changes image loading to loading per batch
- images are now loaded for each batch instead of all at the start in lambda_coco.py - checkpoint location is now checked for existing weights and loaded if available
This commit is contained in:
parent
666caf71ba
commit
d6e6abc8af
24
siamese.py
24
siamese.py
@ -4,10 +4,15 @@ Siamese neural network module.
|
||||
|
||||
import random, math
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from tensorflow.keras.layers import Input
|
||||
from tensorflow.keras.models import Model
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.image as mpimg
|
||||
|
||||
|
||||
|
||||
class SiameseNetwork:
|
||||
"""
|
||||
@ -194,7 +199,14 @@ class SiameseNetwork:
|
||||
index_1, index_2 = self.__randint_unequal(0, num_elements - 1)
|
||||
|
||||
element_index_1, element_index_2 = class_indices[class_1][index_1], class_indices[class_1][index_2]
|
||||
positive_pairs.append([x[element_index_1], x[element_index_2]])
|
||||
|
||||
img_rows = self.input_shape[0]
|
||||
img_cols = self.input_shape[1]
|
||||
img1 = np.asarray(Image.open(x[element_index_1]).convert('RGB').resize((img_rows, img_cols)))/255.0
|
||||
img2 = np.asarray(Image.open(x[element_index_2]).convert('RGB').resize((img_rows, img_cols)))/255.0
|
||||
# img1 = x[element_index_1]
|
||||
# img2 = x[element_index_2]
|
||||
positive_pairs.append([img1,img2])
|
||||
positive_labels.append([1.0])
|
||||
return positive_pairs, positive_labels
|
||||
|
||||
@ -221,12 +233,18 @@ class SiameseNetwork:
|
||||
for _ in range(int(num_negative_pairs)):
|
||||
cls_1, cls_2 = self.__randint_unequal(0, num_classes - 1)
|
||||
|
||||
|
||||
index_1 = random.randint(0, len(class_indices[cls_1]) - 1)
|
||||
index_2 = random.randint(0, len(class_indices[cls_2]) - 1)
|
||||
|
||||
|
||||
element_index_1, element_index_2 = class_indices[cls_1][index_1], class_indices[cls_2][index_2]
|
||||
negative_pairs.append([x[element_index_1], x[element_index_2]])
|
||||
|
||||
img_rows = self.input_shape[0]
|
||||
img_cols = self.input_shape[1]
|
||||
img1 = np.asarray(Image.open(x[element_index_1]).convert('RGB').resize((img_rows, img_cols)))/255.0
|
||||
img2 = np.asarray(Image.open(x[element_index_2]).convert('RGB').resize((img_rows, img_cols)))/255.0
|
||||
|
||||
negative_pairs.append([img1,img2])
|
||||
negative_labels.append([0.0])
|
||||
return negative_pairs, negative_labels
|
||||
|
||||
|
@ -1,17 +1,3 @@
|
||||
"""
|
||||
This is a modified version of the Keras mnist example.
|
||||
https://keras.io/examples/mnist_cnn/
|
||||
|
||||
Instead of using a fixed number of epochs this version continues to train until a stop criteria is reached.
|
||||
|
||||
A siamese neural network is used to pre-train an embedding for the network. The resulting embedding is then extended
|
||||
with a softmax output layer for categorical predictions.
|
||||
|
||||
Model performance should be around 99.84% after training. The resulting model is identical in structure to the one in
|
||||
the example yet shows considerable improvement in relative error confirming that the embedding learned by the siamese
|
||||
network is useful.
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
import tensorflow.keras as keras
|
||||
from tensorflow.keras.datasets import mnist
|
||||
@ -37,7 +23,7 @@ img_rows, img_cols = 100, 100
|
||||
def createTrainingData():
|
||||
base_dir = './classified/'
|
||||
train_test_split = 0.7
|
||||
no_of_files_in_each_class = 400
|
||||
no_of_files_in_each_class = 10
|
||||
|
||||
#Read all the folders in the directory
|
||||
folder_list = os.listdir(base_dir)
|
||||
@ -53,8 +39,6 @@ def createTrainingData():
|
||||
#Using just 5 images per category
|
||||
for folder_name in folder_list:
|
||||
files_list = os.listdir(os.path.join(base_dir, folder_name))
|
||||
if len(files_list) < no_of_files_in_each_class:
|
||||
continue
|
||||
temp=[]
|
||||
for file_name in files_list[:no_of_files_in_each_class]:
|
||||
temp.append(len(x))
|
||||
|
227
train_lambda_coco.py
Normal file
227
train_lambda_coco.py
Normal file
@ -0,0 +1,227 @@
|
||||
from __future__ import print_function
|
||||
import tensorflow.keras as keras
|
||||
from tensorflow.keras.datasets import mnist
|
||||
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation, Concatenate
|
||||
from tensorflow.keras import backend as K
|
||||
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
|
||||
from tensorflow.keras.models import Model
|
||||
from tensorflow.keras.layers import Input, Flatten, Dense
|
||||
|
||||
from siamese import SiameseNetwork
|
||||
|
||||
import pdb
|
||||
|
||||
import os, math, numpy as np
|
||||
from PIL import Image
|
||||
|
||||
batch_size = 128
|
||||
num_classes = 131
|
||||
|
||||
# input image dimensions
|
||||
img_rows, img_cols = 100, 100
|
||||
|
||||
def createTrainingData():
|
||||
base_dir = './classified/'
|
||||
train_test_split = 0.7
|
||||
no_of_files_in_each_class = 200
|
||||
|
||||
#Read all the folders in the directory
|
||||
folder_list = os.listdir(base_dir)
|
||||
print( len(folder_list), "categories found in the dataset")
|
||||
|
||||
#Declare training array
|
||||
cat_list = []
|
||||
x = []
|
||||
names = []
|
||||
y = []
|
||||
y_label = 0
|
||||
counting = 0
|
||||
|
||||
#Using just 5 images per category
|
||||
for folder_name in folder_list:
|
||||
files_list = os.listdir(os.path.join(base_dir, folder_name))
|
||||
if len(files_list) < no_of_files_in_each_class:
|
||||
continue
|
||||
counting += 1
|
||||
temp=[]
|
||||
for file_name in files_list[:no_of_files_in_each_class]:
|
||||
temp.append(len(x))
|
||||
path = os.path.join(base_dir, folder_name, file_name)
|
||||
x.append(path)
|
||||
names.append(folder_name + "/" + file_name)
|
||||
y.append(y_label)
|
||||
y_label+=1
|
||||
cat_list.append(temp)
|
||||
|
||||
cat_list = np.asarray(cat_list)
|
||||
x = np.asarray(x)
|
||||
y = np.asarray(y)
|
||||
print('X, Y shape',x.shape, y.shape, cat_list.shape)
|
||||
|
||||
|
||||
#Training Split
|
||||
x_train, y_train, cat_train, x_val, y_val, cat_test = [], [], [], [], [], []
|
||||
|
||||
train_split = math.floor((train_test_split) * no_of_files_in_each_class)
|
||||
test_split = math.floor((1-train_test_split) * no_of_files_in_each_class)
|
||||
|
||||
train_count = 0
|
||||
test_count = 0
|
||||
for i in range(len(x)-1):
|
||||
if i % no_of_files_in_each_class == 0:
|
||||
cat_train.append([])
|
||||
cat_test.append([])
|
||||
class_train_count = 1
|
||||
class_test_count = 1
|
||||
|
||||
if i % math.floor(1/train_test_split) == 0 and class_test_count < test_split:
|
||||
x_val.append(x[i])
|
||||
y_val.append(y[i])
|
||||
cat_test[-1].append(test_count)
|
||||
test_count += 1
|
||||
class_test_count += 1
|
||||
|
||||
elif class_train_count < train_split:
|
||||
x_train.append(x[i])
|
||||
y_train.append(y[i])
|
||||
cat_train[-1].append(train_count)
|
||||
train_count += 1
|
||||
class_train_count += 1
|
||||
|
||||
|
||||
x_val = np.array(x_val)
|
||||
y_val = np.array(y_val)
|
||||
x_train = np.array(x_train)
|
||||
y_train = np.array(y_train)
|
||||
cat_train = np.array(cat_train)
|
||||
cat_test = np.array(cat_test)
|
||||
|
||||
|
||||
print('X&Y shape of training data :',x_train.shape, 'and',
|
||||
y_train.shape, cat_train.shape)
|
||||
print('X&Y shape of testing data :' , x_val.shape, 'and',
|
||||
y_val.shape, cat_test.shape)
|
||||
|
||||
return (x_train, y_train), (x_val, y_val), cat_train
|
||||
|
||||
|
||||
# the data, split between train and test sets
|
||||
# (x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
# channels = 1
|
||||
|
||||
(x_train, y_train), (x_test, y_test), cat_train = createTrainingData()
|
||||
|
||||
channels = 3
|
||||
|
||||
'''
|
||||
if K.image_data_format() == 'channels_first':
|
||||
x_train = x_train.reshape(x_train.shape[0], channels, img_rows, img_cols)
|
||||
x_test = x_test.reshape(x_test.shape[0], channels, img_rows, img_cols)
|
||||
input_shape = (channels, img_rows, img_cols)
|
||||
else:
|
||||
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, channels)
|
||||
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)
|
||||
input_shape = (img_rows, img_cols, channels)
|
||||
|
||||
x_train = x_train.astype('float32')
|
||||
x_test = x_test.astype('float32')
|
||||
'''
|
||||
|
||||
input_shape = (img_rows, img_cols, channels)
|
||||
|
||||
def create_own_base_model(input_shape):
|
||||
return keras.applications.vgg16.VGG16(include_top=False, input_tensor=Input(shape=input_shape), weights='imagenet',
|
||||
classes=1)
|
||||
|
||||
def create_base_model(input_shape):
|
||||
model_input = Input(shape=input_shape)
|
||||
|
||||
embedding = Conv2D(32, kernel_size=(3, 3), input_shape=input_shape)(model_input)
|
||||
embedding = BatchNormalization()(embedding)
|
||||
embedding = Activation(activation='relu')(embedding)
|
||||
embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
|
||||
embedding = Conv2D(64, kernel_size=(3, 3))(embedding)
|
||||
embedding = BatchNormalization()(embedding)
|
||||
embedding = Activation(activation='relu')(embedding)
|
||||
embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
|
||||
embedding = Flatten()(embedding)
|
||||
embedding = Dense(128)(embedding)
|
||||
embedding = BatchNormalization()(embedding)
|
||||
embedding = Activation(activation='relu')(embedding)
|
||||
|
||||
return Model(model_input, embedding)
|
||||
|
||||
def create_own_head_model(embedding_shape):
|
||||
embedding_a = Input(shape=embedding_shape[1:])
|
||||
embedding_b = Input(shape=embedding_shape[1:])
|
||||
|
||||
embedding_a_mod = Flatten()(embedding_a)
|
||||
embedding_a_mod = Dense(128)(embedding_a_mod)
|
||||
embedding_a_mod = BatchNormalization()(embedding_a_mod)
|
||||
embedding_a_mod = Activation(activation='relu')(embedding_a_mod)
|
||||
|
||||
embedding_b_mod = Flatten()(embedding_b)
|
||||
embedding_b_mod = Dense(128)(embedding_b_mod)
|
||||
embedding_b_mod = BatchNormalization()(embedding_b_mod)
|
||||
embedding_b_mod = Activation(activation='relu')(embedding_b_mod)
|
||||
|
||||
head = Concatenate()([embedding_a_mod, embedding_b_mod])
|
||||
head = Dense(8)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
head = Dense(1)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
return Model([embedding_a, embedding_b], head)
|
||||
|
||||
def create_head_model(embedding_shape):
|
||||
embedding_a = Input(shape=embedding_shape[1:])
|
||||
embedding_b = Input(shape=embedding_shape[1:])
|
||||
|
||||
head = Concatenate()([embedding_a, embedding_b])
|
||||
head = Dense(8)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
head = Dense(1)(head)
|
||||
head = BatchNormalization()(head)
|
||||
head = Activation(activation='sigmoid')(head)
|
||||
|
||||
return Model([embedding_a, embedding_b], head)
|
||||
|
||||
num_classes = 131
|
||||
epochs = 2000
|
||||
|
||||
base_model = create_own_base_model(input_shape)
|
||||
head_model = create_own_head_model(base_model.output_shape)
|
||||
|
||||
siamese_network = SiameseNetwork(base_model, head_model)
|
||||
siamese_network.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
|
||||
siamese_checkpoint_path = "../siamese_100x100_pretrainedb_vgg16"
|
||||
model_path = "/variables/variables"
|
||||
siamese_callbacks = [
|
||||
# EarlyStopping(monitor='val_accuracy', patience=10, verbose=0),
|
||||
ModelCheckpoint(siamese_checkpoint_path, monitor='val_accuracy', save_best_only=True, verbose=0)
|
||||
]
|
||||
|
||||
try:
|
||||
print("loading weights for model")
|
||||
siamese_network.load_weights(siamese_checkpoint_path+model_path)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
siamese_network.fit(x_train, y_train,
|
||||
validation_data=(x_test, y_test),
|
||||
batch_size=45,
|
||||
epochs=epochs,
|
||||
callbacks=siamese_callbacks)
|
||||
|
||||
|
||||
|
||||
score = siamese_network.evaluate(x_test, y_test, batch_size=60, verbose=0)
|
||||
print('Test loss:', score[0])
|
||||
print('Test accuracy:', score[1])
|
Loading…
Reference in New Issue
Block a user