changes image loading to loading per batch
- images are now loaded for each batch instead of all at the start in lambda_coco.py - checkpoint location is now checked for existing weights and loaded if available
This commit is contained in:
		
							
								
								
									
										24
									
								
								siamese.py
									
									
									
									
									
								
							
							
						
						
									
										24
									
								
								siamese.py
									
									
									
									
									
								
							@@ -4,10 +4,15 @@ Siamese neural network module.
 | 
			
		||||
 | 
			
		||||
import random, math
 | 
			
		||||
import numpy as np
 | 
			
		||||
from PIL import Image
 | 
			
		||||
 | 
			
		||||
from tensorflow.keras.layers import Input
 | 
			
		||||
from tensorflow.keras.models import Model
 | 
			
		||||
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import matplotlib.image as mpimg
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SiameseNetwork:
 | 
			
		||||
    """
 | 
			
		||||
@@ -194,7 +199,14 @@ class SiameseNetwork:
 | 
			
		||||
            index_1, index_2 = self.__randint_unequal(0, num_elements - 1)
 | 
			
		||||
 | 
			
		||||
            element_index_1, element_index_2 = class_indices[class_1][index_1], class_indices[class_1][index_2]
 | 
			
		||||
            positive_pairs.append([x[element_index_1], x[element_index_2]])
 | 
			
		||||
 | 
			
		||||
            img_rows = self.input_shape[0]
 | 
			
		||||
            img_cols = self.input_shape[1]
 | 
			
		||||
            img1 = np.asarray(Image.open(x[element_index_1]).convert('RGB').resize((img_rows, img_cols)))/255.0
 | 
			
		||||
            img2 = np.asarray(Image.open(x[element_index_2]).convert('RGB').resize((img_rows, img_cols)))/255.0
 | 
			
		||||
            # img1 = x[element_index_1]
 | 
			
		||||
            # img2 = x[element_index_2]
 | 
			
		||||
            positive_pairs.append([img1,img2])
 | 
			
		||||
            positive_labels.append([1.0])
 | 
			
		||||
        return positive_pairs, positive_labels
 | 
			
		||||
 | 
			
		||||
@@ -221,12 +233,18 @@ class SiameseNetwork:
 | 
			
		||||
        for _ in range(int(num_negative_pairs)):
 | 
			
		||||
            cls_1, cls_2 = self.__randint_unequal(0, num_classes - 1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            index_1 = random.randint(0, len(class_indices[cls_1]) - 1)
 | 
			
		||||
            index_2 = random.randint(0, len(class_indices[cls_2]) - 1)
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
            element_index_1, element_index_2 = class_indices[cls_1][index_1], class_indices[cls_2][index_2]
 | 
			
		||||
            negative_pairs.append([x[element_index_1], x[element_index_2]])
 | 
			
		||||
 | 
			
		||||
            img_rows = self.input_shape[0]
 | 
			
		||||
            img_cols = self.input_shape[1]
 | 
			
		||||
            img1 = np.asarray(Image.open(x[element_index_1]).convert('RGB').resize((img_rows, img_cols)))/255.0
 | 
			
		||||
            img2 = np.asarray(Image.open(x[element_index_2]).convert('RGB').resize((img_rows, img_cols)))/255.0
 | 
			
		||||
 | 
			
		||||
            negative_pairs.append([img1,img2])
 | 
			
		||||
            negative_labels.append([0.0])
 | 
			
		||||
        return negative_pairs, negative_labels
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,17 +1,3 @@
 | 
			
		||||
"""
 | 
			
		||||
This is a modified version of the Keras mnist example.
 | 
			
		||||
https://keras.io/examples/mnist_cnn/
 | 
			
		||||
 | 
			
		||||
Instead of using a fixed number of epochs this version continues to train until a stop criteria is reached.
 | 
			
		||||
 | 
			
		||||
A siamese neural network is used to pre-train an embedding for the network. The resulting embedding is then extended
 | 
			
		||||
with a softmax output layer for categorical predictions.
 | 
			
		||||
 | 
			
		||||
Model performance should be around 99.84% after training. The resulting model is identical in structure to the one in
 | 
			
		||||
the example yet shows considerable improvement in relative error confirming that the embedding learned by the siamese
 | 
			
		||||
network is useful.
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
from __future__ import print_function
 | 
			
		||||
import tensorflow.keras as keras
 | 
			
		||||
from tensorflow.keras.datasets import mnist
 | 
			
		||||
@@ -37,7 +23,7 @@ img_rows, img_cols = 100, 100
 | 
			
		||||
def createTrainingData():
 | 
			
		||||
    base_dir = './classified/'
 | 
			
		||||
    train_test_split = 0.7
 | 
			
		||||
    no_of_files_in_each_class = 400
 | 
			
		||||
    no_of_files_in_each_class = 10
 | 
			
		||||
 | 
			
		||||
    #Read all the folders in the directory
 | 
			
		||||
    folder_list = os.listdir(base_dir)
 | 
			
		||||
@@ -53,8 +39,6 @@ def createTrainingData():
 | 
			
		||||
    #Using just 5 images per category
 | 
			
		||||
    for folder_name in folder_list:
 | 
			
		||||
        files_list = os.listdir(os.path.join(base_dir, folder_name))
 | 
			
		||||
        if len(files_list) < no_of_files_in_each_class:
 | 
			
		||||
            continue
 | 
			
		||||
        temp=[]
 | 
			
		||||
        for file_name in files_list[:no_of_files_in_each_class]:
 | 
			
		||||
            temp.append(len(x))
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										227
									
								
								train_lambda_coco.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										227
									
								
								train_lambda_coco.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,227 @@
 | 
			
		||||
from __future__ import print_function
 | 
			
		||||
import tensorflow.keras as keras
 | 
			
		||||
from tensorflow.keras.datasets import mnist
 | 
			
		||||
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Activation, Concatenate
 | 
			
		||||
from tensorflow.keras import backend as K
 | 
			
		||||
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
 | 
			
		||||
from tensorflow.keras.models import Model
 | 
			
		||||
from tensorflow.keras.layers import Input, Flatten, Dense
 | 
			
		||||
 | 
			
		||||
from siamese import SiameseNetwork
 | 
			
		||||
 | 
			
		||||
import pdb
 | 
			
		||||
 | 
			
		||||
import os, math, numpy as np
 | 
			
		||||
from PIL import Image
 | 
			
		||||
 | 
			
		||||
batch_size = 128
 | 
			
		||||
num_classes = 131
 | 
			
		||||
 | 
			
		||||
# input image dimensions
 | 
			
		||||
img_rows, img_cols = 100, 100
 | 
			
		||||
 | 
			
		||||
def createTrainingData():
 | 
			
		||||
    base_dir = './classified/'
 | 
			
		||||
    train_test_split = 0.7
 | 
			
		||||
    no_of_files_in_each_class = 200
 | 
			
		||||
 | 
			
		||||
    #Read all the folders in the directory
 | 
			
		||||
    folder_list = os.listdir(base_dir)
 | 
			
		||||
    print( len(folder_list), "categories found in the dataset")
 | 
			
		||||
 | 
			
		||||
    #Declare training array
 | 
			
		||||
    cat_list = []
 | 
			
		||||
    x = []
 | 
			
		||||
    names = []
 | 
			
		||||
    y = []
 | 
			
		||||
    y_label = 0
 | 
			
		||||
    counting = 0
 | 
			
		||||
 | 
			
		||||
    #Using just 5 images per category
 | 
			
		||||
    for folder_name in folder_list:
 | 
			
		||||
        files_list = os.listdir(os.path.join(base_dir, folder_name))
 | 
			
		||||
        if len(files_list) < no_of_files_in_each_class:
 | 
			
		||||
            continue
 | 
			
		||||
        counting += 1
 | 
			
		||||
        temp=[]
 | 
			
		||||
        for file_name in files_list[:no_of_files_in_each_class]:
 | 
			
		||||
            temp.append(len(x))
 | 
			
		||||
            path = os.path.join(base_dir, folder_name, file_name)
 | 
			
		||||
            x.append(path)
 | 
			
		||||
            names.append(folder_name + "/" + file_name)
 | 
			
		||||
            y.append(y_label)
 | 
			
		||||
        y_label+=1
 | 
			
		||||
        cat_list.append(temp)
 | 
			
		||||
 | 
			
		||||
    cat_list = np.asarray(cat_list)
 | 
			
		||||
    x = np.asarray(x)
 | 
			
		||||
    y = np.asarray(y)
 | 
			
		||||
    print('X, Y shape',x.shape, y.shape, cat_list.shape)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    #Training Split
 | 
			
		||||
    x_train, y_train, cat_train, x_val, y_val, cat_test = [], [], [], [], [], []
 | 
			
		||||
 | 
			
		||||
    train_split = math.floor((train_test_split) * no_of_files_in_each_class)
 | 
			
		||||
    test_split = math.floor((1-train_test_split) * no_of_files_in_each_class)
 | 
			
		||||
 | 
			
		||||
    train_count = 0
 | 
			
		||||
    test_count = 0
 | 
			
		||||
    for i in range(len(x)-1):
 | 
			
		||||
        if i % no_of_files_in_each_class == 0:
 | 
			
		||||
            cat_train.append([])
 | 
			
		||||
            cat_test.append([])
 | 
			
		||||
            class_train_count = 1
 | 
			
		||||
            class_test_count = 1
 | 
			
		||||
 | 
			
		||||
        if i % math.floor(1/train_test_split) == 0 and class_test_count < test_split:
 | 
			
		||||
            x_val.append(x[i])
 | 
			
		||||
            y_val.append(y[i])
 | 
			
		||||
            cat_test[-1].append(test_count)
 | 
			
		||||
            test_count += 1
 | 
			
		||||
            class_test_count += 1
 | 
			
		||||
 | 
			
		||||
        elif class_train_count < train_split:
 | 
			
		||||
            x_train.append(x[i])
 | 
			
		||||
            y_train.append(y[i])
 | 
			
		||||
            cat_train[-1].append(train_count)
 | 
			
		||||
            train_count += 1
 | 
			
		||||
            class_train_count += 1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    x_val = np.array(x_val)
 | 
			
		||||
    y_val = np.array(y_val)
 | 
			
		||||
    x_train = np.array(x_train)
 | 
			
		||||
    y_train = np.array(y_train)
 | 
			
		||||
    cat_train = np.array(cat_train)
 | 
			
		||||
    cat_test = np.array(cat_test)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    print('X&Y shape of training data :',x_train.shape, 'and',
 | 
			
		||||
            y_train.shape, cat_train.shape)
 | 
			
		||||
    print('X&Y shape of testing data :' , x_val.shape, 'and',
 | 
			
		||||
            y_val.shape, cat_test.shape)
 | 
			
		||||
 | 
			
		||||
    return (x_train, y_train), (x_val, y_val), cat_train
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# the data, split between train and test sets
 | 
			
		||||
# (x_train, y_train), (x_test, y_test) = mnist.load_data()
 | 
			
		||||
# channels = 1
 | 
			
		||||
 | 
			
		||||
(x_train, y_train), (x_test, y_test), cat_train = createTrainingData()
 | 
			
		||||
 | 
			
		||||
channels = 3
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
if K.image_data_format() == 'channels_first':
 | 
			
		||||
    x_train = x_train.reshape(x_train.shape[0], channels, img_rows, img_cols)
 | 
			
		||||
    x_test = x_test.reshape(x_test.shape[0], channels, img_rows, img_cols)
 | 
			
		||||
    input_shape = (channels, img_rows, img_cols)
 | 
			
		||||
else:
 | 
			
		||||
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, channels)
 | 
			
		||||
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)
 | 
			
		||||
    input_shape = (img_rows, img_cols, channels)
 | 
			
		||||
 | 
			
		||||
x_train = x_train.astype('float32')
 | 
			
		||||
x_test = x_test.astype('float32')
 | 
			
		||||
'''
 | 
			
		||||
 | 
			
		||||
input_shape = (img_rows, img_cols, channels)
 | 
			
		||||
 | 
			
		||||
def create_own_base_model(input_shape):
 | 
			
		||||
    return keras.applications.vgg16.VGG16(include_top=False, input_tensor=Input(shape=input_shape), weights='imagenet',
 | 
			
		||||
            classes=1)
 | 
			
		||||
 | 
			
		||||
def create_base_model(input_shape):
 | 
			
		||||
    model_input = Input(shape=input_shape)
 | 
			
		||||
 | 
			
		||||
    embedding = Conv2D(32, kernel_size=(3, 3), input_shape=input_shape)(model_input)
 | 
			
		||||
    embedding = BatchNormalization()(embedding)
 | 
			
		||||
    embedding = Activation(activation='relu')(embedding)
 | 
			
		||||
    embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
 | 
			
		||||
    embedding = Conv2D(64, kernel_size=(3, 3))(embedding)
 | 
			
		||||
    embedding = BatchNormalization()(embedding)
 | 
			
		||||
    embedding = Activation(activation='relu')(embedding)
 | 
			
		||||
    embedding = MaxPooling2D(pool_size=(2, 2))(embedding)
 | 
			
		||||
    embedding = Flatten()(embedding)
 | 
			
		||||
    embedding = Dense(128)(embedding)
 | 
			
		||||
    embedding = BatchNormalization()(embedding)
 | 
			
		||||
    embedding = Activation(activation='relu')(embedding)
 | 
			
		||||
 | 
			
		||||
    return Model(model_input, embedding)
 | 
			
		||||
 | 
			
		||||
def create_own_head_model(embedding_shape):
 | 
			
		||||
    embedding_a = Input(shape=embedding_shape[1:])
 | 
			
		||||
    embedding_b = Input(shape=embedding_shape[1:])
 | 
			
		||||
 | 
			
		||||
    embedding_a_mod = Flatten()(embedding_a)
 | 
			
		||||
    embedding_a_mod = Dense(128)(embedding_a_mod)
 | 
			
		||||
    embedding_a_mod = BatchNormalization()(embedding_a_mod)
 | 
			
		||||
    embedding_a_mod = Activation(activation='relu')(embedding_a_mod)
 | 
			
		||||
 | 
			
		||||
    embedding_b_mod = Flatten()(embedding_b)
 | 
			
		||||
    embedding_b_mod = Dense(128)(embedding_b_mod)
 | 
			
		||||
    embedding_b_mod = BatchNormalization()(embedding_b_mod)
 | 
			
		||||
    embedding_b_mod = Activation(activation='relu')(embedding_b_mod)
 | 
			
		||||
 | 
			
		||||
    head = Concatenate()([embedding_a_mod, embedding_b_mod])
 | 
			
		||||
    head = Dense(8)(head)
 | 
			
		||||
    head = BatchNormalization()(head)
 | 
			
		||||
    head = Activation(activation='sigmoid')(head)
 | 
			
		||||
 | 
			
		||||
    head = Dense(1)(head)
 | 
			
		||||
    head = BatchNormalization()(head)
 | 
			
		||||
    head = Activation(activation='sigmoid')(head)
 | 
			
		||||
 | 
			
		||||
    return Model([embedding_a, embedding_b], head)
 | 
			
		||||
 | 
			
		||||
def create_head_model(embedding_shape):
 | 
			
		||||
    embedding_a = Input(shape=embedding_shape[1:])
 | 
			
		||||
    embedding_b = Input(shape=embedding_shape[1:])
 | 
			
		||||
 | 
			
		||||
    head = Concatenate()([embedding_a, embedding_b])
 | 
			
		||||
    head = Dense(8)(head)
 | 
			
		||||
    head = BatchNormalization()(head)
 | 
			
		||||
    head = Activation(activation='sigmoid')(head)
 | 
			
		||||
 | 
			
		||||
    head = Dense(1)(head)
 | 
			
		||||
    head = BatchNormalization()(head)
 | 
			
		||||
    head = Activation(activation='sigmoid')(head)
 | 
			
		||||
 | 
			
		||||
    return Model([embedding_a, embedding_b], head)
 | 
			
		||||
 | 
			
		||||
num_classes = 131
 | 
			
		||||
epochs = 2000
 | 
			
		||||
 | 
			
		||||
base_model = create_own_base_model(input_shape)
 | 
			
		||||
head_model = create_own_head_model(base_model.output_shape)
 | 
			
		||||
 | 
			
		||||
siamese_network = SiameseNetwork(base_model, head_model)
 | 
			
		||||
siamese_network.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
 | 
			
		||||
 | 
			
		||||
siamese_checkpoint_path = "../siamese_100x100_pretrainedb_vgg16" 
 | 
			
		||||
model_path = "/variables/variables"
 | 
			
		||||
siamese_callbacks = [
 | 
			
		||||
    # EarlyStopping(monitor='val_accuracy', patience=10, verbose=0),
 | 
			
		||||
    ModelCheckpoint(siamese_checkpoint_path, monitor='val_accuracy', save_best_only=True, verbose=0)
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
try:
 | 
			
		||||
    print("loading weights for model")
 | 
			
		||||
    siamese_network.load_weights(siamese_checkpoint_path+model_path)
 | 
			
		||||
except Exception as e:
 | 
			
		||||
    print(e)
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
siamese_network.fit(x_train, y_train,
 | 
			
		||||
                   validation_data=(x_test, y_test),
 | 
			
		||||
                   batch_size=45,
 | 
			
		||||
                   epochs=epochs,
 | 
			
		||||
                   callbacks=siamese_callbacks)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
score = siamese_network.evaluate(x_test, y_test, batch_size=60, verbose=0)
 | 
			
		||||
print('Test loss:', score[0])
 | 
			
		||||
print('Test accuracy:', score[1])
 | 
			
		||||
		Reference in New Issue
	
	Block a user