292 lines
12 KiB
Python
292 lines
12 KiB
Python
|
"""
|
||
|
Siamese neural network module.
|
||
|
"""
|
||
|
|
||
|
import random, math
|
||
|
import numpy as np
|
||
|
|
||
|
from tensorflow.keras.layers import Input
|
||
|
from tensorflow.keras.models import Model
|
||
|
|
||
|
import pdb
|
||
|
|
||
|
|
||
|
class SiameseNetwork:
|
||
|
"""
|
||
|
A simple and lightweight siamese neural network implementation.
|
||
|
|
||
|
The SiameseNetwork class requires the base and head model to be defined via the constructor. The class exposes
|
||
|
public methods that allow it to behave similarly to a regular Keras model by passing kwargs through to the
|
||
|
underlying keras model object where possible. This allows Keras features like callbacks and metrics to be used.
|
||
|
"""
|
||
|
def __init__(self, base_model, head_model):
|
||
|
"""
|
||
|
Construct the siamese model class with the following structure.
|
||
|
|
||
|
-------------------------------------------------------------------
|
||
|
input1 -> base_model |
|
||
|
--> embedding --> head_model --> binary output
|
||
|
input2 -> base_model |
|
||
|
-------------------------------------------------------------------
|
||
|
|
||
|
:param base_model: The embedding model.
|
||
|
* Input shape must be equal to that of data.
|
||
|
:param head_model: The discriminator model.
|
||
|
* Input shape must be equal to that of embedding
|
||
|
* Output shape must be equal to 1..
|
||
|
"""
|
||
|
# Set essential parameters
|
||
|
self.base_model = base_model
|
||
|
self.head_model = head_model
|
||
|
|
||
|
# Get input shape from base model
|
||
|
self.input_shape = self.base_model.input_shape[1:]
|
||
|
|
||
|
# Initialize siamese model
|
||
|
self.siamese_model = None
|
||
|
self.__initialize_siamese_model()
|
||
|
|
||
|
def compile(self, *args, **kwargs):
|
||
|
"""
|
||
|
Configures the model for training.
|
||
|
|
||
|
Passes all arguments to the underlying Keras model compile function.
|
||
|
"""
|
||
|
self.siamese_model.compile(*args, **kwargs)
|
||
|
|
||
|
def train_on_batch(self, *args, **kwargs):
|
||
|
return self.siamese_model.train_on_batch(args[0], args[1])
|
||
|
|
||
|
def fit(self, *args, **kwargs):
|
||
|
"""
|
||
|
Trains the model on data generated batch-by-batch using the siamese network generator function.
|
||
|
|
||
|
Redirects arguments to the fit_generator function.
|
||
|
"""
|
||
|
x_train = args[0]
|
||
|
y_train = args[1]
|
||
|
x_test, y_test = kwargs.pop('validation_data')
|
||
|
batch_size = kwargs.pop('batch_size')
|
||
|
|
||
|
train_generator = self.__pair_generator(x_train, y_train, batch_size)
|
||
|
train_steps = math.floor(max(len(x_train) / batch_size, 1))
|
||
|
test_generator = self.__pair_generator(x_test, y_test, batch_size)
|
||
|
test_steps = math.floor(max(len(x_test) / batch_size, 1))
|
||
|
|
||
|
pdb.set_trace()
|
||
|
|
||
|
self.siamese_model.fit(train_generator,
|
||
|
steps_per_epoch=train_steps,
|
||
|
validation_data=test_generator,
|
||
|
validation_steps=test_steps, **kwargs)
|
||
|
|
||
|
def fit_generator(self, x_train, y_train, x_test, y_test, batch_size, *args, **kwargs):
|
||
|
"""
|
||
|
Trains the model on data generated batch-by-batch using the siamese network generator function.
|
||
|
|
||
|
:param x_train: Training input data.
|
||
|
:param y_train: Training output data.
|
||
|
:param x_test: Validation input data.
|
||
|
:param y_test: Validation output data.
|
||
|
:param batch_size: Number of pairs to generate per batch.
|
||
|
"""
|
||
|
train_generator = self.__pair_generator(x_train, y_train, batch_size)
|
||
|
train_steps = max(len(x_train) / batch_size, 1)
|
||
|
test_generator = self.__pair_generator(x_test, y_test, batch_size)
|
||
|
test_steps = max(len(x_test) / batch_size, 1)
|
||
|
self.siamese_model.fit_generator(train_generator,
|
||
|
steps_per_epoch=train_steps,
|
||
|
validation_data=test_generator,
|
||
|
validation_steps=test_steps,
|
||
|
*args, **kwargs)
|
||
|
|
||
|
|
||
|
def load_weights(self, checkpoint_path):
|
||
|
"""
|
||
|
Load siamese model weights. This also affects the reference to the base and head models.
|
||
|
|
||
|
:param checkpoint_path: Path to the checkpoint file.
|
||
|
"""
|
||
|
self.siamese_model.load_weights(checkpoint_path)
|
||
|
|
||
|
def evaluate(self, *args, **kwargs):
|
||
|
"""
|
||
|
Evaluate the siamese network with the same generator that is used to train it. Passes arguments through to the
|
||
|
underlying Keras function so that callbacks etc can be used.
|
||
|
|
||
|
Redirects arguments to the evaluate_generator function.
|
||
|
|
||
|
:return: A tuple of scores
|
||
|
"""
|
||
|
x = args[0]
|
||
|
y = args[1]
|
||
|
batch_size = kwargs.pop('batch_size')
|
||
|
|
||
|
generator = self.__pair_generator(x, y, batch_size)
|
||
|
steps = len(x) / batch_size
|
||
|
return self.siamese_model.evaluate_generator(generator, steps=steps, **kwargs)
|
||
|
|
||
|
def evaluate_generator(self, x, y, batch_size, *args, **kwargs):
|
||
|
"""
|
||
|
Evaluate the siamese network with the same generator that is used to train it. Passes arguments through to the
|
||
|
underlying Keras function so that callbacks etc can be used.
|
||
|
|
||
|
:param x: Input data
|
||
|
:param y: Class labels
|
||
|
:param batch_size: Number of pairs to generate per batch.
|
||
|
:return: A tuple of scores
|
||
|
"""
|
||
|
generator = self.__pair_generator(x, y, batch_size=batch_size)
|
||
|
steps = len(x) / batch_size
|
||
|
return self.siamese_model.evaluate_generator(generator, steps=steps, *args, **kwargs)
|
||
|
|
||
|
def __initialize_siamese_model(self):
|
||
|
"""
|
||
|
Create the siamese model structure using the supplied base and head model.
|
||
|
"""
|
||
|
input_a = Input(shape=self.input_shape)
|
||
|
input_b = Input(shape=self.input_shape)
|
||
|
|
||
|
processed_a = self.base_model(input_a)
|
||
|
processed_b = self.base_model(input_b)
|
||
|
|
||
|
head = self.head_model([processed_a, processed_b])
|
||
|
self.siamese_model = Model([input_a, input_b], head)
|
||
|
|
||
|
def __create_pairs(self, x, class_indices, batch_size, num_classes):
|
||
|
"""
|
||
|
Create a numpy array of positive and negative pairs and their associated labels.
|
||
|
|
||
|
:param x: Input data
|
||
|
:param class_indices: A python list of lists that contains each of the indices in the input data that belong
|
||
|
to each class. It is used to find and access elements in the input data that belong to a desired class.
|
||
|
* Example usage:
|
||
|
* element_index = class_indices[class][index]
|
||
|
* element = x[element_index]
|
||
|
:param batch_size: The number of pair samples to create.
|
||
|
:param num_classes: number of classes in the supplied input data
|
||
|
:return: A tuple of (Numpy array of pairs, Numpy array of labels)
|
||
|
"""
|
||
|
num_pairs = batch_size / 2
|
||
|
positive_pairs, positive_labels = self.__create_positive_pairs(x, class_indices, num_pairs, num_classes)
|
||
|
negative_pairs, negative_labels = self.__create_negative_pairs(x, class_indices, num_pairs, num_classes)
|
||
|
return np.array(positive_pairs + negative_pairs), np.array(positive_labels + negative_labels)
|
||
|
|
||
|
def __create_positive_pairs(self, x, class_indices, num_positive_pairs, num_classes):
|
||
|
"""
|
||
|
Create a list of positive pairs and labels. A positive pair is defined as two input samples of the same class.
|
||
|
|
||
|
:param x: Input data
|
||
|
:param class_indices: A python list of lists that contains each of the indices in the input data that belong
|
||
|
to each class. It is used to find and access elements in the input data that belong to a desired class.
|
||
|
* Example usage:
|
||
|
* element_index = class_indices[class][index]
|
||
|
* element = x[element_index]
|
||
|
:param num_positive_pairs: The number of positive pair samples to create.
|
||
|
:param num_classes: number of classes in the supplied input data
|
||
|
:return: A tuple of (python list of positive pairs, python list of positive labels)
|
||
|
"""
|
||
|
positive_pairs = []
|
||
|
positive_labels = []
|
||
|
|
||
|
for _ in range(int(num_positive_pairs)):
|
||
|
class_1 = random.randint(0, num_classes - 1)
|
||
|
num_elements = len(class_indices[class_1])
|
||
|
|
||
|
if num_elements == 0:
|
||
|
return [], []
|
||
|
index_1, index_2 = self.__randint_unequal(0, num_elements - 1)
|
||
|
|
||
|
element_index_1, element_index_2 = class_indices[class_1][index_1], class_indices[class_1][index_2]
|
||
|
positive_pairs.append([x[element_index_1], x[element_index_2]])
|
||
|
positive_labels.append([1.0])
|
||
|
return positive_pairs, positive_labels
|
||
|
|
||
|
def __create_negative_pairs(self, x, class_indices, num_negative_pairs, num_classes):
|
||
|
"""
|
||
|
Create a list of negative pairs and labels. A negative pair is defined as two input samples of different class.
|
||
|
|
||
|
:param x: Input data
|
||
|
:param class_indices: A python list of lists that contains each of the indices in the input data that belong
|
||
|
to each class. It is used to find and access elements in the input data that belong to a desired class.
|
||
|
* Example usage:
|
||
|
* element_index = class_indices[class][index]
|
||
|
* element = x[element_index]
|
||
|
:param num_negative_pairs: The number of negative pair samples to create.
|
||
|
:param num_classes: number of classes in the supplied input data
|
||
|
:return: A tuple of (python list of negative pairs, python list of negative labels)
|
||
|
"""
|
||
|
negative_pairs = []
|
||
|
negative_labels = []
|
||
|
|
||
|
if num_classes == 0:
|
||
|
return [], []
|
||
|
|
||
|
for _ in range(int(num_negative_pairs)):
|
||
|
cls_1, cls_2 = self.__randint_unequal(0, num_classes - 1)
|
||
|
|
||
|
try:
|
||
|
index_1 = random.randint(0, len(class_indices[cls_1]) - 1)
|
||
|
index_2 = random.randint(0, len(class_indices[cls_2]) - 1)
|
||
|
except Exception as e:
|
||
|
print(e)
|
||
|
pdb.set_trace()
|
||
|
|
||
|
|
||
|
element_index_1, element_index_2 = class_indices[cls_1][index_1], class_indices[cls_2][index_2]
|
||
|
negative_pairs.append([x[element_index_1], x[element_index_2]])
|
||
|
negative_labels.append([0.0])
|
||
|
return negative_pairs, negative_labels
|
||
|
|
||
|
def __pair_generator(self, x, y, batch_size):
|
||
|
"""
|
||
|
Creates a python generator that produces pairs from the original input data.
|
||
|
:param x: Input data
|
||
|
:param y: Integer class labels
|
||
|
:param batch_size: The number of pair samples to create per batch.
|
||
|
:return:
|
||
|
"""
|
||
|
class_indices, num_classes = self.__get_class_indices(y)
|
||
|
while True:
|
||
|
pairs, labels = self.__create_pairs(x, class_indices, batch_size, num_classes)
|
||
|
|
||
|
# The siamese network expects two inputs and one output. Split the pairs into a list of inputs.
|
||
|
yield [pairs[:, 0], pairs[:, 1]], labels
|
||
|
|
||
|
def __get_class_indices(self, y):
|
||
|
"""
|
||
|
Create a python list of lists that contains each of the indices in the input data that belong
|
||
|
to each class. It is used to find and access elements in the input data that belong to a desired class.
|
||
|
* Example usage:
|
||
|
* element_index = class_indices[class][index]
|
||
|
* element = x[element_index]
|
||
|
:param y: Integer class labels
|
||
|
:return: Python list of lists
|
||
|
"""
|
||
|
num_classes = np.max(y) + 1
|
||
|
return [np.where(y == i)[0] for i in range(num_classes)], num_classes
|
||
|
|
||
|
@staticmethod
|
||
|
def __randint_unequal(lower, upper):
|
||
|
"""
|
||
|
Get two random integers that are not equal.
|
||
|
|
||
|
Note: In some cases (such as there being only one sample of a class) there may be an endless loop here. This
|
||
|
will only happen on fairly exotic datasets though. May have to address in future.
|
||
|
:param lower: Lower limit inclusive of the random integer.
|
||
|
:param upper: Upper limit inclusive of the random integer. Need to use -1 for random indices.
|
||
|
:return: Tuple of (integer, integer)
|
||
|
"""
|
||
|
|
||
|
int_1 = random.randint(lower, upper)
|
||
|
int_2 = random.randint(lower, upper)
|
||
|
|
||
|
tries = 0
|
||
|
while int_1 == int_2:
|
||
|
tries += 1
|
||
|
if tries > 10:
|
||
|
break
|
||
|
int_1 = random.randint(lower, upper)
|
||
|
int_2 = random.randint(lower, upper)
|
||
|
return int_1, int_2
|