0.y/(rho*rho), 1/(rho*rho));
 | 
			
		||||
 | 
			
		||||
    dGpi_XpAj.block<3, 3>(3, 0) = skewSymmetric(Eigen::Vector3d(p_in_c0.x/(rho), p_in_c0.y/(rho), 1/(rho)));
 | 
			
		||||
    dGpi_XpAj.block<3, 3>(3, 3) = Matrix<double, 3, 3>::Identity();
 | 
			
		||||
 | 
			
		||||
    // Intermediate Jakobians
 | 
			
		||||
    H_rhoj = dI_dhj * dh_dGpij * dGpi_drhoj; // 1 x 3
 | 
			
		||||
    H_plj = dI_dhj * dh_dXplj; // 1 x 6
 | 
			
		||||
    H_pAj = dI_dhj * dh_dGpij * dGpi_XpAj; // 1 x 6
 | 
			
		||||
 | 
			
		||||
    H_rho.block<1, 1>(count, 0) = H_rhoj;
 | 
			
		||||
    H_pl.block<1, 6>(count, 0) = H_plj;
 | 
			
		||||
    H_pA.block<1, 6>(count, 0) = H_pAj;
 | 
			
		||||
 | 
			
		||||
    count++;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  //Final Jakobians
 | 
			
		||||
  MatrixXd H_xl = MatrixXd::Zero(N*N, 21+state_server.cam_states.size()*7);
 | 
			
		||||
  MatrixXd H_yl = MatrixXd::Zero(N*N, N*N+2);
 | 
			
		||||
  auto cam_state_iter = state_server.cam_states.find(feature.observations.begin()->first);
 | 
			
		||||
  int cam_state_cntr = std::distance(state_server.cam_states.begin(), state_server.cam_states.find(cam_state_id));
 | 
			
		||||
 | 
			
		||||
  // set anchor Jakobi
 | 
			
		||||
  H_xl.block<N*N, 6>(0,21+cam_state_cntr*7) = -H_pA; 
 | 
			
		||||
  //H_yl
 | 
			
		||||
 | 
			
		||||
  cam_state_iter = state_server.cam_states.find(cam_state_id);
 | 
			
		||||
  cam_state_cntr = std::distance(state_server.cam_states.begin(), state_server.cam_states.find(cam_state_id));
 | 
			
		||||
 | 
			
		||||
  // set frame Jakobi
 | 
			
		||||
  H_xl.block(N*N, 6, 0, 21+cam_state_cntr*7) = -H_pl;
 | 
			
		||||
 | 
			
		||||
  H_xl.block(N*N, 1, 0, 21+cam_state_cntr*7) = Eigen::ArrayXd::Ones(N*N);
 | 
			
		||||
 | 
			
		||||
  // Convert the feature position from the world frame to
 | 
			
		||||
  // the cam0 and cam1 frame.
 | 
			
		||||
  Vector3d p_c0 = R_w_c0 * (p_w-t_c0_w);
 | 
			
		||||
  Vector3d p_c1 = R_w_c1 * (p_w-t_c1_w);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //compute resulting esimtated position in image
 | 
			
		||||
  cv::Point2f out_p = cv::Point2f(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2));
 | 
			
		||||
  std::vector<cv::Point2f> out_v;
 | 
			
		||||
  out_v.push_back(out_p);
 | 
			
		||||
 | 
			
		||||
  // Compute the Jacobians.
 | 
			
		||||
  Matrix<double, 4, 3> dz_dpc0 = Matrix<double, 4, 3>::Zero();
 | 
			
		||||
  dz_dpc0(0, 0) = 1 / p_c0(2);
 | 
			
		||||
  dz_dpc0(1, 1) = 1 / p_c0(2);
 | 
			
		||||
  dz_dpc0(0, 2) = -p_c0(0) / (p_c0(2)*p_c0(2));
 | 
			
		||||
  dz_dpc0(1, 2) = -p_c0(1) / (p_c0(2)*p_c0(2));
 | 
			
		||||
 | 
			
		||||
  Matrix<double, 4, 3> dz_dpc1 = Matrix<double, 4, 3>::Zero();
 | 
			
		||||
  dz_dpc1(2, 0) = 1 / p_c1(2);
 | 
			
		||||
  dz_dpc1(3, 1) = 1 / p_c1(2);
 | 
			
		||||
  dz_dpc1(2, 2) = -p_c1(0) / (p_c1(2)*p_c1(2));
 | 
			
		||||
  dz_dpc1(3, 2) = -p_c1(1) / (p_c1(2)*p_c1(2));
 | 
			
		||||
 | 
			
		||||
  Matrix<double, 3, 6> dpc0_dxc = Matrix<double, 3, 6>::Zero();
 | 
			
		||||
  dpc0_dxc.leftCols(3) = skewSymmetric(p_c0);
 | 
			
		||||
  dpc0_dxc.rightCols(3) = -R_w_c0;
 | 
			
		||||
 | 
			
		||||
  Matrix<double, 3, 6> dpc1_dxc = Matrix<double, 3, 6>::Zero();
 | 
			
		||||
  dpc1_dxc.leftCols(3) = R_c0_c1 * skewSymmetric(p_c0);
 | 
			
		||||
  dpc1_dxc.rightCols(3) = -R_w_c1;
 | 
			
		||||
 | 
			
		||||
  Matrix3d dpc0_dpg = R_w_c0;
 | 
			
		||||
  Matrix3d dpc1_dpg = R_w_c1;
 | 
			
		||||
 | 
			
		||||
  H_x = dz_dpc0*dpc0_dxc + dz_dpc1*dpc1_dxc;
 | 
			
		||||
  H_f = dz_dpc0*dpc0_dpg + dz_dpc1*dpc1_dpg;
 | 
			
		||||
 | 
			
		||||
  // Modifty the measurement Jacobian to ensure
 | 
			
		||||
  // observability constrain.
 | 
			
		||||
  Matrix<double, 4, 6> A = H_x;
 | 
			
		||||
  Matrix<double, 6, 1> u = Matrix<double, 6, 1>::Zero();
 | 
			
		||||
  u.block<3, 1>(0, 0) = quaternionToRotation(
 | 
			
		||||
      cam_state.orientation_null) * IMUState::gravity;
 | 
			
		||||
  u.block<3, 1>(3, 0) = skewSymmetric(
 | 
			
		||||
      p_w-cam_state.position_null) * IMUState::gravity;
 | 
			
		||||
  H_x = A - A*u*(u.transpose()*u).inverse()*u.transpose();
 | 
			
		||||
  H_f = -H_x.block<4, 3>(0, 3);
 | 
			
		||||
 | 
			
		||||
  // Compute the residual.
 | 
			
		||||
  r = z - Vector4d(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2),
 | 
			
		||||
      p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user