initial commit, adds notes.md for instructions, adds data, adds python code
This commit is contained in:
commit
25fa687f7f
37
.devcontainer/Dockerfile
Normal file
37
.devcontainer/Dockerfile
Normal file
@ -0,0 +1,37 @@
|
||||
FROM tensorflow/tensorflow:1.13.2-gpu
|
||||
|
||||
## Install updates and network tool
|
||||
RUN apt-get update -y && apt-get upgrade -y && apt install net-tools -y
|
||||
|
||||
## Install basic functions
|
||||
RUN apt-get install sudo -y
|
||||
|
||||
## Install git
|
||||
RUN apt-get install git -y
|
||||
|
||||
## Install python requirements
|
||||
COPY requirements.txt .
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
## Create user and group
|
||||
ARG HOST_USER_UID=1000
|
||||
ARG HOST_USER_GID=1000
|
||||
RUN groupadd -g $HOST_USER_GID containergroup
|
||||
RUN useradd -m -l -u $HOST_USER_UID -g $HOST_USER_GID containeruser
|
||||
|
||||
## Passwordless sudo for user
|
||||
RUN usermod -aG sudo containeruser
|
||||
RUN echo "containeruser ALL=(root) NOPASSWD:ALL" > /etc/sudoers.d/containeruser && \
|
||||
chmod 0440 /etc/sudoers.d/containeruser
|
||||
|
||||
## Activate User
|
||||
USER containeruser
|
||||
|
||||
## Set working directory
|
||||
WORKDIR /home/containeruser
|
||||
|
||||
## Workaround for vscode bug
|
||||
ENV HOME=/home/containeruser
|
||||
|
||||
## Keep container running forever
|
||||
CMD tail -f /dev/null
|
12
.devcontainer/devcontainer.json
Normal file
12
.devcontainer/devcontainer.json
Normal file
@ -0,0 +1,12 @@
|
||||
{
|
||||
"name": "siamese",
|
||||
"dockerComposeFile": "docker-compose.yml",
|
||||
"workspaceMount": "/workspace",
|
||||
"workspaceFolder": "/workspace",
|
||||
"service": "devcontainer",
|
||||
"shutdownAction": "stopCompose",
|
||||
"extensions": [
|
||||
"ms-python.python",
|
||||
"ms-azuretools.vscode-docker"
|
||||
]
|
||||
}
|
22
.devcontainer/docker-compose.yml
Normal file
22
.devcontainer/docker-compose.yml
Normal file
@ -0,0 +1,22 @@
|
||||
version: '2.3'
|
||||
services:
|
||||
devcontainer:
|
||||
|
||||
build:
|
||||
context: ..
|
||||
dockerfile: .devcontainer/Dockerfile
|
||||
args:
|
||||
HOST_USER_UID: 1000
|
||||
HOST_USER_GID: 1000
|
||||
|
||||
network_mode: host
|
||||
environment:
|
||||
- DISPLAY=$DISPLAY
|
||||
runtime: nvidia
|
||||
|
||||
volumes:
|
||||
- ..:/workspace
|
||||
- ~/.gitconfig:/home/containeruser/.gitconfig
|
||||
- ~/.ssh:/home/containeruser/.ssh
|
||||
|
||||
command: sleep infinity
|
114
.gitignore
vendored
Normal file
114
.gitignore
vendored
Normal file
@ -0,0 +1,114 @@
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# celery beat schedule file
|
||||
celerybeat-schedule
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
|
||||
/env
|
||||
|
||||
# idea files
|
||||
.idea/
|
||||
|
||||
# model checkpoint data
|
||||
checkpoint
|
||||
model_checkpoint
|
||||
siamese_checkpoint
|
21
LICENSE
Normal file
21
LICENSE
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2018 aspamers
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
144
README.md
Normal file
144
README.md
Normal file
@ -0,0 +1,144 @@
|
||||
# Siamese Neural Network for Keras
|
||||
|
||||
This project provides a lightweight, easy to use and flexible siamese neural network module for use with the Keras
|
||||
framework.
|
||||
|
||||
Siamese neural networks are used to generate embeddings that describe inter and extra class relationships.
|
||||
This makes Siamese Networks like many other similarity learning algorithms suitable as a pre-training step for many
|
||||
classification problems.
|
||||
|
||||
An example of the siamese network module being used to produce a noteworthy 99.85% validation performance on the MNIST
|
||||
dataset with no data augmentation and minimal modification from the Keras example is provided.
|
||||
|
||||
## Installation
|
||||
|
||||
Create and activate a virtual environment for the project.
|
||||
```sh
|
||||
$ virtualenv env
|
||||
$ source env/bin/activate
|
||||
```
|
||||
|
||||
To install the module directly from GitHub:
|
||||
```
|
||||
$ pip install git+https://github.com/aspamers/siamese
|
||||
```
|
||||
|
||||
The module will install keras and numpy but no back-end (like tensorflow). This is deliberate since it leaves the module
|
||||
decoupled from any back-end and gives you a chance to install whatever backend you prefer.
|
||||
|
||||
To install tensorflow:
|
||||
```
|
||||
$ pip install tensorflow
|
||||
```
|
||||
|
||||
To install tensorflow with gpu support:
|
||||
```
|
||||
$ pip install tensorflow-gpu
|
||||
```
|
||||
|
||||
## To run examples
|
||||
|
||||
With the activated virtual environment with the installed python package run the following commands.
|
||||
|
||||
To run the mnist baseline example:
|
||||
```
|
||||
$ python mnist_example.py
|
||||
```
|
||||
|
||||
To run the mnist siamese pretrained example:
|
||||
```
|
||||
$ python mnist_siamese_example.py
|
||||
```
|
||||
|
||||
## Usage
|
||||
For detailed usage examples please refer to the examples and unit test modules. If the instructions are not sufficient
|
||||
feel free to make a request for improvements.
|
||||
|
||||
- Import the module
|
||||
```python
|
||||
from siamese import SiameseNetwork
|
||||
```
|
||||
|
||||
- Load or generate some data.
|
||||
```python
|
||||
x_train = np.random.rand(100, 3)
|
||||
y_train = np.random.randint(num_classes, size=100)
|
||||
|
||||
x_test = np.random.rand(30, 3)
|
||||
y_test = np.random.randint(num_classes, size=30)
|
||||
```
|
||||
|
||||
- Design a base model
|
||||
```python
|
||||
def create_base_model(input_shape):
|
||||
model_input = Input(shape=input_shape)
|
||||
embedding = Flatten()(model_input)
|
||||
embedding = Dense(128)(embedding)
|
||||
return Model(model_input, embedding)
|
||||
```
|
||||
|
||||
- Design a head model
|
||||
```python
|
||||
def create_head_model(embedding_shape):
|
||||
embedding_a = Input(shape=embedding_shape)
|
||||
embedding_b = Input(shape=embedding_shape)
|
||||
|
||||
head = Concatenate()([embedding_a, embedding_b])
|
||||
head = Dense(4)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
head = Dense(1)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
return Model([embedding_a, embedding_b], head)
|
||||
```
|
||||
- Create an instance of the SiameseNetwork class
|
||||
```python
|
||||
base_model = create_base_model(input_shape)
|
||||
head_model = create_head_model(base_model.output_shape)
|
||||
siamese_network = SiameseNetwork(base_model, head_model)
|
||||
```
|
||||
|
||||
- Compile the model
|
||||
```python
|
||||
siamese_network.compile(loss='binary_crossentropy', optimizer=keras.optimizers.adam())
|
||||
```
|
||||
|
||||
- Train the model
|
||||
```python
|
||||
siamese_network.fit(x_train, y_train,
|
||||
validation_data=(x_test, y_test),
|
||||
batch_size=64,
|
||||
epochs=epochs)
|
||||
```
|
||||
|
||||
## Development Environment
|
||||
Create and activate a test virtual environment for the project.
|
||||
```sh
|
||||
$ virtualenv env
|
||||
$ source env/bin/activate
|
||||
```
|
||||
|
||||
Install requirements
|
||||
```sh
|
||||
$ pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Install the backend of your choice.
|
||||
```
|
||||
$ pip install tensorflow
|
||||
```
|
||||
|
||||
Run tests
|
||||
```sh
|
||||
$ pytest tests/test_siamese.py
|
||||
```
|
||||
|
||||
## Development container
|
||||
To set up the vscode development container follow the instructions at the link provided:
|
||||
https://github.com/aspamers/vscode-devcontainer
|
||||
|
||||
You will also need to install the nvidia docker gpu passthrough layer:
|
||||
https://github.com/NVIDIA/nvidia-docker
|
94
mnist_example.py
Normal file
94
mnist_example.py
Normal file
@ -0,0 +1,94 @@
|
||||
"""
|
||||
This is a modified version of the Keras mnist example.
|
||||
https://keras.io/examples/mnist_cnn/
|
||||
|
||||
Instead of using a fixed number of epochs this version continues to train
|
||||
until the stop criteria is reached.
|
||||
|
||||
Model performance should be around 99.4% after training.
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
import keras
|
||||
from keras.datasets import mnist
|
||||
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation
|
||||
from keras import backend as K
|
||||
from keras.callbacks import ModelCheckpoint, EarlyStopping
|
||||
from keras.models import Model
|
||||
from keras.layers import Input, Flatten, Dense
|
||||
|
||||
batch_size = 128
|
||||
num_classes = 10
|
||||
epochs = 999999
|
||||
|
||||
# input image dimensions
|
||||
img_rows, img_cols = 28, 28
|
||||
|
||||
# the data, split between train and test sets
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
|
||||
if K.image_data_format() == 'channels_first':
|
||||
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
|
||||
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
|
||||
input_shape = (1, img_rows, img_cols)
|
||||
else:
|
||||
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
|
||||
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
|
||||
input_shape = (img_rows, img_cols, 1)
|
||||
|
||||
x_train = x_train.astype('float32')
|
||||
x_test = x_test.astype('float32')
|
||||
x_train /= 255
|
||||
x_test /= 255
|
||||
|
||||
y_train = keras.utils.to_categorical(y_train, num_classes)
|
||||
y_test = keras.utils.to_categorical(y_test, num_classes)
|
||||
|
||||
|
||||
def create_base_network(input_shape):
|
||||
input = Input(shape=input_shape)
|
||||
x = Conv2D(32, kernel_size=(3, 3),
|
||||
input_shape=input_shape)(input)
|
||||
x = BatchNormalization()(x)
|
||||
x = Activation(activation='relu')(x)
|
||||
x = MaxPooling2D(pool_size=(2, 2))(x)
|
||||
x = Conv2D(64, kernel_size=(3, 3))(x)
|
||||
x = BatchNormalization()(x)
|
||||
x = Activation(activation='relu')(x)
|
||||
x = MaxPooling2D(pool_size=(2, 2))(x)
|
||||
x = Flatten()(x)
|
||||
x = Dense(128)(x)
|
||||
x = BatchNormalization()(x)
|
||||
x = Activation(activation='relu')(x)
|
||||
x = Dense(num_classes)(x)
|
||||
x = BatchNormalization()(x)
|
||||
x = Activation(activation='softmax')(x)
|
||||
return Model(input, x)
|
||||
|
||||
|
||||
model = create_base_network(input_shape)
|
||||
model.compile(loss=keras.losses.categorical_crossentropy,
|
||||
optimizer=keras.optimizers.adam(),
|
||||
metrics=['accuracy'])
|
||||
|
||||
checkpoint_path = "./checkpoint"
|
||||
|
||||
callbacks = [
|
||||
EarlyStopping(monitor='val_acc', patience=10, verbose=0),
|
||||
ModelCheckpoint(checkpoint_path,
|
||||
monitor='val_acc',
|
||||
save_best_only=True,
|
||||
verbose=0)
|
||||
]
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=epochs,
|
||||
verbose=1,
|
||||
callbacks=callbacks,
|
||||
validation_data=(x_test, y_test))
|
||||
|
||||
model.load_weights(checkpoint_path)
|
||||
|
||||
score = model.evaluate(x_test, y_test, verbose=0)
|
||||
print('Test loss:', score[0])
|
||||
print('Test accuracy:', score[1])
|
299
mnist_siamese_example.py
Normal file
299
mnist_siamese_example.py
Normal file
@ -0,0 +1,299 @@
|
||||
"""
|
||||
This is a modified version of the Keras mnist example.
|
||||
https://keras.io/examples/mnist_cnn/
|
||||
|
||||
Instead of using a fixed number of epochs this version continues to train until a stop criteria is reached.
|
||||
|
||||
A siamese neural network is used to pre-train an embedding for the network. The resulting embedding is then extended
|
||||
with a softmax output layer for categorical predictions.
|
||||
|
||||
Model performance should be around 99.84% after training. The resulting model is identical in structure to the one in
|
||||
the example yet shows considerable improvement in relative error confirming that the embedding learned by the siamese
|
||||
network is useful.
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
import tensorflow.keras as keras
|
||||
from tensorflow.keras.datasets import mnist
|
||||
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation, Concatenate
|
||||
from tensorflow.keras import backend as K
|
||||
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
|
||||
from tensorflow.keras.models import Model
|
||||
from tensorflow.keras.layers import Input, Flatten, Dense
|
||||
|
||||
from siamese import SiameseNetwork
|
||||
|
||||
import os, math, numpy as np
|
||||
from PIL import Image
|
||||
|
||||
import pdb
|
||||
|
||||
batch_size = 128
|
||||
num_classes = 131
|
||||
epochs = 999999
|
||||
|
||||
# input image dimensions
|
||||
img_rows, img_cols = 28, 28
|
||||
|
||||
def createTrainingData():
|
||||
base_dir = '../towards/data/fruits-360/Training/'
|
||||
train_test_split = 0.7
|
||||
no_of_files_in_each_class = 80
|
||||
|
||||
#Read all the folders in the directory
|
||||
folder_list = os.listdir(base_dir)
|
||||
print( len(folder_list), "categories found in the dataset")
|
||||
|
||||
#Declare training array
|
||||
cat_list = []
|
||||
x = []
|
||||
names = []
|
||||
y = []
|
||||
y_label = 0
|
||||
|
||||
#Using just 5 images per category
|
||||
for folder_name in folder_list:
|
||||
files_list = os.listdir(os.path.join(base_dir, folder_name))
|
||||
temp=[]
|
||||
for file_name in files_list[:no_of_files_in_each_class]:
|
||||
temp.append(len(x))
|
||||
x.append(np.asarray(Image.open(os.path.join(base_dir, folder_name, file_name)).convert('RGB').resize((img_rows, img_cols))))
|
||||
names.append(folder_name + "/" + file_name)
|
||||
y.append(y_label)
|
||||
y_label+=1
|
||||
cat_list.append(temp)
|
||||
|
||||
cat_list = np.asarray(cat_list)
|
||||
x = np.asarray(x)/255.0
|
||||
y = np.asarray(y)
|
||||
print('X, Y shape',x.shape, y.shape, cat_list.shape)
|
||||
|
||||
|
||||
#Training Split
|
||||
x_train, y_train, cat_train, x_val, y_val, cat_test = [], [], [], [], [], []
|
||||
|
||||
train_split = math.floor((train_test_split) * no_of_files_in_each_class)
|
||||
test_split = math.floor((1-train_test_split) * no_of_files_in_each_class)
|
||||
|
||||
train_count = 0
|
||||
test_count = 0
|
||||
for i in range(len(x)-1):
|
||||
if i % no_of_files_in_each_class == 0:
|
||||
cat_train.append([])
|
||||
cat_test.append([])
|
||||
class_train_count = 1
|
||||
class_test_count = 1
|
||||
|
||||
if i % math.floor(1/train_test_split) == 0 and class_test_count < test_split:
|
||||
x_val.append(x[i])
|
||||
y_val.append(y[i])
|
||||
cat_test[-1].append(test_count)
|
||||
test_count += 1
|
||||
class_test_count += 1
|
||||
|
||||
elif class_train_count < train_split:
|
||||
x_train.append(x[i])
|
||||
y_train.append(y[i])
|
||||
cat_train[-1].append(train_count)
|
||||
train_count += 1
|
||||
class_train_count += 1
|
||||
|
||||
|
||||
x_val = np.array(x_val)
|
||||
y_val = np.array(y_val)
|
||||
x_train = np.array(x_train)
|
||||
y_train = np.array(y_train)
|
||||
cat_train = np.array(cat_train)
|
||||
cat_test = np.array(cat_test)
|
||||
|
||||
|
||||
print('X&Y shape of training data :',x_train.shape, 'and',
|
||||
y_train.shape, cat_train.shape)
|
||||
print('X&Y shape of testing data :' , x_val.shape, 'and',
|
||||
y_val.shape, cat_test.shape)
|
||||
|
||||
return (x_train, y_train), (x_val, y_val), cat_train
|
||||
|
||||
|
||||
# the data, split between train and test sets
|
||||
# (x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
# channels = 1
|
||||
|
||||
(x_train, y_train), (x_test, y_test), cat_train = createTrainingData()
|
||||
channels = 3
|
||||
|
||||
if K.image_data_format() == 'channels_first':
|
||||
x_train = x_train.reshape(x_train.shape[0], channels, img_rows, img_cols)
|
||||
x_test = x_test.reshape(x_test.shape[0], channels, img_rows, img_cols)
|
||||
input_shape = (channels, img_rows, img_cols)
|
||||
else:
|
||||
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, channels)
|
||||
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)
|
||||
input_shape = (img_rows, img_cols, channels)
|
||||
|
||||
x_train = x_train.astype('float32')
|
||||
x_test = x_test.astype('float32')
|
||||
x_train /= 255
|
||||
x_test /= 255
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
def create_own_base_model(input_shape):
|
||||
model_input = Input(shape=input_shape)
|
||||
|
||||
embedding = Conv2D(32, kernel_size=(10, 10), input_shape=input_shape)(model_input)
|
||||
embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
|
||||
embedding = Conv2D(64, kernel_size=(7, 7))(embedding)
|
||||
embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
|
||||
embedding = Conv2D(128, kernel_size=(4, 4))(embedding)
|
||||
embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
|
||||
embedding = Conv2D(256, kernel_size=(4, 4))(embedding)
|
||||
embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
|
||||
embedding = Flatten()(embedding)
|
||||
embedding = Dense(4096, activation='sigmoid')(embedding)
|
||||
embedding = BatchNormalization()(embedding)
|
||||
embedding = Activation(activation='relu')(embedding)
|
||||
|
||||
return Model(model_input, embedding)
|
||||
|
||||
def create_base_model(input_shape):
|
||||
model_input = Input(shape=input_shape)
|
||||
|
||||
embedding = Conv2D(32, kernel_size=(3, 3), input_shape=input_shape)(model_input)
|
||||
embedding = BatchNormalization()(embedding)
|
||||
embedding = Activation(activation='relu')(embedding)
|
||||
embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
|
||||
embedding = Conv2D(64, kernel_size=(3, 3))(embedding)
|
||||
embedding = BatchNormalization()(embedding)
|
||||
embedding = Activation(activation='relu')(embedding)
|
||||
embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
|
||||
embedding = Flatten()(embedding)
|
||||
embedding = Dense(128)(embedding)
|
||||
embedding = BatchNormalization()(embedding)
|
||||
embedding = Activation(activation='relu')(embedding)
|
||||
|
||||
return Model(model_input, embedding)
|
||||
|
||||
|
||||
def create_head_model(embedding_shape):
|
||||
embedding_a = Input(shape=embedding_shape[1:])
|
||||
embedding_b = Input(shape=embedding_shape[1:])
|
||||
|
||||
head = Concatenate()([embedding_a, embedding_b])
|
||||
head = Dense(8)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
head = Dense(1)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
return Model([embedding_a, embedding_b], head)
|
||||
|
||||
def get_batch(x_train, y_train, x_test, y_test, cat_train, batch_size=64):
|
||||
|
||||
temp_x = x_train
|
||||
temp_cat_list = cat_train
|
||||
start=0
|
||||
batch_x=[]
|
||||
|
||||
batch_y = np.zeros(batch_size)
|
||||
batch_y[int(batch_size/2):] = 1
|
||||
np.random.shuffle(batch_y)
|
||||
|
||||
class_list = np.random.randint(start, len(cat_train), batch_size)
|
||||
batch_x.append(np.zeros((batch_size, 100, 100, 3)))
|
||||
batch_x.append(np.zeros((batch_size, 100, 100, 3)))
|
||||
|
||||
for i in range(0, batch_size):
|
||||
batch_x[0][i] = temp_x[np.random.choice(temp_cat_list[class_list[i]])]
|
||||
#If train_y has 0 pick from the same class, else pick from any other class
|
||||
if batch_y[i]==0:
|
||||
r = np.random.choice(temp_cat_list[class_list[i]])
|
||||
batch_x[1][i] = temp_x[r]
|
||||
|
||||
else:
|
||||
temp_list = np.append(temp_cat_list[:class_list[i]].flatten(), temp_cat_list[class_list[i]+1:].flatten())
|
||||
batch_x[1][i] = temp_x[np.random.choice(temp_list)]
|
||||
|
||||
return(batch_x, batch_y)
|
||||
|
||||
|
||||
num_classes = 131
|
||||
epochs = 2000
|
||||
|
||||
base_model = create_base_model(input_shape)
|
||||
head_model = create_head_model(base_model.output_shape)
|
||||
|
||||
siamese_network = SiameseNetwork(base_model, head_model)
|
||||
siamese_network.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
|
||||
siamese_checkpoint_path = "./siamese_checkpoint"
|
||||
|
||||
siamese_callbacks = [
|
||||
# EarlyStopping(monitor='val_accuracy', patience=10, verbose=0),
|
||||
ModelCheckpoint(siamese_checkpoint_path, monitor='val_accuracy', save_best_only=True, verbose=0)
|
||||
]
|
||||
|
||||
# batch_size = 64
|
||||
# for epoch in range(1, epochs):
|
||||
# batch_x, batch_y = get_batch(x_train, y_train, x_test, y_test, cat_train, train_size, batch_size)
|
||||
# loss = siamese_network.train_on_batch(batch_x, batch_y)
|
||||
# print('Epoch:', epoch, ', Loss:', loss)
|
||||
|
||||
siamese_network.fit(x_train, y_train,
|
||||
validation_data=(x_test, y_test),
|
||||
batch_size=45,
|
||||
epochs=epochs,
|
||||
callbacks=siamese_callbacks)
|
||||
|
||||
# try:
|
||||
# siamese_network = keras.models.load_model(siamese_checkpoint_path)
|
||||
# except Exception as e:
|
||||
# print(e)
|
||||
# print("!!!!!!")
|
||||
# siamese_network.load_weights(siamese_checkpoint_path)
|
||||
|
||||
embedding = base_model.outputs[-1]
|
||||
|
||||
y_train = keras.utils.to_categorical(y_train)
|
||||
y_test = keras.utils.to_categorical(y_test)
|
||||
|
||||
# Add softmax layer to the pre-trained embedding network
|
||||
embedding = Dense(num_classes)(embedding)
|
||||
embedding = BatchNormalization()(embedding)
|
||||
embedding = Activation(activation='sigmoid')(embedding)
|
||||
|
||||
model = Model(base_model.inputs[0], embedding)
|
||||
model.compile(loss=keras.losses.binary_crossentropy,
|
||||
optimizer=keras.optimizers.Adam(),
|
||||
metrics=['accuracy'])
|
||||
|
||||
model_checkpoint_path = "./model_checkpoint"
|
||||
|
||||
model__callbacks = [
|
||||
# EarlyStopping(monitor='val_accuracy', patience=10, verbose=0),
|
||||
ModelCheckpoint(model_checkpoint_path, monitor='val_accuracy', save_best_only=True, verbose=0)
|
||||
]
|
||||
|
||||
# for e in range(1, epochs):
|
||||
# batch_x, batch_y = get_batch(x_train, y_train, x_test, y_test, cat_train, train_size, batch_size)
|
||||
# loss = model.train_on_batch(batch_x, batch_y)
|
||||
# print('Epoch:', epoch, ', Loss:', loss)
|
||||
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=128,
|
||||
epochs=epochs,
|
||||
callbacks=model__callbacks,
|
||||
validation_data=(x_test, y_test))
|
||||
# try:
|
||||
# model = keras.models.load_model(model_checkpoint_path)
|
||||
# except Exception as e:
|
||||
# print(e)
|
||||
# print("!!!!!!")
|
||||
|
||||
# model.load_weights(model_checkpoint_path)
|
||||
|
||||
score = model.evaluate(x_test, y_test, verbose=0)
|
||||
print('Test loss:', score[0])
|
||||
print('Test accuracy:', score[1])
|
BIN
mymodel.png
Normal file
BIN
mymodel.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 146 KiB |
39
notes.md
Normal file
39
notes.md
Normal file
@ -0,0 +1,39 @@
|
||||
the steps taken so far, which lead to a successfull detection of an image
|
||||
|
||||
- train the model defined in mnist_siamese_example, which uses the 'siamese.py' model to
|
||||
create a siamese keras model.
|
||||
|
||||
- in this mnist siamese example, the data collection has been updated form the mnist drawing
|
||||
sample to the fruit sample. Lots of work went into setting the arrays up correctly, because the
|
||||
example from towards data science did not correctly seperate the classes. He had originally used
|
||||
91 classes for teching and the rest for testing, where I now use images of every class for
|
||||
teaching _and_ training.
|
||||
|
||||
- The images were shrunken down to 28 x 28 so the model defined in the siamese example could be used
|
||||
without adaption
|
||||
|
||||
- in this example, there is two teachings going on, once he trains the siamese model (which is saved under
|
||||
'siamese_checkpoint' and then he reteaches a new model based on this one, with some additonal layers ontop
|
||||
|
||||
I'm not yet sure what these do [todo] but 'I'll figure it out.
|
||||
|
||||
- after you've successfully trained the model, it's now saved to 'model_checkpoint' or 'siamese_checkpoint'
|
||||
|
||||
- The following steps can be used to classify two images:
|
||||
Note, that it was so far only tested using images in a 'pdb' shell from the mnist_siamese_example script
|
||||
|
||||
```
|
||||
import tensorflow.keras as keras
|
||||
from PIL import image
|
||||
model = keras.models.load_model('./siamese_checkpoint')
|
||||
image1 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_254_100.jpg').convert('RGB').resize((28, 28))) / 255 / 255
|
||||
image2 = np.asarray(Image.open('../towards/data/fruits-360/Training/Avocado/r_250_100.jpg').convert('RGB').resize((28, 28))) / 255 / 255
|
||||
# note that the double division through 255 is only because the model bas taught with this double division, depends on
|
||||
# the input numbers of course
|
||||
|
||||
output = model.predict([np.array([image2]), np.array([image1])])
|
||||
# Note here, that the cast to np.array is nencessary - otherwise the input vector is malformed
|
||||
|
||||
print(output)
|
||||
```
|
||||
|
4
requirements.txt
Normal file
4
requirements.txt
Normal file
@ -0,0 +1,4 @@
|
||||
keras==2.2.4
|
||||
numpy==1.16.4
|
||||
pytest==4.6.4
|
||||
pep8==1.7.1
|
15
setup.py
Normal file
15
setup.py
Normal file
@ -0,0 +1,15 @@
|
||||
from setuptools import setup
|
||||
|
||||
setup(
|
||||
name='siamese',
|
||||
version='0.1',
|
||||
packages=[''],
|
||||
url='https://github.com/aspamers/siamese',
|
||||
license='MIT',
|
||||
author='Abram Spamers',
|
||||
author_email='aspamers@gmail.com',
|
||||
install_requires=[
|
||||
'keras', 'numpy',
|
||||
],
|
||||
description='An easy to use Keras Siamese Neural Network implementation'
|
||||
)
|
291
siamese.py
Normal file
291
siamese.py
Normal file
@ -0,0 +1,291 @@
|
||||
"""
|
||||
Siamese neural network module.
|
||||
"""
|
||||
|
||||
import random, math
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.keras.layers import Input
|
||||
from tensorflow.keras.models import Model
|
||||
|
||||
import pdb
|
||||
|
||||
|
||||
class SiameseNetwork:
|
||||
"""
|
||||
A simple and lightweight siamese neural network implementation.
|
||||
|
||||
The SiameseNetwork class requires the base and head model to be defined via the constructor. The class exposes
|
||||
public methods that allow it to behave similarly to a regular Keras model by passing kwargs through to the
|
||||
underlying keras model object where possible. This allows Keras features like callbacks and metrics to be used.
|
||||
"""
|
||||
def __init__(self, base_model, head_model):
|
||||
"""
|
||||
Construct the siamese model class with the following structure.
|
||||
|
||||
-------------------------------------------------------------------
|
||||
input1 -> base_model |
|
||||
--> embedding --> head_model --> binary output
|
||||
input2 -> base_model |
|
||||
-------------------------------------------------------------------
|
||||
|
||||
:param base_model: The embedding model.
|
||||
* Input shape must be equal to that of data.
|
||||
:param head_model: The discriminator model.
|
||||
* Input shape must be equal to that of embedding
|
||||
* Output shape must be equal to 1..
|
||||
"""
|
||||
# Set essential parameters
|
||||
self.base_model = base_model
|
||||
self.head_model = head_model
|
||||
|
||||
# Get input shape from base model
|
||||
self.input_shape = self.base_model.input_shape[1:]
|
||||
|
||||
# Initialize siamese model
|
||||
self.siamese_model = None
|
||||
self.__initialize_siamese_model()
|
||||
|
||||
def compile(self, *args, **kwargs):
|
||||
"""
|
||||
Configures the model for training.
|
||||
|
||||
Passes all arguments to the underlying Keras model compile function.
|
||||
"""
|
||||
self.siamese_model.compile(*args, **kwargs)
|
||||
|
||||
def train_on_batch(self, *args, **kwargs):
|
||||
return self.siamese_model.train_on_batch(args[0], args[1])
|
||||
|
||||
def fit(self, *args, **kwargs):
|
||||
"""
|
||||
Trains the model on data generated batch-by-batch using the siamese network generator function.
|
||||
|
||||
Redirects arguments to the fit_generator function.
|
||||
"""
|
||||
x_train = args[0]
|
||||
y_train = args[1]
|
||||
x_test, y_test = kwargs.pop('validation_data')
|
||||
batch_size = kwargs.pop('batch_size')
|
||||
|
||||
train_generator = self.__pair_generator(x_train, y_train, batch_size)
|
||||
train_steps = math.floor(max(len(x_train) / batch_size, 1))
|
||||
test_generator = self.__pair_generator(x_test, y_test, batch_size)
|
||||
test_steps = math.floor(max(len(x_test) / batch_size, 1))
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
self.siamese_model.fit(train_generator,
|
||||
steps_per_epoch=train_steps,
|
||||
validation_data=test_generator,
|
||||
validation_steps=test_steps, **kwargs)
|
||||
|
||||
def fit_generator(self, x_train, y_train, x_test, y_test, batch_size, *args, **kwargs):
|
||||
"""
|
||||
Trains the model on data generated batch-by-batch using the siamese network generator function.
|
||||
|
||||
:param x_train: Training input data.
|
||||
:param y_train: Training output data.
|
||||
:param x_test: Validation input data.
|
||||
:param y_test: Validation output data.
|
||||
:param batch_size: Number of pairs to generate per batch.
|
||||
"""
|
||||
train_generator = self.__pair_generator(x_train, y_train, batch_size)
|
||||
train_steps = max(len(x_train) / batch_size, 1)
|
||||
test_generator = self.__pair_generator(x_test, y_test, batch_size)
|
||||
test_steps = max(len(x_test) / batch_size, 1)
|
||||
self.siamese_model.fit_generator(train_generator,
|
||||
steps_per_epoch=train_steps,
|
||||
validation_data=test_generator,
|
||||
validation_steps=test_steps,
|
||||
*args, **kwargs)
|
||||
|
||||
|
||||
def load_weights(self, checkpoint_path):
|
||||
"""
|
||||
Load siamese model weights. This also affects the reference to the base and head models.
|
||||
|
||||
:param checkpoint_path: Path to the checkpoint file.
|
||||
"""
|
||||
self.siamese_model.load_weights(checkpoint_path)
|
||||
|
||||
def evaluate(self, *args, **kwargs):
|
||||
"""
|
||||
Evaluate the siamese network with the same generator that is used to train it. Passes arguments through to the
|
||||
underlying Keras function so that callbacks etc can be used.
|
||||
|
||||
Redirects arguments to the evaluate_generator function.
|
||||
|
||||
:return: A tuple of scores
|
||||
"""
|
||||
x = args[0]
|
||||
y = args[1]
|
||||
batch_size = kwargs.pop('batch_size')
|
||||
|
||||
generator = self.__pair_generator(x, y, batch_size)
|
||||
steps = len(x) / batch_size
|
||||
return self.siamese_model.evaluate_generator(generator, steps=steps, **kwargs)
|
||||
|
||||
def evaluate_generator(self, x, y, batch_size, *args, **kwargs):
|
||||
"""
|
||||
Evaluate the siamese network with the same generator that is used to train it. Passes arguments through to the
|
||||
underlying Keras function so that callbacks etc can be used.
|
||||
|
||||
:param x: Input data
|
||||
:param y: Class labels
|
||||
:param batch_size: Number of pairs to generate per batch.
|
||||
:return: A tuple of scores
|
||||
"""
|
||||
generator = self.__pair_generator(x, y, batch_size=batch_size)
|
||||
steps = len(x) / batch_size
|
||||
return self.siamese_model.evaluate_generator(generator, steps=steps, *args, **kwargs)
|
||||
|
||||
def __initialize_siamese_model(self):
|
||||
"""
|
||||
Create the siamese model structure using the supplied base and head model.
|
||||
"""
|
||||
input_a = Input(shape=self.input_shape)
|
||||
input_b = Input(shape=self.input_shape)
|
||||
|
||||
processed_a = self.base_model(input_a)
|
||||
processed_b = self.base_model(input_b)
|
||||
|
||||
head = self.head_model([processed_a, processed_b])
|
||||
self.siamese_model = Model([input_a, input_b], head)
|
||||
|
||||
def __create_pairs(self, x, class_indices, batch_size, num_classes):
|
||||
"""
|
||||
Create a numpy array of positive and negative pairs and their associated labels.
|
||||
|
||||
:param x: Input data
|
||||
:param class_indices: A python list of lists that contains each of the indices in the input data that belong
|
||||
to each class. It is used to find and access elements in the input data that belong to a desired class.
|
||||
* Example usage:
|
||||
* element_index = class_indices[class][index]
|
||||
* element = x[element_index]
|
||||
:param batch_size: The number of pair samples to create.
|
||||
:param num_classes: number of classes in the supplied input data
|
||||
:return: A tuple of (Numpy array of pairs, Numpy array of labels)
|
||||
"""
|
||||
num_pairs = batch_size / 2
|
||||
positive_pairs, positive_labels = self.__create_positive_pairs(x, class_indices, num_pairs, num_classes)
|
||||
negative_pairs, negative_labels = self.__create_negative_pairs(x, class_indices, num_pairs, num_classes)
|
||||
return np.array(positive_pairs + negative_pairs), np.array(positive_labels + negative_labels)
|
||||
|
||||
def __create_positive_pairs(self, x, class_indices, num_positive_pairs, num_classes):
|
||||
"""
|
||||
Create a list of positive pairs and labels. A positive pair is defined as two input samples of the same class.
|
||||
|
||||
:param x: Input data
|
||||
:param class_indices: A python list of lists that contains each of the indices in the input data that belong
|
||||
to each class. It is used to find and access elements in the input data that belong to a desired class.
|
||||
* Example usage:
|
||||
* element_index = class_indices[class][index]
|
||||
* element = x[element_index]
|
||||
:param num_positive_pairs: The number of positive pair samples to create.
|
||||
:param num_classes: number of classes in the supplied input data
|
||||
:return: A tuple of (python list of positive pairs, python list of positive labels)
|
||||
"""
|
||||
positive_pairs = []
|
||||
positive_labels = []
|
||||
|
||||
for _ in range(int(num_positive_pairs)):
|
||||
class_1 = random.randint(0, num_classes - 1)
|
||||
num_elements = len(class_indices[class_1])
|
||||
|
||||
if num_elements == 0:
|
||||
return [], []
|
||||
index_1, index_2 = self.__randint_unequal(0, num_elements - 1)
|
||||
|
||||
element_index_1, element_index_2 = class_indices[class_1][index_1], class_indices[class_1][index_2]
|
||||
positive_pairs.append([x[element_index_1], x[element_index_2]])
|
||||
positive_labels.append([1.0])
|
||||
return positive_pairs, positive_labels
|
||||
|
||||
def __create_negative_pairs(self, x, class_indices, num_negative_pairs, num_classes):
|
||||
"""
|
||||
Create a list of negative pairs and labels. A negative pair is defined as two input samples of different class.
|
||||
|
||||
:param x: Input data
|
||||
:param class_indices: A python list of lists that contains each of the indices in the input data that belong
|
||||
to each class. It is used to find and access elements in the input data that belong to a desired class.
|
||||
* Example usage:
|
||||
* element_index = class_indices[class][index]
|
||||
* element = x[element_index]
|
||||
:param num_negative_pairs: The number of negative pair samples to create.
|
||||
:param num_classes: number of classes in the supplied input data
|
||||
:return: A tuple of (python list of negative pairs, python list of negative labels)
|
||||
"""
|
||||
negative_pairs = []
|
||||
negative_labels = []
|
||||
|
||||
if num_classes == 0:
|
||||
return [], []
|
||||
|
||||
for _ in range(int(num_negative_pairs)):
|
||||
cls_1, cls_2 = self.__randint_unequal(0, num_classes - 1)
|
||||
|
||||
try:
|
||||
index_1 = random.randint(0, len(class_indices[cls_1]) - 1)
|
||||
index_2 = random.randint(0, len(class_indices[cls_2]) - 1)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
pdb.set_trace()
|
||||
|
||||
|
||||
element_index_1, element_index_2 = class_indices[cls_1][index_1], class_indices[cls_2][index_2]
|
||||
negative_pairs.append([x[element_index_1], x[element_index_2]])
|
||||
negative_labels.append([0.0])
|
||||
return negative_pairs, negative_labels
|
||||
|
||||
def __pair_generator(self, x, y, batch_size):
|
||||
"""
|
||||
Creates a python generator that produces pairs from the original input data.
|
||||
:param x: Input data
|
||||
:param y: Integer class labels
|
||||
:param batch_size: The number of pair samples to create per batch.
|
||||
:return:
|
||||
"""
|
||||
class_indices, num_classes = self.__get_class_indices(y)
|
||||
while True:
|
||||
pairs, labels = self.__create_pairs(x, class_indices, batch_size, num_classes)
|
||||
|
||||
# The siamese network expects two inputs and one output. Split the pairs into a list of inputs.
|
||||
yield [pairs[:, 0], pairs[:, 1]], labels
|
||||
|
||||
def __get_class_indices(self, y):
|
||||
"""
|
||||
Create a python list of lists that contains each of the indices in the input data that belong
|
||||
to each class. It is used to find and access elements in the input data that belong to a desired class.
|
||||
* Example usage:
|
||||
* element_index = class_indices[class][index]
|
||||
* element = x[element_index]
|
||||
:param y: Integer class labels
|
||||
:return: Python list of lists
|
||||
"""
|
||||
num_classes = np.max(y) + 1
|
||||
return [np.where(y == i)[0] for i in range(num_classes)], num_classes
|
||||
|
||||
@staticmethod
|
||||
def __randint_unequal(lower, upper):
|
||||
"""
|
||||
Get two random integers that are not equal.
|
||||
|
||||
Note: In some cases (such as there being only one sample of a class) there may be an endless loop here. This
|
||||
will only happen on fairly exotic datasets though. May have to address in future.
|
||||
:param lower: Lower limit inclusive of the random integer.
|
||||
:param upper: Upper limit inclusive of the random integer. Need to use -1 for random indices.
|
||||
:return: Tuple of (integer, integer)
|
||||
"""
|
||||
|
||||
int_1 = random.randint(lower, upper)
|
||||
int_2 = random.randint(lower, upper)
|
||||
|
||||
tries = 0
|
||||
while int_1 == int_2:
|
||||
tries += 1
|
||||
if tries > 10:
|
||||
break
|
||||
int_1 = random.randint(lower, upper)
|
||||
int_2 = random.randint(lower, upper)
|
||||
return int_1, int_2
|
0
tests/__init__.py
Normal file
0
tests/__init__.py
Normal file
80
tests/test_siamese.py
Normal file
80
tests/test_siamese.py
Normal file
@ -0,0 +1,80 @@
|
||||
|
||||
"""
|
||||
Tests for the siamese neural network module
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import keras
|
||||
from keras import Model, Input
|
||||
from keras.layers import Concatenate, Dense, BatchNormalization, Activation
|
||||
|
||||
from siamese import SiameseNetwork
|
||||
|
||||
|
||||
def test_siamese():
|
||||
"""
|
||||
Test that all components the siamese network work correctly by executing a
|
||||
training run against generated data.
|
||||
"""
|
||||
|
||||
num_classes = 5
|
||||
input_shape = (3,)
|
||||
epochs = 1000
|
||||
|
||||
# Generate some data
|
||||
x_train = np.random.rand(100, 3)
|
||||
y_train = np.random.randint(num_classes, size=100)
|
||||
|
||||
x_test = np.random.rand(30, 3)
|
||||
y_test = np.random.randint(num_classes, size=30)
|
||||
|
||||
# Define base and head model
|
||||
def create_base_model(input_shape):
|
||||
model_input = Input(shape=input_shape)
|
||||
|
||||
embedding = Dense(4)(model_input)
|
||||
embedding = BatchNormalization()(embedding)
|
||||
embedding = Activation(activation='relu')(embedding)
|
||||
|
||||
return Model(model_input, embedding)
|
||||
|
||||
def create_head_model(embedding_shape):
|
||||
embedding_a = Input(shape=embedding_shape)
|
||||
embedding_b = Input(shape=embedding_shape)
|
||||
|
||||
head = Concatenate()([embedding_a, embedding_b])
|
||||
head = Dense(4)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
head = Dense(1)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
return Model([embedding_a, embedding_b], head)
|
||||
|
||||
# Create siamese neural network
|
||||
base_model = create_base_model(input_shape)
|
||||
head_model = create_head_model(base_model.output_shape)
|
||||
siamese_network = SiameseNetwork(base_model, head_model)
|
||||
|
||||
# Prepare siamese network for training
|
||||
siamese_network.compile(loss='binary_crossentropy',
|
||||
optimizer=keras.optimizers.adam())
|
||||
|
||||
# Evaluate network before training to establish a baseline
|
||||
score_before = siamese_network.evaluate_generator(
|
||||
x_train, y_train, batch_size=64
|
||||
)
|
||||
|
||||
# Train network
|
||||
siamese_network.fit(x_train, y_train,
|
||||
validation_data=(x_test, y_test),
|
||||
batch_size=64,
|
||||
epochs=epochs)
|
||||
|
||||
# Evaluate network
|
||||
score_after = siamese_network.evaluate(x_train, y_train, batch_size=64)
|
||||
|
||||
# Ensure that the training loss score improved as a result of the training
|
||||
assert(score_before > score_after)
|
Loading…
x
Reference in New Issue
Block a user