Processing of complete image added
Actually not running - never did since Max did stuff :)
This commit is contained in:
parent
75e449b3c3
commit
462be02105
@ -1,15 +1,94 @@
|
||||
#include "AbstractionLayer_SURFFeatures.h"
|
||||
|
||||
// Parameters for algorithm:
|
||||
// maxCorners – The maximum number of corners to return. If there are more corners than that will be found, the strongest of them will be returned
|
||||
// qualityLevel – Characterizes the minimal accepted quality of image corners;
|
||||
// minDistance – The minimum possible Euclidean distance between the returned corners
|
||||
// mask – The optional region of interest. It will specify the region in which the corners are detected
|
||||
// blockSize – Size of the averaging block for computing derivative covariation
|
||||
// useHarrisDetector – Indicates, whether to use operator or cornerMinEigenVal()
|
||||
// k – Free parameter of Harris detector
|
||||
|
||||
#include <iostream>
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define PATH_FULL_PUZZLE "..\\..\\..\\puzzle_img\\puzzle1.jpg"
|
||||
#elif defined __unix__
|
||||
#define PATH_FULL_PUZZLE "..//..//..//puzzle_img//puzzle1.jpg"
|
||||
#elif defined __APPLE__
|
||||
#define PATH_FULL_PUZZLE "..//..//..//puzzle_img//puzzle1.jpg"
|
||||
#endif
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
bool AbstractionLayer_SURFFeatures::PreProcessing(coor mySize, const vector<Part*>* partArray)
|
||||
{
|
||||
InitialiseConstraintMatrixSize(mySize.col, mySize.row);
|
||||
std::vector< cv::Point2f > corners; // Variable to store corner-positions at
|
||||
|
||||
//TODO: Gesamtbild mit OpenCV einlesen
|
||||
//TODO: Gesamtbild anhand der berechneten Spalten und Zeilen auseinander schneiden (Sind in der puzzleKlasse gespeichert)
|
||||
//TODO: Features der einzelnen Felder des ausgeschnittenen Gesamtbildes in der m_constraintMatrix speichern
|
||||
// -- Complete puzzle image processing --
|
||||
// Load and resize image, so that number of parts in row and col fit in
|
||||
cv::Mat image = cv::imread(PATH_FULL_PUZZLE, IMREAD_GRAYSCALE);
|
||||
//cout << "PRE: " << image.cols << " x " << image.rows << endl;
|
||||
cv::resize(image, image, Size(int(ceil(double(image.cols)/mySize.col)*mySize.row), int(ceil(double(image.rows)/mySize.row)*mySize.row)));
|
||||
//cout << "POST: " << image.cols << " x " << image.rows << endl;
|
||||
|
||||
// Speichert die Features der linken oberen Ecke des Gesamtpuzzles in die constraintMatrix
|
||||
m_constraintMatrix[0][0].m_numberOfFeaturesDetected = 50;
|
||||
// PARAMETERS (for description see top of file)
|
||||
int maxCorners = 10000;
|
||||
double qualityLevel = 0.01;
|
||||
double minDistance = .5;
|
||||
cv::Mat mask;
|
||||
int blockSize = 3;
|
||||
bool useHarrisDetector = false;
|
||||
double k = 0.04;
|
||||
|
||||
// Detect features - this is where the magic happens
|
||||
cv::goodFeaturesToTrack( image, corners, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k );
|
||||
|
||||
int pieceColSize = image.cols/mySize.col;
|
||||
int pieceRowSize = image.rows/mySize.row;
|
||||
// Calculate number of features for each piece-position
|
||||
for( int i = 0; i < corners.size(); i++ ) // For all found features
|
||||
{
|
||||
// Increment number of found pieces
|
||||
m_constraintMatrix[int(ceil(corners[i].x/pieceColSize))-1][int(ceil(corners[i].y/pieceRowSize))-1].m_numberOfFeaturesDetected++;
|
||||
}
|
||||
|
||||
// Get minimal and maximal number of features -> TODO: Do in first loop to safe time?
|
||||
int minFeatures = int(m_constraintMatrix[0][0].m_numberOfFeaturesDetected);
|
||||
int maxFeatures = int(m_constraintMatrix[0][0].m_numberOfFeaturesDetected);
|
||||
for( int j = 0; j < mySize.row ; j++ )
|
||||
{
|
||||
for( int i = 0; i < mySize.col; i++ )
|
||||
{
|
||||
if(m_constraintMatrix[i][j].m_numberOfFeaturesDetected < minFeatures) minFeatures = int(m_constraintMatrix[i][j].m_numberOfFeaturesDetected);
|
||||
if(m_constraintMatrix[i][j].m_numberOfFeaturesDetected > maxFeatures) maxFeatures = int(m_constraintMatrix[i][j].m_numberOfFeaturesDetected);
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate percentage from 0 to 100% with numberOfFeatures and safe it
|
||||
for( int j = 0; j < mySize.row ; j++ )
|
||||
{
|
||||
for( int i = 0; i < mySize.col; i++ )
|
||||
{
|
||||
m_constraintMatrix[i][j].m_numberOfFeaturesDetected = (m_constraintMatrix[i][j].m_numberOfFeaturesDetected - minFeatures) / (maxFeatures - minFeatures);
|
||||
//cout << fixed << m_constraintMatrix[i][j].m_numberOfFeaturesDetected << " ";
|
||||
}
|
||||
//cout << endl;
|
||||
}
|
||||
|
||||
// DEBUG - Display image
|
||||
/*for( size_t i = 0; i < corners.size(); i++ )
|
||||
{
|
||||
cv::circle( image, corners[i], 2, cv::Scalar( 255. ), -1 );
|
||||
}
|
||||
cv::namedWindow( "Output", CV_WINDOW_AUTOSIZE );
|
||||
cv::imshow( "Output", image );
|
||||
|
||||
cv::waitKey(0);*/
|
||||
|
||||
//TODO: Alle Bilder mit OpenCV öffnen und deren erkannten Features in SURFFeature_Properties der Part-Klasse speichern
|
||||
// Speichert die erkannten Features des jeweiligen Bilds im partArray an der Stelle (->at(xxx))
|
||||
|
@ -9,7 +9,7 @@ public:
|
||||
AbstractionLayer_SURFFeatures_Properties() {}
|
||||
|
||||
private:
|
||||
uint16_t m_numberOfFeaturesDetected;
|
||||
float m_numberOfFeaturesDetected;
|
||||
friend class AbstractionLayer_SURFFeatures;
|
||||
};
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user