dispatcher funktioniert halb, es fehlt noch 'setflag' und average quality calculation

This commit is contained in:
Raphael Maenle 2018-01-07 14:16:57 +01:00
parent 882737bd30
commit fc9743a77a
5 changed files with 89 additions and 93 deletions

View File

@ -44,16 +44,15 @@ bool AbstractionLayer_1::PreProcessing(coor mySize, const vector<Part*>* partAr
//it through qualityVector and removes all that do not trigger PlaceOfPartGood //it through qualityVector and removes all that do not trigger PlaceOfPartGood
bool AbstractionLayer_1::EvaluateQuality (const coor constraintCoordinate, qualityVector& qVector) bool AbstractionLayer_1::EvaluateQuality (const coor constraintCoordinate, qualityVector& qVector)
{ {
int j=0;
for(int i = 0;i<qVector.size();i++) for(int i = 0;i<qVector.size();i++)
{ {
j++;
cout <<"qVector size: " << qVector.size() << endl;
cout << "ID: " << qVector[i].second->GetPartID() << ", rotations: " << (int)qVector[i].second->GetNumOfRotations() << endl;
qVector[i].second->print();
if(PlaceOfPartGood(constraintCoordinate, qVector[i].second->m_a1.m_connections)) if(PlaceOfPartGood(constraintCoordinate, qVector[i].second->m_a1.m_connections))
{
qVector[i].first=1;
continue; continue;
qVector.erase(qVector.begin()+(i--)); cout << endl << endl; }
qVector[i].first=0;
} }
} }

View File

@ -87,3 +87,8 @@ void Puzzle::createBox(){
} }
} }
bool Puzzle::allSet() {
//TODO! check if all puzzlepieces are set
return false;
}

View File

@ -1,28 +1,28 @@
#include "../../header.h" #include "../../header.h"
void status(vector<LogEntry>& log, vector<Part*>& p_Box); void status(vector<LogEntry>& log, vector<Part*>& p_Box);
bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector* cqVector); bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector& cqVector);
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth); void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth);
void sort(vector<LogEntry>& log); void sort(vector<LogEntry>& log);
void cut(vector<LogEntry>& log, Part* cutID); void cut(vector<LogEntry>& log, int& cutID);
float capLogElements(vector<LogEntry>& log); float capLogElements(vector<LogEntry>& log);
void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector* cqVector); void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector& cqVector);
bool next(vector<LogEntry>& log, vector<Part*>& p_Box,Puzzle& puzzleMat) bool next(vector<LogEntry>& log,Puzzle& puzzleMat)
{ {
//last log element is set, create new log element or log not yet started //last log element is set, create new log element or log not yet started
if(!(log.size()) || log.back().isSet()) if(!(log.size()) || log.back().isSet())
{ {
if(!(p_Box.size())) return false; //puzzle solved if((puzzleMat.allSet())) return false; //puzzle solved
else createNextLogElement(log,p_Box,puzzleMat); else createNextLogElement(log,puzzleMat);
} }
//last log element is empty, backtrack //last log element is empty, backtrack
else if(!(log.back().PieceCollector.size())) backtrack(log,p_Box,puzzleMat); else if(!(log.back().PieceCollector.size())) backtrack(log,puzzleMat);
//case last log element has multiple entries //case last log element has multiple entries
else if(log.back().PieceCollector.size() > 1) else if(log.back().PieceCollector.size() > 1)
{ {
//moreLayers is 0, setbest is 1 //moreLayers is 0, setbest is 1
if (SetBestOrMoreLayersArithmetical(log, &puzzleMat.combinedQualityVector)) setsolution(log, p_Box, puzzleMat); if (SetBestOrMoreLayersArithmetical(log, puzzleMat.combinedQualityVector)) setsolution(log, puzzleMat);
else solve(log, p_Box, puzzleMat); else solve(log, puzzleMat);
} }
//case last log exactly one solution //case last log exactly one solution
else if(log.back().PieceCollector.size() == 1) else if(log.back().PieceCollector.size() == 1)
@ -32,31 +32,31 @@ bool next(vector<LogEntry>& log, vector<Part*>& p_Box,Puzzle& puzzleMat)
if(log.back().abstractionLevel < 2)//do 2 at least two best abstractions to check if part is okay if(log.back().abstractionLevel < 2)//do 2 at least two best abstractions to check if part is okay
{ {
log.back().advance(); log.back().advance();
solve(log,p_Box,puzzleMat); solve(log,puzzleMat);
} }
else else
setsolution(log,p_Box,puzzleMat); setsolution(log,puzzleMat);
} }
else else
setsolution(log,p_Box,puzzleMat); setsolution(log,puzzleMat);
} }
return true; return true;
} }
void createNextLogElement(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat) void createNextLogElement(vector<LogEntry>& log, Puzzle& puzzleMat)
{ {
log.emplace_back(LogEntry(coor(0, 0))); log.emplace_back(LogEntry(coor(0, 0)));
log.back().myCoor = calculateNextCoor(log, p_Box,puzzleMat); log.back().myCoor = calculateNextCoor(log, puzzleMat);
puzzleMat.dp.DestructionOfSurrounding(log.back().myCoor);//calculate dp from surrounding puzzleMat.dp.DestructionOfSurrounding(log.back().myCoor);//calculate dp from surrounding
for(auto it:p_Box) for(auto it:puzzleMat.p_myBox)
log.back().PieceCollector.emplace_back(pair<float,Part*>(0,it)); log.back().PieceCollector.emplace_back(pair<float,Part*>(0,it));
cout << p_Box.size() << endl; cout << puzzleMat.p_myBox.size() << endl;
cout << log.back().PieceCollector.size() << endl; cout << log.back().PieceCollector.size() << endl;
solve(log, p_Box,puzzleMat); solve(log,puzzleMat);
} }
coor calculateNextCoor(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat) coor calculateNextCoor(vector<LogEntry>& log, Puzzle& puzzleMat)
{ {
//level 1: //level 1:
//go left to right, then increase current row //go left to right, then increase current row
@ -88,23 +88,22 @@ void solve(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
break; break;
} }
capLogElements(log);
float worth = capLogElements(log); float worth = capLogElements(log);
calculateTrueDestructionPower(log,puzzleMat, worth); calculateTrueDestructionPower(log,puzzleMat, worth);
CalculateNewCombinedQuality(log, log.back().PieceCollector, &puzzleMat.combinedQualityVector); CalculateNewCombinedQuality(log, log.back().PieceCollector, puzzleMat.combinedQualityVector);
} }
//removes from box and makes log "set" //removes from box and makes log "set"
void setsolution(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat) void setsolution(vector<LogEntry>& log, Puzzle& puzzleMat)
{ {
//advance number of randomed part count //advance number of randomed part count
if(log.back().PieceCollector.size()>1) log.back().advanceRandomed(); if(log.back().PieceCollector.size()>1) log.back().advanceRandomed();
//remove first element in last logelement from box //remove first element in last logelement from box
for(int i=0;i<p_Box.size();) for(int i=0;i<puzzleMat.p_myBox.size();)
if(p_Box[i]==log.back().PieceCollector.begin()->second)//mach ich das richtig so?! if(puzzleMat.p_myBox[i]==log.back().PieceCollector.begin()->second)//mach ich das richtig so?!
p_Box.erase(p_Box.begin()+i); puzzleMat.p_myBox.erase(puzzleMat.p_myBox.begin()+i);
else else
i++; i++;
@ -112,18 +111,18 @@ void setsolution(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
log.back().Set(); log.back().Set();
} }
bool backtrack(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat) bool backtrack(vector<LogEntry>& log, Puzzle& puzzleMat)
{ {
//if more pieces possible, take next piece //if more pieces possible, take next piece
if((log.back().PieceCollector.size())>1) if((log.back().PieceCollector.size())>1)
{ {
p_Box.push_back(log.back().PieceCollector.begin()->second); puzzleMat.p_myBox.push_back(log.back().PieceCollector.begin()->second);
log.back().PieceCollector.erase(log.back().PieceCollector.begin()); log.back().PieceCollector.erase(log.back().PieceCollector.begin());
if(log.back().PieceCollector.size()==1) if(log.back().PieceCollector.size()==1)
log.back().decreaseRandomed(); log.back().decreaseRandomed();
setsolution(log,p_Box,puzzleMat); setsolution(log,puzzleMat);
return true; return true;
} }
@ -132,13 +131,13 @@ bool backtrack(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{ {
puzzleMat.removeConstrains(log.back().myCoor); //this should remove constraints from all layers puzzleMat.removeConstrains(log.back().myCoor); //this should remove constraints from all layers
if((log.back().PieceCollector.size())) if((log.back().PieceCollector.size()))
p_Box.emplace_back(log.back().PieceCollector.begin()->second); puzzleMat.p_myBox.emplace_back(log.back().PieceCollector.begin()->second);
log.pop_back(); log.pop_back();
backtrack(log,p_Box,puzzleMat); backtrack(log,puzzleMat);
} }
} }
void status(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat) void status(vector<LogEntry>& log, Puzzle& puzzleMat)
{ {
cout << "----------------------------" << endl; cout << "----------------------------" << endl;
cout << "status:" << endl; cout << "status:" << endl;
@ -156,7 +155,7 @@ void status(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
cout << endl; cout << endl;
cout << "Box:" << endl; cout << "Box:" << endl;
cout << "size: " << p_Box.size() << endl; cout << "size: " << puzzleMat.p_myBox.size() << endl;
cout << "Puzzle:" << endl; cout << "Puzzle:" << endl;
puzzleMat.printPuzzle(); puzzleMat.printPuzzle();
@ -177,86 +176,77 @@ float capLogElements(vector<LogEntry>& log)
// Till Now only ground structure -> incorrect variable ans vector names // Till Now only ground structure -> incorrect variable ans vector names
double limit = 0.6; double limit = 0.6;
double diff = 0; double diff = 0;
int id=0;
double maxdiff = 0; double maxdiff = 0;
int vectorsizeBefore = 0; int vectorsizeBefore = 0;
int vectorsizeAfter = 0; int vectorsizeAfter = 0;
double destroyed = 0; // destroyed parts in % double destroyed = 0; // destroyed parts in %
double worth = 0;
vectorsizeBefore = log.back().PieceCollector.size(); vectorsizeBefore = log.back().PieceCollector.size();
sort(log); // Sort the vector after probabilities sort(log.back().PieceCollector.begin(),log.back().PieceCollector.end()); // Sort the vector after probabilities
qualityVector::const_iterator idxcut =log.back().PieceCollector.begin(); reverse(log.back().PieceCollector.begin(),log.back().PieceCollector.end());
for(;idxcut !=log.back().PieceCollector.end();idxcut++) for(;id<log.back().PieceCollector.size();id++)
if(idxcut->first < limit)
break;
auto newidxcut = idxcut;
while(idxcut != log.back().PieceCollector.end())
{ {
diff = idxcut->second - (++idxcut)->second; if(log.back().PieceCollector[id].first < limit)
break;
}
int newid = --id; //set to the one just over limit
while(id<log.back().PieceCollector.size()-1) //find maximum difference in function
{
diff = log.back().PieceCollector[id].first - log.back().PieceCollector[++id].first;
if(diff > maxdiff) if(diff > maxdiff)
{ {
maxdiff = diff; maxdiff = diff;
newidxcut = idxcut; newid = id;
} }
} }
cut(log,newidxcut->second); cut(log,newid);
vectorsizeAfter = log.back().PieceCollector.size(); vectorsizeAfter = log.back().PieceCollector.size();
destroyed = ((double)vectorsizeBefore - (double)vectorsizeAfter) / (double)vectorsizeBefore;
destroyed = (vectorsizeBefore - vectorsizeAfter) / vectorsizeBefore;
return (float)sqrt(destroyed*maxdiff); return (float)sqrt(destroyed*maxdiff);
} }
void sort(vector<LogEntry>& log)
{
//this does all the sorting that needs to happen
//saddly this is a false statement
//the monkey desperately tried to hold on to the flying dorm room.
}
qualityVector::iterator FindPartInLog(vector<LogEntry>& log, Part* wishedPartPointer) qualityVector::iterator FindPartInLog(vector<LogEntry>& log, Part* wishedPartPointer)
{ {
qualityVector::iterator partOnPositionIterator = log.back().PieceCollector.begin(); qualityVector::iterator partOnPositionIterator = log.back().PieceCollector.begin();
while (partOnPositionIterator != log.back().PieceCollector.end()) while (partOnPositionIterator != log.back().PieceCollector.end())
{ {
if(partOnPositionIterator.base()->second == wishedPartPointer) if(partOnPositionIterator->second == wishedPartPointer)
{
break; break;
}
else else
{
partOnPositionIterator++; partOnPositionIterator++;
}
} }
return partOnPositionIterator; return partOnPositionIterator;
} }
void cut(vector<LogEntry>& log, Part* cutID) void cut(vector<LogEntry>& log, int& cutID)
{ {
auto it = FindPartInLog(log, cutID); while(cutID<log.back().PieceCollector.size())
while(it != log.back().PieceCollector.end()) log.back().PieceCollector.erase(log.back().PieceCollector.begin()+cutID);
log.back().PieceCollector.erase(it++);
} }
// -------------------- Part David: SetBest and CalculateCombinedQuality -------------------- // -------------------- Part David: SetBest and CalculateCombinedQuality --------------------
// pruefen, ob mehr als X combinedQualities ueber dem Grenzwert sind. Wenn nur noch Y Pieces ueber bleiben, dann setBest! // pruefen, ob mehr als X combinedQualities ueber dem Grenzwert sind. Wenn nur noch Y Pieces ueber bleiben, dann setBest!
// geeignete Threshold values muessen noch getestet werden // geeignete Threshold values muessen noch getestet werden
bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector* cqVector) bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector& cqVector)
{ {
float threshold = 1.0, tempBest = 0.0; float threshold = 1.0, tempBest = 0.0;
unsigned int countHigherThreshold = 0; unsigned int countHigherThreshold = 0;
if(cqVector->empty()) if(cqVector.empty())
{ {
cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack? cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack?
return false; // Warning: can only return true or false. What return for error? return false; // Warning: can only return true or false. What return for error?
@ -274,18 +264,18 @@ bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector* cqVec
} }
// check Quality of current Puzzle Piece in combinedQualityVector with Threshold value // check Quality of current Puzzle Piece in combinedQualityVector with Threshold value
for (qualityVector::iterator it = cqVector->begin(); it != cqVector->end(); it++) for (qualityVector::iterator it = cqVector.begin(); it != cqVector.end(); it++)
{ {
if ((cqVector->back().first / log.back().abstractionLevel) >= threshold) // const threshold values if ((cqVector.back().first / log.back().abstractionLevel) >= threshold) // const threshold values
{ {
// count how many Pieces are greater than the threshold value // count how many Pieces are greater than the threshold value
countHigherThreshold++; countHigherThreshold++;
} }
else else
{ {
if ((cqVector->back().first / log.back().abstractionLevel) > tempBest) if ((cqVector.back().first / log.back().abstractionLevel) > tempBest)
{ {
tempBest = cqVector->back().first; // could be used, for additional constraints tempBest = cqVector.back().first; // could be used, for additional constraints
} }
} }
} }
@ -304,7 +294,7 @@ bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector* cqVec
// jede Quality vom Piececollector zu einer combinedQuality aufsummieren (von jedem bereits verwendetem Layer) // jede Quality vom Piececollector zu einer combinedQuality aufsummieren (von jedem bereits verwendetem Layer)
// Achtung: Es muss noch der Mittelwert gebildet werden => SetBestOrMoreLayersArithmetical // Achtung: Es muss noch der Mittelwert gebildet werden => SetBestOrMoreLayersArithmetical
void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector* cqVector) void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector& cqVector)
{ {
bool summarizedVectors = false; bool summarizedVectors = false;
int countSummarizedVectors = 0; int countSummarizedVectors = 0;
@ -315,24 +305,24 @@ void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector,
cerr << "qualityVector is empty." << endl; // should not be empty => backtrack? cerr << "qualityVector is empty." << endl; // should not be empty => backtrack?
return; return;
} }
else if(cqVector->empty()) else if(cqVector.empty())
{ {
cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack? cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack?
return; return;
} }
else else
{ {
for (unsigned int i = 0; i < cqVector->size(); i++) for (unsigned int i = 0; i < cqVector.size(); i++)
{ {
summarizedVectors = false; summarizedVectors = false;
for (unsigned int j = 0; j < qVector.size(); j++) for (unsigned int j = 0; j < qVector.size(); j++)
{ {
// search same PuzzlePart of qualityVector and combinedQualityVector // search same PuzzlePart of qualityVector and combinedQualityVector
if (&cqVector->at(i).second == &qVector.at(j).second) if (&cqVector.at(i).second == &qVector.at(j).second)
{ {
// sum Quality of PieceCollector (qualityVector) to combinedQualityVector // sum Quality of PieceCollector (qualityVector) to combinedQualityVector
cqVector->at(j).first += qVector.at(i).first; cqVector.at(j).first += qVector.at(i).first;
countSummarizedVectors++; countSummarizedVectors++;
summarizedVectors = true; summarizedVectors = true;
continue; // skip remaining for loop => save time! continue; // skip remaining for loop => save time!
@ -346,16 +336,16 @@ void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector,
//cqVector->erase(cqVector->begin()+i); //cqVector->erase(cqVector->begin()+i);
// efficient way, but no sorted cqVector => wayne // efficient way, but no sorted cqVector => wayne
swap(cqVector->at(i), cqVector->back()); swap(cqVector.at(i), cqVector.back());
cqVector->pop_back(); cqVector.pop_back();
} }
} }
// cqVector should have the same size now as newest qVector // cqVector should have the same size now as newest qVector
if (cqVector->size() != qVector.size()) if (cqVector.size() != qVector.size())
{ {
cerr << "Size of combinedQualityVector doenst match with size of qualityVector!" << endl; cerr << "Size of combinedQualityVector doenst match with size of qualityVector!" << endl;
cout << "Size of combinedQualityVector: " << cqVector->size() << endl; cout << "Size of combinedQualityVector: " << cqVector.size() << endl;
cout << "Size of qualityVector: " << qVector.size() << endl; cout << "Size of qualityVector: " << qVector.size() << endl;
cout << "Size of countSummarizedVectors: " << countSummarizedVectors << endl; cout << "Size of countSummarizedVectors: " << countSummarizedVectors << endl;
} }

View File

@ -65,6 +65,8 @@ public:
void createBox(); void createBox();
void createp_box(); void createp_box();
bool allSet();
vector<Part> myBox; vector<Part> myBox;
vector<Part*> p_myBox; vector<Part*> p_myBox;
@ -76,11 +78,11 @@ private:
unsigned int cols; unsigned int cols;
}; };
bool next(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat); bool next(vector<LogEntry>& log,Puzzle& puzzleMat);
coor calculateNextCoor(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat); coor calculateNextCoor(vector<LogEntry>& log, Puzzle& puzzleMat);
void solve(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat); void solve(vector<LogEntry>& log, Puzzle& puzzleMat);
void setsolution(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat); void setsolution(vector<LogEntry>& log, Puzzle& puzzleMat);
bool backtrack(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat); bool backtrack(vector<LogEntry>& log,Puzzle& puzzleMat);
void createNextLogElement(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat); void createNextLogElement(vector<LogEntry>& log,Puzzle& puzzleMat);

View File

@ -18,7 +18,7 @@ int main()
//puzzleMat.createRandomBox(); //puzzleMat.createRandomBox();
puzzleMat.a1.printConstraintMatrix(); puzzleMat.a1.printConstraintMatrix();
while(next(log, puzzleMat.p_myBox,puzzleMat)); while(next(log, puzzleMat));
puzzleMat.printPuzzle(); puzzleMat.printPuzzle();
return 0; return 0;