ros wrapper for hailo inference
- hailo infer node subscribes to an image topic - preprocess image via PIL to the desired image parameters (hard- coded currently for yolov5m) - processes inference on hailo chip - post process and prints bounding boxes into terminal
This commit is contained in:
parent
43d02593f2
commit
810f412821
32
image_publisher.py
Normal file
32
image_publisher.py
Normal file
@ -0,0 +1,32 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from std_msgs.msg import String
|
||||
from cv_bridge import CvBridge
|
||||
from sensor_msgs.msg import Image
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
class MinimalPublisher(Node):
|
||||
def __init__(self):
|
||||
super().__init__('minimal_publisher')
|
||||
self.publisher_ = self.create_publisher(Image, '/camera/color/image_raw', 10)
|
||||
timer_period = 0.5 # seconds
|
||||
self.timer = self.create_timer(timer_period, self.timer_callback)
|
||||
self.i = 0
|
||||
self.im_list = []
|
||||
self.cv_image = cv2.imread('data/DJI_0001_0001.jpg') ### an RGB image
|
||||
self.bridge = CvBridge()
|
||||
|
||||
def timer_callback(self):
|
||||
self.publisher_.publish(self.bridge.cv2_to_imgmsg(np.array(self.cv_image), "bgr8"))
|
||||
self.get_logger().info('Publishing an image')
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
minimal_publisher = MinimalPublisher()
|
||||
rclpy.spin(minimal_publisher)
|
||||
minimal_publisher.destroy_node()
|
||||
rclpy.shutdown()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
503
ros_inference.py
Normal file
503
ros_inference.py
Normal file
@ -0,0 +1,503 @@
|
||||
import json
|
||||
import os
|
||||
import io
|
||||
import time
|
||||
|
||||
from PIL import Image
|
||||
from threading import Thread
|
||||
|
||||
import ipdb
|
||||
|
||||
from detection_tools.utils.visualization_utils import \
|
||||
visualize_boxes_and_labels_on_image_array
|
||||
|
||||
from hailo_platform import (ConfigureParams, FormatType, HEF,
|
||||
HailoStreamInterface, InferVStreams,
|
||||
InputVStreamParams, OutputVStreamParams,
|
||||
PcieDevice)
|
||||
|
||||
import numpy as np
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow.image import combined_non_max_suppression
|
||||
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
|
||||
from std_msgs.msg import String as StringMsg
|
||||
from sensor_msgs.msg import Image as ImageMsg
|
||||
|
||||
from cv_bridge import CvBridge
|
||||
|
||||
# Collect images from data files
|
||||
|
||||
|
||||
class ImageMeta:
|
||||
def __init__(self, image_height, image_width, channels):
|
||||
self.image_height = image_height
|
||||
self.image_width = image_width
|
||||
self.channels = channels
|
||||
|
||||
|
||||
class DataHandler:
|
||||
def __init__(self, path, image_meta):
|
||||
self.images_path = path
|
||||
self.image_meta = image_meta
|
||||
|
||||
def load_data(self, preprocess_fn):
|
||||
names = []
|
||||
|
||||
images_list = [img_name for img_name in os.listdir(self.images_path)
|
||||
if os.path.splitext(os.path.join(self.images_path, img_name))[1] == '.jpg']
|
||||
dataset = np.zeros((1, self.image_meta.image_height,
|
||||
self.image_meta.image_width,
|
||||
self.image_meta.channels),
|
||||
dtype=np.float32)
|
||||
|
||||
for idx, img_name in enumerate(images_list):
|
||||
img = Image.open(os.path.join(self.images_path, img_name))
|
||||
img_preproc = preprocess_fn(img)
|
||||
dataset[idx, :, :, :] = np.array(img_preproc)
|
||||
names.append(img_name)
|
||||
break
|
||||
|
||||
self.dataset = dataset
|
||||
self.names = names
|
||||
|
||||
|
||||
def _get_coco_labels(self):
|
||||
coco_names = json.load(open(os.path.join(os.path.dirname(__file__), 'coco_names.json')))
|
||||
coco_names = {int(k): {'id': int(k), 'name': str(v)} for (k, v) in coco_names.items()}
|
||||
return coco_names
|
||||
|
||||
|
||||
def get_labels(self, path):
|
||||
filename = os.path.join(os.path.dirname(__file__), path)
|
||||
names = json.load(open(filename))
|
||||
names = {int(k): {'id': int(k), 'name': str(v)} for (k, v) in names.items()}
|
||||
return names
|
||||
|
||||
def get_labels(path):
|
||||
filename = os.path.join(os.path.dirname(__file__), path)
|
||||
names = json.load(open(filename))
|
||||
names = {int(k): {'id': int(k), 'name': str(v)} for (k, v) in names.items()}
|
||||
return names
|
||||
|
||||
COCO_17_14 = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9,
|
||||
10: 10, 11: 11, 12: 13, 13: 14, 14: 15, 15: 16, 16: 17, 17: 18,
|
||||
18: 19, 19: 20, 20: 21, 21: 22, 22: 23, 23: 24, 24: 25, 25: 27,
|
||||
26: 28, 27: 31, 28: 32, 29: 33, 30: 34, 31: 35, 32: 36, 33: 37,
|
||||
34: 38, 35: 39, 36: 40, 37: 41, 38: 42, 39: 43, 40: 44, 41: 46,
|
||||
42: 47, 43: 48, 44: 49, 45: 50, 46: 51, 47: 52, 48: 53, 49: 54,
|
||||
50: 55, 51: 56, 52: 57, 53: 58, 54: 59, 55: 60, 56: 61, 57: 62,
|
||||
58: 63, 59: 64, 60: 65, 61: 67, 62: 70, 63: 72, 64: 73, 65: 74,
|
||||
66: 75, 67: 76, 68: 77, 69: 78, 70: 79, 71: 80, 72: 81, 73: 82,
|
||||
74: 84, 75: 85, 76: 86, 77: 87, 78: 88, 79: 89, 80: 90}
|
||||
|
||||
|
||||
class YoloProcessing:
|
||||
def __init__(self, imageMeta, classes):
|
||||
self.output_height = imageMeta.image_height
|
||||
self.output_width = imageMeta.image_width
|
||||
self.classes = classes
|
||||
|
||||
def preproc(self, image, resize_side=256):
|
||||
|
||||
'''
|
||||
imagenet-standard: aspect-preserving resize to 256px smaller-side,
|
||||
then central-crop to 224px
|
||||
'''
|
||||
new_width = int(image.width/image.height*resize_side)
|
||||
new_height = resize_side
|
||||
x, y = (new_width-self.output_width)/2, 0
|
||||
|
||||
# Select area to crop
|
||||
area = (x, y, x+self.output_width, y+self.output_height)
|
||||
|
||||
# Crop, show, and save image
|
||||
cropped_img = image.resize((new_width, new_height)).crop(area)
|
||||
return cropped_img
|
||||
|
||||
# 20 x 20 -> 32
|
||||
# stride = 32
|
||||
def yolo_postprocess_numpy(self, net_out, anchors_for_stride, stride):
|
||||
"""
|
||||
net_out is shape: [N, 19, 19, 255] or [N, 38, 38, 255] or [N, 76, 76, 255]
|
||||
first we reshape it to be as in gluon and then follow gluon's shapes.
|
||||
output_ind = 0 for stride 32, 1 for stride 16, 2 for stride 8.
|
||||
"""
|
||||
|
||||
# net_out = net_out.astype(np.float32) / 256
|
||||
num_classes = 4
|
||||
BS = net_out.shape[0] # batch size
|
||||
H = net_out.shape[1]
|
||||
W = net_out.shape[2]
|
||||
|
||||
num_anchors = anchors_for_stride.size // 2 # 2 params for each anchor.
|
||||
num_pred = 1 + 4 + num_classes # 2 box centers, 2 box scales, 1 objness, num_classes class scores
|
||||
alloc_size = (128, 128)
|
||||
|
||||
grid_x = np.arange(alloc_size[1])
|
||||
grid_y = np.arange(alloc_size[0])
|
||||
grid_x, grid_y = np.meshgrid(grid_x, grid_y) # dims [128,128], [128,128]
|
||||
|
||||
offsets = np.concatenate((grid_x[:, :, np.newaxis], grid_y[:, :, np.newaxis]), axis=-1) # dim [128,128,2]
|
||||
offsets = np.expand_dims(np.expand_dims(offsets, 0), 0) # dim [1,1,128,128,2]
|
||||
|
||||
pred = net_out.transpose((0, 3, 1, 2)) # now dims are: [N,C,H,W] as in Gluon.
|
||||
pred = np.reshape(pred, (BS, num_anchors * num_pred, -1)) # dim [N, 255, HxW]
|
||||
# dim [N, 361, 255], we did it so that the 255 be the last dim and can be reshaped.
|
||||
pred = pred.transpose((0, 2, 1))
|
||||
pred = np.reshape(pred, (BS, -1, num_anchors, num_pred)) # dim [N, HxW, 3, 85]]
|
||||
|
||||
raw_box_centers = pred[:, :, :, 0:2] # dim [N, HxW, 3, 2]
|
||||
raw_box_scales = pred[:, :, :, 2:4] # dim [N,HxW, 3, 2]
|
||||
|
||||
objness = pred[:, :, :, 4:5] # dim [N, HxW, 3, 1]
|
||||
class_pred = pred[:, :, :, 5:] # dim [N, HxW, 3, 80]
|
||||
offsets = offsets[:, :, :H, :W, :] # dim [1, 1, H, W, 2]
|
||||
offsets = np.reshape(offsets, (1, -1, 1, 2)) # dim [1, HxW, 1, 2]
|
||||
box_centers, box_scales, confidence, class_pred = self._yolo5_decode(
|
||||
raw_box_centers=raw_box_centers,
|
||||
raw_box_scales=raw_box_scales,
|
||||
objness=objness,
|
||||
class_pred=class_pred,
|
||||
anchors_for_stride=anchors_for_stride,
|
||||
offsets=offsets,
|
||||
stride=stride)
|
||||
|
||||
class_score = class_pred * confidence # dim [N, HxW, 3, 80]
|
||||
wh = box_scales / 2.0
|
||||
# dim [N, HxW, 3, 4]. scheme xmin, ymin, xmax, ymax
|
||||
bbox = np.concatenate((box_centers - wh, box_centers + wh), axis=-1)
|
||||
|
||||
detection_boxes = np.reshape(bbox, (BS, -1, 1, 4)) # dim [N, num_detections, 1, 4]
|
||||
detection_scores = np.reshape(class_score, (BS, -1, num_classes)) # dim [N, num_detections, 80]
|
||||
|
||||
# switching scheme from xmin, ymin, xmanx, ymax to ymin, xmin, ymax, xmax:
|
||||
detection_boxes_tmp = np.zeros(detection_boxes.shape)
|
||||
detection_boxes_tmp[:, :, :, 0] = detection_boxes[:, :, :, 1]
|
||||
detection_boxes_tmp[:, :, :, 1] = detection_boxes[:, :, :, 0]
|
||||
detection_boxes_tmp[:, :, :, 2] = detection_boxes[:, :, :, 3]
|
||||
detection_boxes_tmp[:, :, :, 3] = detection_boxes[:, :, :, 2]
|
||||
|
||||
detection_boxes = detection_boxes_tmp # now scheme is: ymin, xmin, ymax, xmax
|
||||
return detection_boxes.astype(np.float32), detection_scores.astype(np.float32)
|
||||
|
||||
def _yolo5_decode(self, raw_box_centers, raw_box_scales, objness, class_pred, anchors_for_stride, offsets, stride):
|
||||
box_centers = (raw_box_centers * 2. - 0.5 + offsets) * stride
|
||||
box_scales = (raw_box_scales * 2) ** 2 * anchors_for_stride # dim [N, HxW, 3, 2]
|
||||
return box_centers, box_scales, objness, class_pred
|
||||
|
||||
|
||||
def process_to_picture(self, endnodes, data):
|
||||
logits = self.postprocessing(endnodes)
|
||||
self.visualize_image(logits, data)
|
||||
|
||||
|
||||
def visualize_image(self, logits, data):
|
||||
labels = data.get_labels("data/daria_labels.json")
|
||||
image = visualize_boxes_and_labels_on_image_array(
|
||||
data.dataset[0],
|
||||
logits['detection_boxes'].numpy()[0],
|
||||
logits['detection_classes'][0],
|
||||
logits['detection_scores'].numpy()[0],
|
||||
labels,
|
||||
use_normalized_coordinates=True,
|
||||
max_boxes_to_draw=100,
|
||||
min_score_thresh=.5,
|
||||
agnostic_mode=False,
|
||||
line_thickness=4)
|
||||
|
||||
Image.fromarray(np.uint8(image)).save('/home/maintenance/test.png')
|
||||
print("Successfully saved image")
|
||||
|
||||
|
||||
def postprocessing(self, endnodes):
|
||||
"""
|
||||
endnodes is a list of 3 output tensors:
|
||||
endnodes[0] - stride 32 of input
|
||||
endnodes[1] - stride 16 of input
|
||||
endnodes[2] - stride 8 of input
|
||||
Returns:
|
||||
a tensor with dims: [BS, Total_num_of_detections_in_image, 6]
|
||||
where:
|
||||
total_num_of_detections_in_image = H*W*((1/32^2) + (1/16^2) + (1/8^2))*num_anchors*num_classes,
|
||||
with H, W as input dims.
|
||||
If H=W=608, num_anchors=3, num_classes=80 (coco 2017), we get:
|
||||
total_num_of_detections = 1819440 ~ 1.8M detections per image for the NMS
|
||||
"""
|
||||
H_input = 640
|
||||
W_input = 640
|
||||
anchors_list = [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]]
|
||||
# TODO make prettier
|
||||
strides = [8, 16, 32]
|
||||
|
||||
for output_ind, output_branch in enumerate(endnodes): # iterating over the output layers:
|
||||
stride = strides[::-1][output_ind]
|
||||
anchors_for_stride = np.array(anchors_list[::-1][output_ind])
|
||||
anchors_for_stride = np.reshape(anchors_for_stride, (1, 1, -1, 2)) # dim [1, 1, 3, 2]
|
||||
|
||||
detection_boxes, detection_scores = self.yolo_postprocess_numpy(output_branch,
|
||||
anchors_for_stride,
|
||||
stride)
|
||||
|
||||
# detection_boxes is a [BS, num_detections, 1, 4] tensor, detection_scores is a
|
||||
# [BS, num_detections, num_classes] tensor
|
||||
detection_boxes = detection_boxes / H_input # normalization of box coordinates to 1
|
||||
BS = endnodes[0].shape[0]
|
||||
H = H_input // stride
|
||||
W = W_input // stride
|
||||
num_anchors = anchors_for_stride.size // 2
|
||||
num_detections = H * W * num_anchors
|
||||
# detection_boxes.set_shape((BS, num_detections, 1, 4))
|
||||
# detection_scores.set_shape((BS, num_detections, num_classes))
|
||||
# concatenating the detections from the different output layers:
|
||||
if output_ind == 0:
|
||||
detection_boxes_full = detection_boxes
|
||||
detection_scores_full = detection_scores
|
||||
else:
|
||||
detection_boxes_full = tf.concat([detection_boxes_full, detection_boxes], axis=1)
|
||||
detection_scores_full = tf.concat([detection_scores_full, detection_scores], axis=1)
|
||||
|
||||
score_threshold = 0.5
|
||||
nms_iou_threshold = 0.5
|
||||
labels_offset = 1
|
||||
|
||||
(nmsed_boxes, nmsed_scores, nmsed_classes, num_detections) = \
|
||||
combined_non_max_suppression(boxes=detection_boxes_full,
|
||||
scores=detection_scores_full,
|
||||
score_threshold=score_threshold,
|
||||
iou_threshold=nms_iou_threshold,
|
||||
max_output_size_per_class=100,
|
||||
max_total_size=100)
|
||||
|
||||
|
||||
|
||||
# adding offset to the class prediction and cast to integer
|
||||
def translate_coco_2017_to_2014(nmsed_classes):
|
||||
return np.vectorize(COCO_17_14.get)(nmsed_classes).astype(np.int32)
|
||||
|
||||
nmsed_classes = tf.cast(tf.add(nmsed_classes, labels_offset), tf.int16)
|
||||
nmsed_classes = translate_coco_2017_to_2014(nmsed_classes)
|
||||
|
||||
return {'detection_boxes': nmsed_boxes,
|
||||
'detection_scores': nmsed_scores,
|
||||
'detection_classes': nmsed_classes,
|
||||
'num_detections': num_detections}
|
||||
|
||||
|
||||
|
||||
class HailoHandler:
|
||||
def __init__(self, hef_path='hef/yolov5m.hef'):
|
||||
target = PcieDevice()
|
||||
|
||||
self.hef = HEF(hef_path)
|
||||
|
||||
# Configure network groups
|
||||
configure_params = ConfigureParams.create_from_hef(hef=self.hef,
|
||||
interface=HailoStreamInterface.PCIe)
|
||||
network_groups = target.configure(self.hef, configure_params)
|
||||
self.network_group = network_groups[0]
|
||||
|
||||
self.input_vstreams_params = InputVStreamParams.make(self.network_group,
|
||||
quantized=False,
|
||||
format_type=FormatType.FLOAT32)
|
||||
|
||||
self.output_vstreams_params = OutputVStreamParams.make(self.network_group, quantized=False, format_type=FormatType.FLOAT32)
|
||||
|
||||
self.input_vstream_info = self.hef.get_input_vstream_infos()[0]
|
||||
self.output_vstream_infos = self.hef.get_output_vstream_infos()
|
||||
self.network_group_params = self.network_group.create_params()
|
||||
|
||||
def run_hailo(self, dataset):
|
||||
|
||||
input_data = {self.input_vstream_info.name: dataset}
|
||||
|
||||
with InferVStreams(self.network_group, self.input_vstreams_params, self.output_vstreams_params) as infer_pipeline:
|
||||
with self.network_group.activate(self.network_group_params):
|
||||
infer_results = infer_pipeline.infer(input_data)
|
||||
|
||||
out = [infer_results[i.name] for i in self.output_vstream_infos]
|
||||
return out
|
||||
|
||||
def start_hailo_thread(self):
|
||||
self.hailo_async = True
|
||||
self.hailo_block = False
|
||||
self.input_data = None
|
||||
self.hailo_thread = Thread(target=self._hailo_async)
|
||||
self.hailo_thread.start()
|
||||
|
||||
def _hailo_async(self):
|
||||
with InferVStreams(self.network_group, self.input_vstreams_params, self.output_vstreams_params)\
|
||||
as infer_pipeline:
|
||||
with self.network_group.activate(self.network_group_params):
|
||||
self._hailo_async_loop(infer_pipeline)
|
||||
|
||||
|
||||
def _hailo_async_loop(self, infer_pipeline):
|
||||
while self.hailo_async:
|
||||
if(not self.hailo_block and type(self.input_data) != type(None)):
|
||||
self.infer_results = None
|
||||
self.hailo_block = True
|
||||
infer_results = infer_pipeline.infer(self.input_data)
|
||||
self.infer_results = [infer_results[i.name] for i in self.output_vstream_infos]
|
||||
self.input_data = None
|
||||
self.hailo_block = False
|
||||
|
||||
def hailo_input(self, input_data):
|
||||
while self.hailo_block:
|
||||
time.sleep(0.01)
|
||||
self.hailo_block = True
|
||||
self.input_data = input_data
|
||||
self.input_data = {self.input_vstream_info.name: input_data}
|
||||
self.infer_results = None
|
||||
self.hailo_block = False
|
||||
|
||||
def hailo_output(self):
|
||||
while self.hailo_block:
|
||||
time.sleep(0.01)
|
||||
return self.infer_results
|
||||
|
||||
|
||||
def stop_hailo_thread(self):
|
||||
self.hailo_async = False
|
||||
self.hailo_thread.join()
|
||||
|
||||
class HailoNode(Node):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__('hailo_image_subscriber')
|
||||
self.sub = self.create_subscription(ImageMsg, '/camera/color/image_raw', self.image_callback, 10)
|
||||
self.pub = self.create_publisher(ImageMsg, '/hailo_bounding_boxes', 10)
|
||||
|
||||
self.bridge = CvBridge()
|
||||
|
||||
# metadata init
|
||||
classes = 3
|
||||
self.image_meta = ImageMeta(640, 640, 3)
|
||||
self.processor = YoloProcessing(self.image_meta, classes)
|
||||
|
||||
# hailo init
|
||||
self.hailo = HailoHandler('hef/yolov5m_daria.hef')
|
||||
self.hailo.start_hailo_thread()
|
||||
|
||||
def image_callback(self, data):
|
||||
print("Received an image!")
|
||||
img = self.convert(data)
|
||||
self.image_infer(img)
|
||||
|
||||
def image_infer(self, image):
|
||||
image = self.processor.preproc(image)
|
||||
dataset = self.dataset_from_image(image)
|
||||
self.hailo.hailo_input(dataset)
|
||||
|
||||
out = None
|
||||
while(out == None):
|
||||
time.sleep(0.0001)
|
||||
out = self.hailo.hailo_output()
|
||||
|
||||
logits = self.processor.postprocessing(out)
|
||||
|
||||
labels = get_labels("data/daria_labels.json")
|
||||
for bb in range(len(logits['detection_boxes'].numpy()[0])):
|
||||
boxes = logits['detection_boxes'].numpy()[0][bb]
|
||||
classes = logits['detection_classes'][0][bb]
|
||||
scores = logits['detection_scores'].numpy()[0][bb]
|
||||
if(scores > 0.01):
|
||||
print(boxes)
|
||||
print(labels[classes])
|
||||
print(scores)
|
||||
print("-----")
|
||||
|
||||
# convert ros image to PIL image
|
||||
def convert(self, ros_image):
|
||||
try:
|
||||
img = self.bridge.imgmsg_to_cv2(ros_image, "rgb8")
|
||||
image = Image.fromarray(img)
|
||||
except CvBridgeError as e:
|
||||
print(e)
|
||||
return image
|
||||
|
||||
def dataset_from_image(self, image):
|
||||
dataset = np.zeros((1, self.image_meta.image_height,
|
||||
self.image_meta.image_width,
|
||||
self.image_meta.channels),
|
||||
dtype=np.float32)
|
||||
dataset[0, :, :, :] = np.array(image)
|
||||
return dataset
|
||||
|
||||
def test_async_yolo5():
|
||||
imageMeta = ImageMeta(640, 640, 3)
|
||||
processor = YoloProcessing(imageMeta, classes=3)
|
||||
data = DataHandler('./data', imageMeta)
|
||||
data.load_data(processor.preproc)
|
||||
|
||||
hailo = HailoHandler('hef/yolov5m_daria.hef')
|
||||
hailo.start_hailo_thread()
|
||||
|
||||
fps = 0
|
||||
now = time.time()
|
||||
for i in range(100):
|
||||
fps += 1
|
||||
if now + 1 < time.time():
|
||||
fps = 0
|
||||
now = time.time()
|
||||
|
||||
hailo.hailo_input(data.dataset)
|
||||
out = None
|
||||
while(out == None):
|
||||
time.sleep(0.0001)
|
||||
out = hailo.hailo_output()
|
||||
|
||||
Thread(target=processor.postprocessing, args=[out]).start()
|
||||
|
||||
hailo.stop_hailo_thread()
|
||||
|
||||
|
||||
def test_process_yolo5():
|
||||
|
||||
imageMeta = ImageMeta(640, 640, 3)
|
||||
processor = YoloProcessing(imageMeta, classes=4)
|
||||
data = DataHandler('./data', imageMeta)
|
||||
data.load_data(processor.preproc)
|
||||
|
||||
hailo = HailoHandler('hef/yolov5m_daria.hef')
|
||||
|
||||
now = time.time()
|
||||
fps = 0
|
||||
for i in range(100):
|
||||
fps += 1
|
||||
if now + 1 < time.time():
|
||||
print(fps)
|
||||
fps = 0
|
||||
now = time.time()
|
||||
|
||||
out = hailo.run_hailo(data.dataset)
|
||||
logits = processor.postprocessing(out)
|
||||
|
||||
|
||||
labels = data.get_labels("data/daria_labels.json")
|
||||
image = visualize_boxes_and_labels_on_image_array(
|
||||
data.dataset[0],
|
||||
logits['detection_boxes'].numpy()[0],
|
||||
logits['detection_classes'][0],
|
||||
logits['detection_scores'].numpy()[0],
|
||||
labels,
|
||||
use_normalized_coordinates=True,
|
||||
max_boxes_to_draw=100,
|
||||
min_score_thresh=.5,
|
||||
agnostic_mode=False,
|
||||
line_thickness=4)
|
||||
|
||||
print("Successfully saved image")
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
|
||||
hailo_node = HailoNode()
|
||||
|
||||
rclpy.spin(hailo_node)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user