siamese/evaluate.py

26 lines
635 B
Python

import tensorflow.keras as keras
from PIL import Image
import numpy as np
import ipdb
class g:
def __init__(self, path):
self.image = np.asarray(Image.open(path).convert('RGB').resize((100, 100))) / 255
def show(self):
self.image.show()
def predict(image1, image2):
return model.predict([np.array([image2.image]), np.array([image1.image])])
model = keras.models.load_model('../siamese_100x100_pretrainedb_vgg16')
image1 = g('data/fruits/fruits-360/Training/Avocado/r_254_100.jpg')
image2 = g('data/fruits/fruits-360/Training/Avocado/r_250_100.jpg')
print(predict(image1, image2))
ipdb.set_trace()