45 Commits

Author SHA1 Message Date
6e151510cf calculate average of jacobis and residual to reduce to single point in caclualtion - does not produce desired result 2019-05-29 10:38:40 +02:00
8bebf99c37 corrected pixel distance calcualtion 2019-05-24 09:49:47 +02:00
82cd2c6771 fixed Irradiance jacobain calculation, now division by pixel distance 2019-05-23 18:34:57 +02:00
0be7047928 cache 2019-05-23 09:17:05 +02:00
2f130685c8 removed merge conflicts 2 2019-05-22 11:34:26 +02:00
8ff0e9d816 removed merge conflicts 2019-05-22 11:34:00 +02:00
976108bffe changed anchor feature position calculation 2019-05-22 11:24:53 +02:00
2aef2089aa added undistort point 2019-05-21 14:26:26 +02:00
0f96c916f1 minor output changes, added arrows for gradient and residual visualization 2019-05-21 13:34:58 +02:00
05d277c4f4 reformulated irradiance to be: irradiance arround measured feature - irradiance at projection 2019-05-17 15:00:56 +02:00
9c7f67d2fd minor print changes 2019-05-16 13:56:37 +02:00
2ee7c248c1 alterations at nullspaceing, jakobi changes 2019-05-14 16:03:24 +02:00
44de215518 lots of additional debugging tools implemented to check parts of the algorithm. still no good 2019-05-10 17:19:29 +02:00
ad2f464716 added 3d visualization and stepping through bag file - minor edits in jakobi 2019-05-09 12:14:12 +02:00
53b26f7613 minor changes to visualization, jakobi tests 2019-05-03 16:42:27 +02:00
ee40dff740 added minor visualization changes 2019-05-02 17:02:44 +02:00
acbcf79417 fixed some typos in jacobian 2019-04-30 18:25:05 +02:00
cf40ce8afb added visualization with a ros flag, which shows feature with projection and residual (the features apparent movement) 2019-04-30 17:02:22 +02:00
750d8ecfb1 sublime folding changes 2019-04-26 14:42:31 +02:00
e3ac604dbf changed structure for sublime folding 2019-04-26 10:45:10 +02:00
e8489dbd06 removed resizing not correcting for photometric info, added N as global variable 2019-04-26 09:44:19 +02:00
e2e936ff01 fixed non 0 filling of new state covariance 2019-04-25 19:13:22 +02:00
de07296d31 added minor changes to nullspace 2019-04-25 13:44:21 +02:00
6ba26d782d added flag to switch to original, using right null space matrix for calculation now and existing eigen function, gating restult still way to high 2019-04-25 11:16:44 +02:00
821d9d6f71 added debug launch file, added state augmentation, added jakobi concat; resulting jakobis do not pass gating test 2019-04-24 19:36:38 +02:00
1ffc4fb37f Jakobi Calculation done 2019-04-24 15:30:25 +02:00
5958adb57c added jakobi x calculation, y calculation (of photometric update) still missing 2019-04-23 19:16:46 +02:00
8defb20c8e commented visu parts cleanly 2019-04-19 13:32:16 +02:00
1949e4c43d removed visu as result works so to not clutter the output 2019-04-19 13:30:30 +02:00
6f16f1b566 image reprojection visualization in images 2019-04-19 13:11:19 +02:00
1fa2518215 fixed incorrect undistortion/distortion. residual should now be calculated correctly 2019-04-18 16:22:41 +02:00
d91ff7ca9d added tum launch files, removed anchor procedure being called multiple times through a flag 2019-04-18 11:06:45 +02:00
cfecefe29f reinstantiated photometry removed slow-down problem 2019-04-17 17:06:44 +02:00
f4a17f8512 deactivated most to find reason for slowdown 2019-04-17 16:16:45 +02:00
6ae83f0db7 added saving exposure time from the frame ID, where the TUM dataset saves it 2019-04-17 10:54:54 +02:00
819e43bb3b fixed pixel position return value 2019-04-17 09:03:27 +02:00
7f2140ae88 moved camera calibration information into a struct to make data handling smoother 2019-04-16 19:05:11 +02:00
010d36d216 added projection into feature observations camera states 2019-04-16 17:40:33 +02:00
abd343f576 corrected position calculation for NxN points 2019-04-12 19:04:45 +02:00
8227a8e48d added position calculation 2019-04-12 17:37:01 +02:00
a85a4745f2 added anchor information generation 2019-04-12 11:02:58 +02:00
a6af82a269 manage moving window saves copies of images 2019-04-10 19:10:31 +02:00
b0dca3b15c added pseudocode of original msckf 2019-04-10 18:43:30 +02:00
79cce26dad added moving window structure, not yet done. added timestame sync for images and features detected 2019-04-10 18:36:11 +02:00
e6620a4ed4 edited launch files to support euroc and mynt 2019-04-10 18:35:26 +02:00
24 changed files with 2765 additions and 400 deletions

View File

@ -24,6 +24,7 @@ find_package(catkin REQUIRED COMPONENTS
pcl_conversions pcl_conversions
pcl_ros pcl_ros
std_srvs std_srvs
visualization_msgs
) )
## System dependencies are found with CMake's conventions ## System dependencies are found with CMake's conventions
@ -79,6 +80,7 @@ include_directories(
add_library(msckf_vio add_library(msckf_vio
src/msckf_vio.cpp src/msckf_vio.cpp
src/utils.cpp src/utils.cpp
src/image_handler.cpp
) )
add_dependencies(msckf_vio add_dependencies(msckf_vio
${${PROJECT_NAME}_EXPORTED_TARGETS} ${${PROJECT_NAME}_EXPORTED_TARGETS}
@ -87,6 +89,7 @@ add_dependencies(msckf_vio
target_link_libraries(msckf_vio target_link_libraries(msckf_vio
${catkin_LIBRARIES} ${catkin_LIBRARIES}
${SUITESPARSE_LIBRARIES} ${SUITESPARSE_LIBRARIES}
${OpenCV_LIBRARIES}
) )
# Msckf Vio nodelet # Msckf Vio nodelet
@ -106,6 +109,7 @@ target_link_libraries(msckf_vio_nodelet
add_library(image_processor add_library(image_processor
src/image_processor.cpp src/image_processor.cpp
src/utils.cpp src/utils.cpp
src/image_handler.cpp
) )
add_dependencies(image_processor add_dependencies(image_processor
${${PROJECT_NAME}_EXPORTED_TARGETS} ${${PROJECT_NAME}_EXPORTED_TARGETS}

View File

@ -0,0 +1,36 @@
cam0:
T_cam_imu:
[-0.9995378259923383, 0.02917807204183088, -0.008530798463872679, 0.047094247958417004,
0.007526588843243184, -0.03435493139706542, -0.9993813532126198, -0.04788273017221637,
-0.029453096117288798, -0.9989836729399656, 0.034119442089241274, -0.0697294754693238,
0.0, 0.0, 0.0, 1.0]
camera_model: pinhole
distortion_coeffs: [0.010171079892421483, -0.010816440029919381, 0.005942781769412756,
-0.001662284667857643]
distortion_model: equidistant
intrinsics: [380.81042871360756, 380.81194179427075, 510.29465304840727, 514.3304630538506]
resolution: [1024, 1024]
rostopic: /cam0/image_raw
cam1:
T_cam_imu:
[-0.9995240747493029, 0.02986739485347808, -0.007717688852024281, -0.05374086123613335,
0.008095979457928231, 0.01256553460985914, -0.9998882749870535, -0.04648588412432889,
-0.02976708103202316, -0.9994748851595197, -0.0128013601698453, -0.07333210787623645,
0.0, 0.0, 0.0, 1.0]
T_cn_cnm1:
[0.9999994317488622, -0.0008361847221513937, -0.0006612844045898121, -0.10092123225528335,
0.0008042457277382264, 0.9988989443471681, -0.04690684567228134, -0.001964540595211977,
0.0006997790813734836, 0.04690628718225568, 0.9988990492196964, -0.0014663556043866572,
0.0, 0.0, 0.0, 1.0]
camera_model: pinhole
distortion_coeffs: [0.01371679169245271, -0.015567360615942622, 0.00905043103315326,
-0.002347858896562788]
distortion_model: equidistant
intrinsics: [379.2869884263036, 379.26583742214524, 505.5666703237407, 510.2840961765407]
resolution: [1024, 1024]
rostopic: /cam1/image_raw
T_imu_body:
[1.0000, 0.0000, 0.0000, 0.0000,
0.0000, 1.0000, 0.0000, 0.0000,
0.0000, 0.0000, 1.0000, 0.0000,
0.0000, 0.0000, 0.0000, 1.0000]

View File

@ -15,6 +15,34 @@
#include "imu_state.h" #include "imu_state.h"
namespace msckf_vio { namespace msckf_vio {
struct Frame{
cv::Mat image;
double exposureTime_ms;
};
typedef std::map<StateIDType, Frame, std::less<StateIDType>,
Eigen::aligned_allocator<
std::pair<StateIDType, Frame> > > movingWindow;
struct IlluminationParameter{
double frame_bias;
double frame_gain;
double feature_bias;
double feature_gain;
};
struct CameraCalibration{
std::string distortion_model;
cv::Vec2i resolution;
cv::Vec4d intrinsics;
cv::Vec4d distortion_coeffs;
movingWindow moving_window;
cv::Mat featureVisu;
};
/* /*
* @brief CAMState Stored camera state in order to * @brief CAMState Stored camera state in order to
* form measurement model. * form measurement model.
@ -35,6 +63,9 @@ struct CAMState {
// Position of the camera frame in the world frame. // Position of the camera frame in the world frame.
Eigen::Vector3d position; Eigen::Vector3d position;
// Illumination Information of the frame
IlluminationParameter illumination;
// These two variables should have the same physical // These two variables should have the same physical
// interpretation with `orientation` and `position`. // interpretation with `orientation` and `position`.
// There two variables are used to modify the measurement // There two variables are used to modify the measurement

View File

@ -15,11 +15,18 @@
#include <Eigen/Dense> #include <Eigen/Dense>
#include <Eigen/Geometry> #include <Eigen/Geometry>
#include <Eigen/StdVector> #include <Eigen/StdVector>
#include <math.h>
#include <visualization_msgs/Marker.h>
#include <visualization_msgs/MarkerArray.h>
#include <geometry_msgs/Point.h>
#include "image_handler.h"
#include "math_utils.hpp" #include "math_utils.hpp"
#include "imu_state.h" #include "imu_state.h"
#include "cam_state.h" #include "cam_state.h"
namespace msckf_vio { namespace msckf_vio {
/* /*
@ -57,11 +64,11 @@ struct Feature {
// Constructors for the struct. // Constructors for the struct.
Feature(): id(0), position(Eigen::Vector3d::Zero()), Feature(): id(0), position(Eigen::Vector3d::Zero()),
is_initialized(false) {} is_initialized(false), is_anchored(false) {}
Feature(const FeatureIDType& new_id): id(new_id), Feature(const FeatureIDType& new_id): id(new_id),
position(Eigen::Vector3d::Zero()), position(Eigen::Vector3d::Zero()),
is_initialized(false) {} is_initialized(false), is_anchored(false) {}
/* /*
* @brief cost Compute the cost of the camera observations * @brief cost Compute the cost of the camera observations
@ -114,6 +121,28 @@ struct Feature {
inline bool checkMotion( inline bool checkMotion(
const CamStateServer& cam_states) const; const CamStateServer& cam_states) const;
/*
* @brief AnchorPixelToPosition projects an undistorted point in the
* anchor frame back into the real world using the rho calculated
* based on featur position
*/
inline Eigen::Vector3d AnchorPixelToPosition(cv::Point2f in_p, const CameraCalibration& cam);
/*
* @brief InitializeAnchor generates the NxN patch around the
* feature in the Anchor image
* @param cam_states: A map containing all recorded images
* currently presented in the camera state vector
* @return the irradiance of the Anchor NxN Patch
* @return True if the Anchor can be estimated
*/
bool initializeAnchor(
const CameraCalibration& cam, int N);
/* /*
* @brief InitializePosition Intialize the feature position * @brief InitializePosition Intialize the feature position
* based on all current available measurements. * based on all current available measurements.
@ -129,6 +158,67 @@ struct Feature {
const CamStateServer& cam_states); const CamStateServer& cam_states);
cv::Point2f pixelDistanceAt(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const CameraCalibration& cam,
Eigen::Vector3d& in_p) const;
/*
* @brief project PositionToCamera Takes a 3d position in a world frame
* and projects it into the passed camera frame using pinhole projection
* then distorts it using camera information to get
* the resulting distorted pixel position
*/
inline cv::Point2f projectPositionToCamera(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const CameraCalibration& cam,
Eigen::Vector3d& in_p) const;
/*
* @brief IrradianceAnchorPatch_Camera returns irradiance values
* of the Anchor Patch position in a camera frame
*
*/
bool estimate_FrameIrradiance(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
std::vector<double>& anchorPatch_estimate,
IlluminationParameter& estimatedIllumination) const;
bool MarkerGeneration(
ros::Publisher& marker_pub,
const CamStateServer& cam_states) const;
bool VisualizePatch(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
const std::vector<double> photo_r,
std::stringstream& ss) const;
/* @brief takes a pure pixel position (1m from image)
* converts to actual pixel value and returns patch irradiance
* around this pixel
*/
void PatchAroundPurePixel(cv::Point2f p,
int N,
const CameraCalibration& cam,
const StateIDType& cam_state_id,
std::vector<float>& return_i) const;
/*
* @brief Irradiance returns irradiance value of a pixel
*/
inline float PixelIrradiance(cv::Point2f pose, cv::Mat image) const;
// An unique identifier for the feature. // An unique identifier for the feature.
// In case of long time running, the variable // In case of long time running, the variable
// type of id is set to FeatureIDType in order // type of id is set to FeatureIDType in order
@ -144,13 +234,30 @@ struct Feature {
Eigen::aligned_allocator< Eigen::aligned_allocator<
std::pair<const StateIDType, Eigen::Vector4d> > > observations; std::pair<const StateIDType, Eigen::Vector4d> > > observations;
// NxN Patch of Anchor Image
std::vector<double> anchorPatch;
std::vector<cv::Point2f> anchorPatch_ideal;
std::vector<cv::Point2f> anchorPatch_real;
// Position of NxN Patch in 3D space in anchor camera frame
std::vector<Eigen::Vector3d> anchorPatch_3d;
// Anchor Isometry
Eigen::Isometry3d T_anchor_w;
// 3d postion of the feature in the world frame. // 3d postion of the feature in the world frame.
Eigen::Vector3d position; Eigen::Vector3d position;
// inverse depth representation
double anchor_rho;
// A indicator to show if the 3d postion of the feature // A indicator to show if the 3d postion of the feature
// has been initialized or not. // has been initialized or not.
bool is_initialized; bool is_initialized;
bool is_anchored;
cv::Point2f anchor_center_pos;
cv::Point2f undist_anchor_center_pos;
// Noise for a normalized feature measurement. // Noise for a normalized feature measurement.
static double observation_noise; static double observation_noise;
@ -167,7 +274,8 @@ typedef std::map<FeatureIDType, Feature, std::less<int>,
void Feature::cost(const Eigen::Isometry3d& T_c0_ci, void Feature::cost(const Eigen::Isometry3d& T_c0_ci,
const Eigen::Vector3d& x, const Eigen::Vector2d& z, const Eigen::Vector3d& x, const Eigen::Vector2d& z,
double& e) const { double& e) const
{
// Compute hi1, hi2, and hi3 as Equation (37). // Compute hi1, hi2, and hi3 as Equation (37).
const double& alpha = x(0); const double& alpha = x(0);
const double& beta = x(1); const double& beta = x(1);
@ -190,7 +298,8 @@ void Feature::cost(const Eigen::Isometry3d& T_c0_ci,
void Feature::jacobian(const Eigen::Isometry3d& T_c0_ci, void Feature::jacobian(const Eigen::Isometry3d& T_c0_ci,
const Eigen::Vector3d& x, const Eigen::Vector2d& z, const Eigen::Vector3d& x, const Eigen::Vector2d& z,
Eigen::Matrix<double, 2, 3>& J, Eigen::Vector2d& r, Eigen::Matrix<double, 2, 3>& J, Eigen::Vector2d& r,
double& w) const { double& w) const
{
// Compute hi1, hi2, and hi3 as Equation (37). // Compute hi1, hi2, and hi3 as Equation (37).
const double& alpha = x(0); const double& alpha = x(0);
@ -227,7 +336,8 @@ void Feature::jacobian(const Eigen::Isometry3d& T_c0_ci,
void Feature::generateInitialGuess( void Feature::generateInitialGuess(
const Eigen::Isometry3d& T_c1_c2, const Eigen::Vector2d& z1, const Eigen::Isometry3d& T_c1_c2, const Eigen::Vector2d& z1,
const Eigen::Vector2d& z2, Eigen::Vector3d& p) const { const Eigen::Vector2d& z2, Eigen::Vector3d& p) const
{
// Construct a least square problem to solve the depth. // Construct a least square problem to solve the depth.
Eigen::Vector3d m = T_c1_c2.linear() * Eigen::Vector3d(z1(0), z1(1), 1.0); Eigen::Vector3d m = T_c1_c2.linear() * Eigen::Vector3d(z1(0), z1(1), 1.0);
@ -247,8 +357,8 @@ void Feature::generateInitialGuess(
return; return;
} }
bool Feature::checkMotion( bool Feature::checkMotion(const CamStateServer& cam_states) const
const CamStateServer& cam_states) const { {
const StateIDType& first_cam_id = observations.begin()->first; const StateIDType& first_cam_id = observations.begin()->first;
const StateIDType& last_cam_id = (--observations.end())->first; const StateIDType& last_cam_id = (--observations.end())->first;
@ -290,8 +400,524 @@ bool Feature::checkMotion(
else return false; else return false;
} }
bool Feature::initializePosition( bool Feature::estimate_FrameIrradiance(
const CamStateServer& cam_states) { const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
std::vector<double>& anchorPatch_estimate,
IlluminationParameter& estimated_illumination) const
{
// get irradiance of patch in anchor frame
// subtract estimated b and divide by a of anchor frame
// muliply by a and add b of this frame
auto anchor = observations.begin();
if(cam0.moving_window.find(anchor->first) == cam0.moving_window.end())
{
std::cout << "anchor not in buffer anymore!" << std::endl;
return false;
}
double anchorExposureTime_ms = cam0.moving_window.find(anchor->first)->second.exposureTime_ms;
double frameExposureTime_ms = cam0.moving_window.find(cam_state_id)->second.exposureTime_ms;
double a_A = anchorExposureTime_ms;
double b_A = 0;
double a_l = frameExposureTime_ms;
double b_l = 0;
estimated_illumination.frame_gain = a_l;
estimated_illumination.frame_bias = b_l;
estimated_illumination.feature_gain = 1;
estimated_illumination.feature_bias = 0;
//printf("frames: %lld, %lld\n", anchor->first, cam_state_id);
//printf("exposure: %f, %f\n", a_A, a_l);
for (double anchorPixel : anchorPatch)
{
float irradiance = (anchorPixel - b_A) / a_A ;
anchorPatch_estimate.push_back(irradiance);
}
}
// generates markers for every camera position/observation
// and estimated feature/path position
bool Feature::MarkerGeneration(
ros::Publisher& marker_pub,
const CamStateServer& cam_states) const
{
visualization_msgs::MarkerArray ma;
// add all camera states used for estimation
int count = 0;
for(auto observation : observations)
{
visualization_msgs::Marker marker;
marker.header.frame_id = "world";
marker.header.stamp = ros::Time::now();
marker.ns = "cameras";
marker.id = count++;
marker.type = visualization_msgs::Marker::ARROW;
marker.action = visualization_msgs::Marker::ADD;
marker.pose.position.x = cam_states.find(observation.first)->second.position(0);
marker.pose.position.y = cam_states.find(observation.first)->second.position(1);
marker.pose.position.z = cam_states.find(observation.first)->second.position(2);
// rotate form x to z axis
Eigen::Vector4d q = quaternionMultiplication(Eigen::Vector4d(0, -0.707, 0, 0.707), cam_states.find(observation.first)->second.orientation);
marker.pose.orientation.x = q(0);
marker.pose.orientation.y = q(1);
marker.pose.orientation.z = q(2);
marker.pose.orientation.w = q(3);
marker.scale.x = 0.15;
marker.scale.y = 0.05;
marker.scale.z = 0.05;
if(count == 1)
{
marker.color.r = 0.0f;
marker.color.g = 0.0f;
marker.color.b = 1.0f;
}
else
{
marker.color.r = 0.0f;
marker.color.g = 1.0f;
marker.color.b = 0.0f;
}
marker.color.a = 1.0;
marker.lifetime = ros::Duration(0);
ma.markers.push_back(marker);
}
// 'delete' any existing cameras (make invisible)
for(int i = count; i < 20; i++)
{
visualization_msgs::Marker marker;
marker.header.frame_id = "world";
marker.header.stamp = ros::Time::now();
marker.ns = "cameras";
marker.id = i;
marker.type = visualization_msgs::Marker::ARROW;
marker.action = visualization_msgs::Marker::ADD;
marker.pose.orientation.w = 1;
marker.color.a = 0.0;
marker.lifetime = ros::Duration(1);
ma.markers.push_back(marker);
}
//generate feature patch points position
visualization_msgs::Marker marker;
marker.header.frame_id = "world";
marker.header.stamp = ros::Time::now();
marker.ns = "patch";
marker.id = 0;
marker.type = visualization_msgs::Marker::POINTS;
marker.action = visualization_msgs::Marker::ADD;
marker.pose.orientation.w = 1;
marker.scale.x = 0.02;
marker.scale.y = 0.02;
marker.color.r = 1.0f;
marker.color.g = 0.0f;
marker.color.b = 0.0f;
marker.color.a = 1.0;
for(auto point : anchorPatch_3d)
{
geometry_msgs::Point p;
p.x = point(0);
p.y = point(1);
p.z = point(2);
marker.points.push_back(p);
}
ma.markers.push_back(marker);
marker_pub.publish(ma);
}
bool Feature::VisualizePatch(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
const std::vector<double> photo_r,
std::stringstream& ss) const
{
double rescale = 1;
//visu - anchor
auto anchor = observations.begin();
cv::Mat anchorImage = cam0.moving_window.find(anchor->first)->second.image;
cv::Mat dottedFrame(anchorImage.size(), CV_8UC3);
cv::cvtColor(anchorImage, dottedFrame, CV_GRAY2RGB);
// visualize the true anchor points (the surrounding of the original measurements)
for(auto point : anchorPatch_real)
{
// visu - feature
cv::Point xs(point.x, point.y);
cv::Point ys(point.x, point.y);
cv::rectangle(dottedFrame, xs, ys, cv::Scalar(0,255,255));
}
cam0.featureVisu = dottedFrame.clone();
// visu - feature
cv::Mat current_image = cam0.moving_window.find(cam_state_id)->second.image;
cv::cvtColor(current_image, dottedFrame, CV_GRAY2RGB);
// set position in frame
// save irradiance of projection
std::vector<double> projectionPatch;
for(auto point : anchorPatch_3d)
{
cv::Point2f p_in_c0 = projectPositionToCamera(cam_state, cam_state_id, cam0, point);
projectionPatch.push_back(PixelIrradiance(p_in_c0, current_image));
// visu - feature
cv::Point xs(p_in_c0.x, p_in_c0.y);
cv::Point ys(p_in_c0.x, p_in_c0.y);
cv::rectangle(dottedFrame, xs, ys, cv::Scalar(0,255,0));
}
cv::hconcat(cam0.featureVisu, dottedFrame, cam0.featureVisu);
// patches visualization
int N = sqrt(anchorPatch_3d.size());
int scale = 30;
cv::Mat irradianceFrame(anchorImage.size(), CV_8UC3, cv::Scalar(255, 240, 255));
cv::resize(irradianceFrame, irradianceFrame, cv::Size(), rescale, rescale);
// irradiance grid anchor
std::stringstream namer;
namer << "anchor";
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 25),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
for(int i = 0; i<N; i++)
for(int j = 0; j<N; j++)
cv::rectangle(irradianceFrame,
cv::Point(30+scale*(i+1), 30+scale*j),
cv::Point(30+scale*i, 30+scale*(j+1)),
cv::Scalar(anchorPatch[i*N+j]*255, anchorPatch[i*N+j]*255, anchorPatch[i*N+j]*255),
CV_FILLED);
// irradiance grid projection
namer.str(std::string());
namer << "projection";
cv::putText(irradianceFrame, namer.str(), cvPoint(30, 45+scale*N),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
for(int i = 0; i<N; i++)
for(int j = 0; j<N ; j++)
cv::rectangle(irradianceFrame,
cv::Point(30+scale*(i+1), 50+scale*(N+j)),
cv::Point(30+scale*(i), 50+scale*(N+j+1)),
cv::Scalar(projectionPatch[i*N+j]*255, projectionPatch[i*N+j]*255, projectionPatch[i*N+j]*255),
CV_FILLED);
// true irradiance at feature
// get current observation
namer.str(std::string());
namer << "feature";
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 65+scale*2*N),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
cv::Point2f p_f(observations.find(cam_state_id)->second(0),observations.find(cam_state_id)->second(1));
// move to real pixels
p_f = image_handler::distortPoint(p_f, cam0.intrinsics, cam0.distortion_model, cam0.distortion_coeffs);
for(int i = 0; i<N; i++)
{
for(int j = 0; j<N ; j++)
{
float irr = PixelIrradiance(cv::Point2f(p_f.x + (i-(N-1)/2), p_f.y + (j-(N-1)/2)), current_image);
cv::rectangle(irradianceFrame,
cv::Point(30+scale*(i+1), 70+scale*(2*N+j)),
cv::Point(30+scale*(i), 70+scale*(2*N+j+1)),
cv::Scalar(irr*255, irr*255, irr*255),
CV_FILLED);
}
}
// residual grid projection, positive - red, negative - blue colored
namer.str(std::string());
namer << "residual";
cv::putText(irradianceFrame, namer.str() , cvPoint(30+scale*N, scale*N/2-5),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
for(int i = 0; i<N; i++)
for(int j = 0; j<N; j++)
if(photo_r[i*N+j]>0)
cv::rectangle(irradianceFrame,
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Scalar(255 - photo_r[i*N+j]*255, 255 - photo_r[i*N+j]*255, 255),
CV_FILLED);
else
cv::rectangle(irradianceFrame,
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Scalar(255, 255 + photo_r[i*N+j]*255, 255 + photo_r[i*N+j]*255),
CV_FILLED);
// gradient arrow
/*
cv::arrowedLine(irradianceFrame,
cv::Point(30+scale*(N/2 +0.5), 50+scale*(N+(N/2)+0.5)),
cv::Point(30+scale*(N/2+0.5)+scale*gradientVector.x, 50+scale*(N+(N/2)+0.5)+scale*gradientVector.y),
cv::Scalar(100, 0, 255),
1);
// residual gradient direction
cv::arrowedLine(irradianceFrame,
cv::Point(40+scale*(N+N/2+0.5), 15+scale*((N-0.5))),
cv::Point(40+scale*(N+N/2+0.5)+scale*residualVector.x, 15+scale*(N-0.5)+scale*residualVector.y),
cv::Scalar(0, 255, 175),
3);
*/
cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
// visualize position of used observations and resulting feature position
/*
cv::Mat positionFrame(anchorImage.size(), CV_8UC3, cv::Scalar(255, 240, 255));
cv::resize(positionFrame, positionFrame, cv::Size(), rescale, rescale);
// draw world zero
cv::line(positionFrame,
cv::Point(20,20),
cv::Point(20,30),
cv::Scalar(0,0,255),
CV_FILLED);
cv::line(positionFrame,
cv::Point(20,20),
cv::Point(30,20),
cv::Scalar(255,0,0),
CV_FILLED);
// for every observation, get cam state
for(auto obs : observations)
{
cv::line(positionFrame,
cv::Point(20,20),
cv::Point(30,20),
cv::Scalar(255,0,0),
CV_FILLED);
}
// draw, x y position and arrow with direction - write z next to it
cv::resize(cam0.featureVisu, cam0.featureVisu, cv::Size(), rescale, rescale);
cv::hconcat(cam0.featureVisu, positionFrame, cam0.featureVisu);
*/
// write feature position
std::stringstream pos_s;
pos_s << "u: " << observations.begin()->second(0) << " v: " << observations.begin()->second(1);
cv::putText(cam0.featureVisu, ss.str() , cvPoint(anchorImage.rows + 100, anchorImage.cols - 30),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(200,200,250), 1, CV_AA);
// create line?
//save image
std::stringstream loc;
// loc << "/home/raphael/dev/MSCKF_ws/img/feature_" << std::to_string(ros::Time::now().toSec()) << ".jpg";
//cv::imwrite(loc.str(), cam0.featureVisu);
cv::imshow("patch", cam0.featureVisu);
cvWaitKey(0);
}
void Feature::PatchAroundPurePixel(cv::Point2f p,
int N,
const CameraCalibration& cam,
const StateIDType& cam_state_id,
std::vector<float>& return_i) const
{
int n = (int)(N-1)/2;
cv::Mat image = cam.moving_window.find(cam_state_id)->second.image;
cv::Point2f img_p = image_handler::distortPoint(p,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
for(double u_run = -n; u_run <= n; u_run++)
for(double v_run = -n; v_run <= n; v_run++)
return_i.push_back(PixelIrradiance(cv::Point2f(img_p.x+u_run, img_p.y+v_run), image));
}
float Feature::PixelIrradiance(cv::Point2f pose, cv::Mat image) const
{
return ((float)image.at<uint8_t>(pose.y, pose.x))/255;
}
cv::Point2f Feature::pixelDistanceAt(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const CameraCalibration& cam,
Eigen::Vector3d& in_p) const
{
cv::Point2f cam_p = projectPositionToCamera(cam_state, cam_state_id, cam, in_p);
// create vector of patch in pixel plane
std::vector<cv::Point2f> surroundingPoints;
surroundingPoints.push_back(cv::Point2f(cam_p.x+1, cam_p.y));
surroundingPoints.push_back(cv::Point2f(cam_p.x-1, cam_p.y));
surroundingPoints.push_back(cv::Point2f(cam_p.x, cam_p.y+1));
surroundingPoints.push_back(cv::Point2f(cam_p.x, cam_p.y-1));
std::vector<cv::Point2f> pure;
image_handler::undistortPoints(surroundingPoints,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs,
pure);
// returns the absolute pixel distance at pixels one metres away
cv::Point2f distance(fabs(pure[0].x - pure[1].x), fabs(pure[2].y - pure[3].y));
return distance;
}
cv::Point2f Feature::projectPositionToCamera(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const CameraCalibration& cam,
Eigen::Vector3d& in_p) const
{
Eigen::Isometry3d T_c0_w;
cv::Point2f out_p;
// transfrom position to camera frame
Eigen::Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
const Eigen::Vector3d& t_c0_w = cam_state.position;
Eigen::Vector3d p_c0 = R_w_c0 * (in_p-t_c0_w);
out_p = cv::Point2f(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2));
// if(cam_state_id == observations.begin()->first)
//printf("undist:\n \tproj pos: %f, %f\n\ttrue pos: %f, %f\n", out_p.x, out_p.y, undist_anchor_center_pos.x, undist_anchor_center_pos.y);
cv::Point2f my_p = image_handler::distortPoint(out_p,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
// printf("truPosition: %f, %f, %f\n", position.x(), position.y(), position.z());
// printf("camPosition: %f, %f, %f\n", p_c0(0), p_c0(1), p_c0(2));
// printf("Photo projection: %f, %f\n", my_p[0].x, my_p[0].y);
return my_p;
}
Eigen::Vector3d Feature::AnchorPixelToPosition(cv::Point2f in_p, const CameraCalibration& cam)
{
// use undistorted position of point of interest
// project it back into 3D space using pinhole model
// save resulting NxN positions for this feature
Eigen::Vector3d PositionInCamera(in_p.x/anchor_rho, in_p.y/anchor_rho, 1/anchor_rho);
Eigen::Vector3d PositionInWorld = T_anchor_w.linear()*PositionInCamera + T_anchor_w.translation();
return PositionInWorld;
//printf("%f, %f, %f\n",PositionInWorld[0], PositionInWorld[1], PositionInWorld[2]);
}
//@test center projection must always be initial feature projection
bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
{
//initialize patch Size
int n = (int)(N-1)/2;
auto anchor = observations.begin();
if(cam.moving_window.find(anchor->first) == cam.moving_window.end())
return false;
cv::Mat anchorImage = cam.moving_window.find(anchor->first)->second.image;
auto u = anchor->second(0);//*cam.intrinsics[0] + cam.intrinsics[2];
auto v = anchor->second(1);//*cam.intrinsics[1] + cam.intrinsics[3];
//testing
undist_anchor_center_pos = cv::Point2f(u,v);
//for NxN patch pixels around feature
int count = 0;
// get feature in undistorted pixel space
// this only reverts from 'pure' space into undistorted pixel space using camera matrix
cv::Point2f und_pix_p = image_handler::distortPoint(cv::Point2f(u, v),
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
// create vector of patch in pixel plane
for(double u_run = -n; u_run <= n; u_run++)
for(double v_run = -n; v_run <= n; v_run++)
anchorPatch_real.push_back(cv::Point2f(und_pix_p.x+u_run, und_pix_p.y+v_run));
//create undistorted pure points
image_handler::undistortPoints(anchorPatch_real,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs,
anchorPatch_ideal);
// save anchor position for later visualisaztion
anchor_center_pos = anchorPatch_real[(N*N-1)/2];
// save true pixel Patch position
for(auto point : anchorPatch_real)
if(point.x - n < 0 || point.x + n >= cam.resolution(0) || point.y - n < 0 || point.y + n >= cam.resolution(1))
return false;
for(auto point : anchorPatch_real)
anchorPatch.push_back(PixelIrradiance(point, anchorImage));
// project patch pixel to 3D space in camera coordinate system
for(auto point : anchorPatch_ideal)
anchorPatch_3d.push_back(AnchorPixelToPosition(point, cam));
is_anchored = true;
return true;
}
/*
bool Feature::initializeRho(const CamStateServer& cam_states) {
// Organize camera poses and feature observations properly. // Organize camera poses and feature observations properly.
std::vector<Eigen::Isometry3d, std::vector<Eigen::Isometry3d,
Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0); Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0);
@ -327,6 +953,7 @@ bool Feature::initializePosition(
// vector from the first camera frame in the buffer to this // vector from the first camera frame in the buffer to this
// camera frame. // camera frame.
Eigen::Isometry3d T_c0_w = cam_poses[0]; Eigen::Isometry3d T_c0_w = cam_poses[0];
T_anchor_w = T_c0_w;
for (auto& pose : cam_poses) for (auto& pose : cam_poses)
pose = pose.inverse() * T_c0_w; pose = pose.inverse() * T_c0_w;
@ -427,6 +1054,9 @@ bool Feature::initializePosition(
} }
} }
//save inverse depth distance from camera
anchor_rho = solution(2);
// Convert the feature position to the world frame. // Convert the feature position to the world frame.
position = T_c0_w.linear()*final_position + T_c0_w.translation(); position = T_c0_w.linear()*final_position + T_c0_w.translation();
@ -435,6 +1065,157 @@ bool Feature::initializePosition(
return is_valid_solution; return is_valid_solution;
} }
*/
bool Feature::initializePosition(const CamStateServer& cam_states) {
// Organize camera poses and feature observations properly.
std::vector<Eigen::Isometry3d,
Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0);
std::vector<Eigen::Vector2d,
Eigen::aligned_allocator<Eigen::Vector2d> > measurements(0);
for (auto& m : observations) {
// TODO: This should be handled properly. Normally, the
// required camera states should all be available in
// the input cam_states buffer.
auto cam_state_iter = cam_states.find(m.first);
if (cam_state_iter == cam_states.end()) continue;
// Add the measurement.
measurements.push_back(m.second.head<2>());
measurements.push_back(m.second.tail<2>());
// This camera pose will take a vector from this camera frame
// to the world frame.
Eigen::Isometry3d cam0_pose;
cam0_pose.linear() = quaternionToRotation(
cam_state_iter->second.orientation).transpose();
cam0_pose.translation() = cam_state_iter->second.position;
Eigen::Isometry3d cam1_pose;
cam1_pose = cam0_pose * CAMState::T_cam0_cam1.inverse();
cam_poses.push_back(cam0_pose);
cam_poses.push_back(cam1_pose);
}
// All camera poses should be modified such that it takes a
// vector from the first camera frame in the buffer to this
// camera frame.
Eigen::Isometry3d T_c0_w = cam_poses[0];
T_anchor_w = T_c0_w;
for (auto& pose : cam_poses)
pose = pose.inverse() * T_c0_w;
// Generate initial guess
Eigen::Vector3d initial_position(0.0, 0.0, 0.0);
generateInitialGuess(cam_poses[cam_poses.size()-1], measurements[0],
measurements[measurements.size()-1], initial_position);
Eigen::Vector3d solution(
initial_position(0)/initial_position(2),
initial_position(1)/initial_position(2),
1.0/initial_position(2));
// Apply Levenberg-Marquart method to solve for the 3d position.
double lambda = optimization_config.initial_damping;
int inner_loop_cntr = 0;
int outer_loop_cntr = 0;
bool is_cost_reduced = false;
double delta_norm = 0;
// Compute the initial cost.
double total_cost = 0.0;
for (int i = 0; i < cam_poses.size(); ++i) {
double this_cost = 0.0;
cost(cam_poses[i], solution, measurements[i], this_cost);
total_cost += this_cost;
}
// Outer loop.
do {
Eigen::Matrix3d A = Eigen::Matrix3d::Zero();
Eigen::Vector3d b = Eigen::Vector3d::Zero();
for (int i = 0; i < cam_poses.size(); ++i) {
Eigen::Matrix<double, 2, 3> J;
Eigen::Vector2d r;
double w;
jacobian(cam_poses[i], solution, measurements[i], J, r, w);
if (w == 1) {
A += J.transpose() * J;
b += J.transpose() * r;
} else {
double w_square = w * w;
A += w_square * J.transpose() * J;
b += w_square * J.transpose() * r;
}
}
// Inner loop.
// Solve for the delta that can reduce the total cost.
do {
Eigen::Matrix3d damper = lambda * Eigen::Matrix3d::Identity();
Eigen::Vector3d delta = (A+damper).ldlt().solve(b);
Eigen::Vector3d new_solution = solution - delta;
delta_norm = delta.norm();
double new_cost = 0.0;
for (int i = 0; i < cam_poses.size(); ++i) {
double this_cost = 0.0;
cost(cam_poses[i], new_solution, measurements[i], this_cost);
new_cost += this_cost;
}
if (new_cost < total_cost) {
is_cost_reduced = true;
solution = new_solution;
total_cost = new_cost;
lambda = lambda/10 > 1e-10 ? lambda/10 : 1e-10;
} else {
is_cost_reduced = false;
lambda = lambda*10 < 1e12 ? lambda*10 : 1e12;
}
} while (inner_loop_cntr++ <
optimization_config.inner_loop_max_iteration && !is_cost_reduced);
inner_loop_cntr = 0;
} while (outer_loop_cntr++ <
optimization_config.outer_loop_max_iteration &&
delta_norm > optimization_config.estimation_precision);
// Covert the feature position from inverse depth
// representation to its 3d coordinate.
Eigen::Vector3d final_position(solution(0)/solution(2),
solution(1)/solution(2), 1.0/solution(2));
// Check if the solution is valid. Make sure the feature
// is in front of every camera frame observing it.
bool is_valid_solution = true;
for (const auto& pose : cam_poses) {
Eigen::Vector3d position =
pose.linear()*final_position + pose.translation();
if (position(2) <= 0) {
is_valid_solution = false;
break;
}
}
//save inverse depth distance from camera
anchor_rho = solution(2);
// Convert the feature position to the world frame.
position = T_c0_w.linear()*final_position + T_c0_w.translation();
if (is_valid_solution)
is_initialized = true;
return is_valid_solution;
}
} // namespace msckf_vio } // namespace msckf_vio
#endif // MSCKF_VIO_FEATURE_H #endif // MSCKF_VIO_FEATURE_H

View File

@ -0,0 +1,51 @@
#ifndef MSCKF_VIO_IMAGE_HANDLER_H
#define MSCKF_VIO_IMAGE_HANDLER_H
#include <vector>
#include <boost/shared_ptr.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/video.hpp>
#include <ros/ros.h>
#include <cv_bridge/cv_bridge.h>
namespace msckf_vio {
/*
* @brief utilities for msckf_vio
*/
namespace image_handler {
void undistortPoints(
const std::vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs,
std::vector<cv::Point2f>& pts_out,
const cv::Matx33d &rectification_matrix = cv::Matx33d::eye(),
const cv::Vec4d &new_intrinsics = cv::Vec4d(1,1,0,0));
std::vector<cv::Point2f> distortPoints(
const std::vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs);
cv::Point2f distortPoint(
const cv::Point2f& pt_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs);
void undistortPoint(
const cv::Point2f& pt_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs,
cv::Point2f& pt_out,
const cv::Matx33d &rectification_matrix = cv::Matx33d::eye(),
const cv::Vec4d &new_intrinsics = cv::Vec4d(1,1,0,0));
}
}
#endif

View File

@ -14,10 +14,6 @@
#include <opencv2/opencv.hpp> #include <opencv2/opencv.hpp>
#include <opencv2/video.hpp> #include <opencv2/video.hpp>
#include <opencv2/cudaoptflow.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudaarithm.hpp>
#include <ros/ros.h> #include <ros/ros.h>
#include <cv_bridge/cv_bridge.h> #include <cv_bridge/cv_bridge.h>
#include <image_transport/image_transport.h> #include <image_transport/image_transport.h>
@ -26,6 +22,8 @@
#include <message_filters/subscriber.h> #include <message_filters/subscriber.h>
#include <message_filters/time_synchronizer.h> #include <message_filters/time_synchronizer.h>
#include "cam_state.h"
namespace msckf_vio { namespace msckf_vio {
/* /*
@ -312,7 +310,7 @@ private:
const std::vector<unsigned char>& markers, const std::vector<unsigned char>& markers,
std::vector<T>& refined_vec) { std::vector<T>& refined_vec) {
if (raw_vec.size() != markers.size()) { if (raw_vec.size() != markers.size()) {
ROS_WARN("The input size of raw_vec(%i) and markers(%i) does not match...", ROS_WARN("The input size of raw_vec(%lu) and markers(%lu) does not match...",
raw_vec.size(), markers.size()); raw_vec.size(), markers.size());
} }
for (int i = 0; i < markers.size(); ++i) { for (int i = 0; i < markers.size(); ++i) {
@ -336,15 +334,8 @@ private:
std::vector<sensor_msgs::Imu> imu_msg_buffer; std::vector<sensor_msgs::Imu> imu_msg_buffer;
// Camera calibration parameters // Camera calibration parameters
std::string cam0_distortion_model; CameraCalibration cam0;
cv::Vec2i cam0_resolution; CameraCalibration cam1;
cv::Vec4d cam0_intrinsics;
cv::Vec4d cam0_distortion_coeffs;
std::string cam1_distortion_model;
cv::Vec2i cam1_resolution;
cv::Vec4d cam1_intrinsics;
cv::Vec4d cam1_distortion_coeffs;
// Take a vector from cam0 frame to the IMU frame. // Take a vector from cam0 frame to the IMU frame.
cv::Matx33d R_cam0_imu; cv::Matx33d R_cam0_imu;
@ -367,11 +358,6 @@ private:
boost::shared_ptr<GridFeatures> prev_features_ptr; boost::shared_ptr<GridFeatures> prev_features_ptr;
boost::shared_ptr<GridFeatures> curr_features_ptr; boost::shared_ptr<GridFeatures> curr_features_ptr;
cv::cuda::GpuMat cam0_curr_img;
cv::cuda::GpuMat cam1_curr_img;
cv::cuda::GpuMat cam0_points_gpu;
cv::cuda::GpuMat cam1_points_gpu;
// Number of features after each outlier removal step. // Number of features after each outlier removal step.
int before_tracking; int before_tracking;
int after_tracking; int after_tracking;

View File

@ -13,6 +13,13 @@
namespace msckf_vio { namespace msckf_vio {
inline double absoluted(double a){
if(a>0)
return a;
else return -a;
}
/* /*
* @brief Create a skew-symmetric matrix from a 3-element vector. * @brief Create a skew-symmetric matrix from a 3-element vector.
* @note Performs the operation: * @note Performs the operation:
@ -43,6 +50,50 @@ inline void quaternionNormalize(Eigen::Vector4d& q) {
return; return;
} }
/*
* @brief invert rotation of passed quaternion through conjugation
* and return conjugation
*/
inline Eigen::Vector4d quaternionConjugate(Eigen::Vector4d& q)
{
Eigen::Vector4d p;
p(0) = -q(0);
p(1) = -q(1);
p(2) = -q(2);
p(3) = q(3);
quaternionNormalize(p);
return p;
}
/*
* @brief converts a vector4 to a vector3, dropping (3)
* this is typically used to get the vector part of a quaternion
for eq small angle approximation
*/
inline Eigen::Vector3d v4tov3(const Eigen::Vector4d& q)
{
Eigen::Vector3d p;
p(0) = q(0);
p(1) = q(1);
p(2) = q(2);
return p;
}
/*
* @brief Perform q1 * q2
*/
inline Eigen::Vector4d QtoV(const Eigen::Quaterniond& q)
{
Eigen::Vector4d p;
p(0) = q.x();
p(1) = q.y();
p(2) = q.z();
p(3) = q.w();
return p;
}
/* /*
* @brief Perform q1 * q2 * @brief Perform q1 * q2
*/ */

View File

@ -14,11 +14,17 @@
#include <string> #include <string>
#include <Eigen/Dense> #include <Eigen/Dense>
#include <Eigen/Geometry> #include <Eigen/Geometry>
#include <math.h>
#include <boost/shared_ptr.hpp> #include <boost/shared_ptr.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/video.hpp>
#include <ros/ros.h> #include <ros/ros.h>
#include <sensor_msgs/Imu.h> #include <sensor_msgs/Imu.h>
#include <sensor_msgs/Image.h>
#include <sensor_msgs/PointCloud.h>
#include <nav_msgs/Odometry.h> #include <nav_msgs/Odometry.h>
#include <std_msgs/Float64.h>
#include <tf/transform_broadcaster.h> #include <tf/transform_broadcaster.h>
#include <std_srvs/Trigger.h> #include <std_srvs/Trigger.h>
@ -27,6 +33,13 @@
#include "feature.hpp" #include "feature.hpp"
#include <msckf_vio/CameraMeasurement.h> #include <msckf_vio/CameraMeasurement.h>
#include <cv_bridge/cv_bridge.h>
#include <image_transport/image_transport.h>
#include <message_filters/subscriber.h>
#include <message_filters/time_synchronizer.h>
#define PI 3.14159265
namespace msckf_vio { namespace msckf_vio {
/* /*
* @brief MsckfVio Implements the algorithm in * @brief MsckfVio Implements the algorithm in
@ -97,11 +110,27 @@ class MsckfVio {
void imuCallback(const sensor_msgs::ImuConstPtr& msg); void imuCallback(const sensor_msgs::ImuConstPtr& msg);
/* /*
* @brief featureCallback * @brief truthCallback
* Callback function for feature measurements. * Callback function for ground truth navigation information
* @param msg Stereo feature measurements. * @param TransformStamped msg
*/ */
void featureCallback(const CameraMeasurementConstPtr& msg); void truthCallback(
const geometry_msgs::TransformStampedPtr& msg);
/*
* @brief imageCallback
* Callback function for feature measurements
* Triggers measurement update
* @param msg
* Camera 0 Image
* Camera 1 Image
* Stereo feature measurements.
*/
void imageCallback (
const sensor_msgs::ImageConstPtr& cam0_img,
const sensor_msgs::ImageConstPtr& cam1_img,
const CameraMeasurementConstPtr& feature_msg);
/* /*
* @brief publish Publish the results of VIO. * @brief publish Publish the results of VIO.
@ -126,6 +155,26 @@ class MsckfVio {
bool resetCallback(std_srvs::Trigger::Request& req, bool resetCallback(std_srvs::Trigger::Request& req,
std_srvs::Trigger::Response& res); std_srvs::Trigger::Response& res);
// Saves the exposure time and the camera measurementes
void manageMovingWindow(
const sensor_msgs::ImageConstPtr& cam0_img,
const sensor_msgs::ImageConstPtr& cam1_img,
const CameraMeasurementConstPtr& feature_msg);
void calcErrorState();
// Debug related Functions
// Propagate the true state
void batchTruthProcessing(
const double& time_bound);
void processTruthtoIMU(const double& time,
const Eigen::Vector4d& m_rot,
const Eigen::Vector3d& m_trans);
// Filter related functions // Filter related functions
// Propogate the state // Propogate the state
void batchImuProcessing( void batchImuProcessing(
@ -137,8 +186,12 @@ class MsckfVio {
const Eigen::Vector3d& gyro, const Eigen::Vector3d& gyro,
const Eigen::Vector3d& acc); const Eigen::Vector3d& acc);
// groundtruth state augmentation
void truePhotometricStateAugmentation(const double& time);
// Measurement update // Measurement update
void stateAugmentation(const double& time); void stateAugmentation(const double& time);
void PhotometricStateAugmentation(const double& time);
void addFeatureObservations(const CameraMeasurementConstPtr& msg); void addFeatureObservations(const CameraMeasurementConstPtr& msg);
// This function is used to compute the measurement Jacobian // This function is used to compute the measurement Jacobian
// for a single feature observed at a single camera frame. // for a single feature observed at a single camera frame.
@ -152,6 +205,20 @@ class MsckfVio {
void featureJacobian(const FeatureIDType& feature_id, void featureJacobian(const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids, const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r); Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
void PhotometricMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::MatrixXd& H_x,
Eigen::MatrixXd& H_y,
Eigen::VectorXd& r);
void PhotometricFeatureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
void measurementUpdate(const Eigen::MatrixXd& H, void measurementUpdate(const Eigen::MatrixXd& H,
const Eigen::VectorXd& r); const Eigen::VectorXd& r);
bool gatingTest(const Eigen::MatrixXd& H, bool gatingTest(const Eigen::MatrixXd& H,
@ -163,11 +230,32 @@ class MsckfVio {
// Reset the system online if the uncertainty is too large. // Reset the system online if the uncertainty is too large.
void onlineReset(); void onlineReset();
// Photometry flag
bool PHOTOMETRIC;
// debug flag
bool PRINTIMAGES;
bool GROUNDTRUTH;
bool nan_flag;
bool play;
double last_time_bound;
// Patch size for Photometry
int N;
// Chi squared test table. // Chi squared test table.
static std::map<int, double> chi_squared_test_table; static std::map<int, double> chi_squared_test_table;
// State vector // State vector
StateServer state_server; StateServer state_server;
// Ground truth state vector
StateServer true_state_server;
// error state based on ground truth
StateServer err_state_server;
// Maximum number of camera states // Maximum number of camera states
int max_cam_state_size; int max_cam_state_size;
@ -179,6 +267,22 @@ class MsckfVio {
// transfer delay between IMU and Image messages. // transfer delay between IMU and Image messages.
std::vector<sensor_msgs::Imu> imu_msg_buffer; std::vector<sensor_msgs::Imu> imu_msg_buffer;
// Ground Truth message data
std::vector<geometry_msgs::TransformStamped> truth_msg_buffer;
// Moving Window buffer
movingWindow cam0_moving_window;
movingWindow cam1_moving_window;
// Camera calibration parameters
CameraCalibration cam0;
CameraCalibration cam1;
// covariance data
double irradiance_frame_bias;
ros::Time image_save_time;
// Indicate if the gravity vector is set. // Indicate if the gravity vector is set.
bool is_gravity_set; bool is_gravity_set;
@ -206,12 +310,20 @@ class MsckfVio {
// Subscribers and publishers // Subscribers and publishers
ros::Subscriber imu_sub; ros::Subscriber imu_sub;
ros::Subscriber feature_sub; ros::Subscriber truth_sub;
ros::Publisher odom_pub; ros::Publisher odom_pub;
ros::Publisher marker_pub;
ros::Publisher feature_pub; ros::Publisher feature_pub;
tf::TransformBroadcaster tf_pub; tf::TransformBroadcaster tf_pub;
ros::ServiceServer reset_srv; ros::ServiceServer reset_srv;
message_filters::Subscriber<sensor_msgs::Image> cam0_img_sub;
message_filters::Subscriber<sensor_msgs::Image> cam1_img_sub;
message_filters::Subscriber<CameraMeasurement> feature_sub;
message_filters::TimeSynchronizer<sensor_msgs::Image, sensor_msgs::Image, CameraMeasurement> image_sub;
// Frame id // Frame id
std::string fixed_frame_id; std::string fixed_frame_id;
std::string child_frame_id; std::string child_frame_id;
@ -232,6 +344,9 @@ class MsckfVio {
ros::Publisher mocap_odom_pub; ros::Publisher mocap_odom_pub;
geometry_msgs::TransformStamped raw_mocap_odom_msg; geometry_msgs::TransformStamped raw_mocap_odom_msg;
Eigen::Isometry3d mocap_initial_frame; Eigen::Isometry3d mocap_initial_frame;
Eigen::Vector4d mocap_initial_orientation;
Eigen::Vector3d mocap_initial_position;
}; };
typedef MsckfVio::Ptr MsckfVioPtr; typedef MsckfVio::Ptr MsckfVioPtr;

View File

@ -11,9 +11,6 @@
#include <ros/ros.h> #include <ros/ros.h>
#include <string> #include <string>
#include <opencv2/core/core.hpp> #include <opencv2/core/core.hpp>
#include <opencv2/cudaoptflow.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudaarithm.hpp>
#include <Eigen/Geometry> #include <Eigen/Geometry>
namespace msckf_vio { namespace msckf_vio {
@ -21,10 +18,6 @@ namespace msckf_vio {
* @brief utilities for msckf_vio * @brief utilities for msckf_vio
*/ */
namespace utils { namespace utils {
void download(const cv::cuda::GpuMat& d_mat, std::vector<uchar>& vec);
void download(const cv::cuda::GpuMat& d_mat, std::vector<cv::Point2f>& vec);
Eigen::Isometry3d getTransformEigen(const ros::NodeHandle &nh, Eigen::Isometry3d getTransformEigen(const ros::NodeHandle &nh,
const std::string &field); const std::string &field);

View File

@ -8,7 +8,8 @@
<group ns="$(arg robot)"> <group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="image_processor" <node pkg="nodelet" type="nodelet" name="image_processor"
args="standalone msckf_vio/ImageProcessorNodelet" args="standalone msckf_vio/ImageProcessorNodelet"
output="screen"> output="screen"
>
<rosparam command="load" file="$(arg calibration_file)"/> <rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/> <param name="grid_row" value="4"/>

View File

@ -0,0 +1,33 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-mynt.yaml"/>
<!-- Image Processor Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="image_processor"
args="standalone msckf_vio/ImageProcessorNodelet"
output="screen">
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/>
<param name="grid_col" value="5"/>
<param name="grid_min_feature_num" value="3"/>
<param name="grid_max_feature_num" value="4"/>
<param name="pyramid_levels" value="3"/>
<param name="patch_size" value="15"/>
<param name="fast_threshold" value="10"/>
<param name="max_iteration" value="30"/>
<param name="track_precision" value="0.01"/>
<param name="ransac_threshold" value="3"/>
<param name="stereo_threshold" value="5"/>
<remap from="~imu" to="/imu0"/>
<remap from="~cam0_image" to="/mynteye/left/image_raw"/>
<remap from="~cam1_image" to="/mynteye/right/image_raw"/>
</node>
</group>
</launch>

View File

@ -0,0 +1,34 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum.yaml"/>
<!-- Image Processor Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="image_processor"
args="standalone msckf_vio/ImageProcessorNodelet"
output="screen"
>
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/>
<param name="grid_col" value="4"/>
<param name="grid_min_feature_num" value="3"/>
<param name="grid_max_feature_num" value="4"/>
<param name="pyramid_levels" value="3"/>
<param name="patch_size" value="15"/>
<param name="fast_threshold" value="10"/>
<param name="max_iteration" value="30"/>
<param name="track_precision" value="0.01"/>
<param name="ransac_threshold" value="3"/>
<param name="stereo_threshold" value="5"/>
<remap from="~imu" to="/imu0"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
</node>
</group>
</launch>

View File

@ -0,0 +1,75 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="fixed_frame_id" default="world"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum.yaml"/>
<!-- Image Processor Nodelet -->
<include file="$(find msckf_vio)/launch/image_processor_tum.launch">
<arg name="robot" value="$(arg robot)"/>
<arg name="calibration_file" value="$(arg calibration_file)"/>
</include>
<!-- Msckf Vio Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="vio"
args='standalone msckf_vio/MsckfVioNodelet'
output="screen"
launch-prefix="xterm -e gdb --args">
<!-- Photometry Flag-->
<param name="PHOTOMETRIC" value="true"/>
<!-- Debugging Flaggs -->
<param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="7"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="publish_tf" value="true"/>
<param name="frame_rate" value="20"/>
<param name="fixed_frame_id" value="$(arg fixed_frame_id)"/>
<param name="child_frame_id" value="odom"/>
<param name="max_cam_state_size" value="20"/>
<param name="position_std_threshold" value="8.0"/>
<param name="rotation_threshold" value="0.2618"/>
<param name="translation_threshold" value="0.4"/>
<param name="tracking_rate_threshold" value="0.5"/>
<!-- Feature optimization config -->
<param name="feature/config/translation_threshold" value="-1.0"/>
<!-- These values should be standard deviation -->
<param name="noise/gyro" value="0.005"/>
<param name="noise/acc" value="0.05"/>
<param name="noise/gyro_bias" value="0.001"/>
<param name="noise/acc_bias" value="0.01"/>
<param name="noise/feature" value="0.035"/>
<param name="initial_state/velocity/x" value="0.0"/>
<param name="initial_state/velocity/y" value="0.0"/>
<param name="initial_state/velocity/z" value="0.0"/>
<!-- These values should be covariance -->
<param name="initial_covariance/velocity" value="0.25"/>
<param name="initial_covariance/gyro_bias" value="0.01"/>
<param name="initial_covariance/acc_bias" value="0.01"/>
<param name="initial_covariance/extrinsic_rotation_cov" value="3.0462e-4"/>
<param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/>
<param name="initial_covariance/irradiance_frame_bias" value="0.1"/>
<remap from="~imu" to="/imu0"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
<remap from="~features" to="image_processor/features"/>
</node>
</group>
</launch>

View File

@ -53,6 +53,9 @@
<param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/> <param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/>
<remap from="~imu" to="/imu0"/> <remap from="~imu" to="/imu0"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
<remap from="~features" to="image_processor/features"/> <remap from="~features" to="image_processor/features"/>
</node> </node>

View File

@ -0,0 +1,61 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="fixed_frame_id" default="world"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-mynt.yaml"/>
<!-- Image Processor Nodelet -->
<include file="$(find msckf_vio)/launch/image_processor_mynt.launch">
<arg name="robot" value="$(arg robot)"/>
<arg name="calibration_file" value="$(arg calibration_file)"/>
</include>
<!-- Msckf Vio Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="vio"
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="publish_tf" value="true"/>
<param name="frame_rate" value="20"/>
<param name="fixed_frame_id" value="$(arg fixed_frame_id)"/>
<param name="child_frame_id" value="odom"/>
<param name="max_cam_state_size" value="20"/>
<param name="position_std_threshold" value="8.0"/>
<param name="rotation_threshold" value="0.2618"/>
<param name="translation_threshold" value="0.4"/>
<param name="tracking_rate_threshold" value="0.5"/>
<!-- Feature optimization config -->
<param name="feature/config/translation_threshold" value="-1.0"/>
<!-- These values should be standard deviation -->
<param name="noise/gyro" value="0.005"/>
<param name="noise/acc" value="0.05"/>
<param name="noise/gyro_bias" value="0.001"/>
<param name="noise/acc_bias" value="0.01"/>
<param name="noise/feature" value="0.035"/>
<param name="initial_state/velocity/x" value="0.0"/>
<param name="initial_state/velocity/y" value="0.0"/>
<param name="initial_state/velocity/z" value="0.0"/>
<!-- These values should be covariance -->
<param name="initial_covariance/velocity" value="0.25"/>
<param name="initial_covariance/gyro_bias" value="0.01"/>
<param name="initial_covariance/acc_bias" value="0.01"/>
<param name="initial_covariance/extrinsic_rotation_cov" value="3.0462e-4"/>
<param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/>
<remap from="~imu" to="/mynteye/imu/data_raw"/>
<remap from="~features" to="image_processor/features"/>
</node>
</group>
</launch>

View File

@ -0,0 +1,74 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="fixed_frame_id" default="world"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum.yaml"/>
<!-- Image Processor Nodelet -->
<include file="$(find msckf_vio)/launch/image_processor_tum.launch">
<arg name="robot" value="$(arg robot)"/>
<arg name="calibration_file" value="$(arg calibration_file)"/>
</include>
<!-- Msckf Vio Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="vio"
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<!-- Photometry Flag-->
<param name="PHOTOMETRIC" value="true"/>
<!-- Debugging Flaggs -->
<param name="PrintImages" value="true"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="7"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="publish_tf" value="true"/>
<param name="frame_rate" value="20"/>
<param name="fixed_frame_id" value="$(arg fixed_frame_id)"/>
<param name="child_frame_id" value="odom"/>
<param name="max_cam_state_size" value="20"/>
<param name="position_std_threshold" value="8.0"/>
<param name="rotation_threshold" value="0.2618"/>
<param name="translation_threshold" value="0.4"/>
<param name="tracking_rate_threshold" value="0.5"/>
<!-- Feature optimization config -->
<param name="feature/config/translation_threshold" value="-1.0"/>
<!-- These values should be standard deviation -->
<param name="noise/gyro" value="0.005"/>
<param name="noise/acc" value="0.05"/>
<param name="noise/gyro_bias" value="0.001"/>
<param name="noise/acc_bias" value="0.01"/>
<param name="noise/feature" value="0.035"/>
<param name="initial_state/velocity/x" value="0.0"/>
<param name="initial_state/velocity/y" value="0.0"/>
<param name="initial_state/velocity/z" value="0.0"/>
<!-- These values should be covariance -->
<param name="initial_covariance/velocity" value="0.25"/>
<param name="initial_covariance/gyro_bias" value="0.01"/>
<param name="initial_covariance/acc_bias" value="0.01"/>
<param name="initial_covariance/extrinsic_rotation_cov" value="3.0462e-4"/>
<param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/>
<param name="initial_covariance/irradiance_frame_bias" value="0.1"/>
<remap from="~imu" to="/imu0"/>
<remap from="~ground_truth" to="/vrpn_client/raw_transform"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
<remap from="~features" to="image_processor/features"/>
</node>
</group>
</launch>

View File

@ -1,4 +1,4 @@
std_msgs/Header header Header header
# All features on the current image, # All features on the current image,
# including tracked ones and newly detected ones. # including tracked ones and newly detected ones.
FeatureMeasurement[] features FeatureMeasurement[] features

View File

@ -3,13 +3,12 @@
<name>msckf_vio</name> <name>msckf_vio</name>
<version>0.0.1</version> <version>0.0.1</version>
<description>Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation</description> <description>Multi-State Constraint Kalman Filter - Photometric expansion</description>
<maintainer email="sunke.polyu@gmail.com">Ke Sun</maintainer> <maintainer email="raphael@maenle.net">Raphael Maenle</maintainer>
<license>Penn Software License</license> <license>Penn Software License</license>
<author email="sunke.polyu@gmail.com">Ke Sun</author> <author email="raphael@maenle.net">Raphael Maenle</author>
<author email="kartikmohta@gmail.com">Kartik Mohta</author>
<buildtool_depend>catkin</buildtool_depend> <buildtool_depend>catkin</buildtool_depend>
@ -19,6 +18,7 @@
<depend>nav_msgs</depend> <depend>nav_msgs</depend>
<depend>sensor_msgs</depend> <depend>sensor_msgs</depend>
<depend>geometry_msgs</depend> <depend>geometry_msgs</depend>
<depend>visualization_msgs</depend>
<depend>eigen_conversions</depend> <depend>eigen_conversions</depend>
<depend>tf_conversions</depend> <depend>tf_conversions</depend>
<depend>random_numbers</depend> <depend>random_numbers</depend>

View File

@ -0,0 +1,97 @@
stereo callback()
create image pyramids
_Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK._
.
if first Frame:
*initialize first Frame ()
else:
*track Features ()
*addnewFeatures ()
*pruneGridFeatures()
_removes worst features from any overflowing grid_
publish features (u1, v1, u2, v2)
_undistorts them beforehand_
addnewFeatures()
*mask existing features
*detect new fast features
*collect in a grid, keep only best n per grid
*stereomatch()
*save inliers into a new feature with u,v on cam0 and cam1
track Features()
*integrateIMUData ()
_uses existing IMU data between two frames to calc. rotation between the two frames_
*predictFeatureTracking()
_compensates the rotation between consecutive frames - rotates previous camera frame features to current camera rotation_
*calcOpticalFlowPyrLK()
_measures the change between the features in the previous frame and in the current frame (using the predicted features)_
*remove points outside of image region
_how does this even happen?_
*stereo match()
_find tracked features from optical flow in the camera 1 image_
_remove all features that could not be matched_
*twoPointRansac(cam0)
*twoPointRansac(cam1)
_remove any features outside best found ransac model_
twoPointRansac()
*mark all points as inliers
*compensate rotation between frames
*normalize points
*calculate difference bewteen previous and current points
*mark large distances (over 50 pixels currently)
*calculate mean points distance
*return if inliers (non marked) < 3
*return if motion smaller than norm pixel unit
*ransac
*optimize with found inlier after random sample
*set inlier markers
initialize first Frame()
features = FastFeatureDetector detect ()
*stereo match ()
group features into grid
- according to position in the image
- sorting them by response
- save the top responses
- save the top responses
stereo match ()
*undistort cam0 Points
*project cam0 Points to cam1 to initialize points in cam1
*calculate lk optical flow
_used because camera calibrations not perfect enough_
_also, calculation more efficient, because LK calculated anyway_
*compute relative trans/rot between cam0 and cam1*
*remove outliers based on essential matrix
_essential matrix relates points in stereo image (pinhole model)_
for every point:
- calculate epipolar line of point in cam0
- calculate error of cam1 to epipolar line
- remove if to big

View File

@ -0,0 +1,82 @@
featureCallback
propagate IMU state()
state Augmentation()
add Feature Observations()
#the following possibly trigger ekf update step:
remove Lost Features ()
prune Camera State Buffer ()
remove Lost Features()
every feature that does not have a current observation:
*just delete if not enough features
check Motion of Feature ()
_calculation here makes no sense - he uses pixel position as direction vector for feature?_
*initialize Position ()
caculate feature Jakobian and Residual()
*for every observation in this feature
- calculate u and v in camera frames, based on estimated feature position
- input results into jakobi d(measurement)/d(camera 0/1)
- input results into jakobi d(camera 0/1)/d(state) and jakobi d(camera 0/1)/d(feature position)
- project both jakobis to nullspace of feature position jakobi
- calculate residual: measurement - u and v of camera frames
- project residual onto nullspace of feature position jakobi
- stack residual and jakobians
gating Test()
*measurementUpdate()
_use calculated residuals and jakobians to calculate change in error_
measurementUpdate():
- QR reduce the stacked Measurment Jakobis
- calcualte Kalman Gain based on Measurement Jakobian, Error-State Covariance and Noise
_does some fancy shit here_
- calculate estimated error after observation: delta_x = KalmanGain * residual
- add estimated error to state (imu states and cam states)
initialize Position ():
* create initial guess for global feature position ()
_uses first feature measurement on left camera and last feature measurement of right camera_
- transform first measurement to plane of last measurement
- calcualte least square point between rays
* get position approximation using measured feature positions
_using Levenberg Marqhart iterative search_
add Feature Observations()
* if feature not in map, add feature to map
_and add u0, v0, u1, v1 as first observation
* if feature in map, add new observation u0,v0,u1,v1
state Augmentation()
* Add estimated cam position to state
* Update P with Jakobian of cam Position
propagate IMU state ()
_uses IMU process model for every saved IMU state_
for every buffered imu state:
*remove bias
*Compute F and G matrix (continuous transition and noise cov.)
_using current orientation, gyro and acc. reading_
* approximate phi: phi = 1 + Fdt + ...
* calculate new state propagating through runge kutta
* modify transition matrix to have a propper null space?
* calculate Q = Phi*G*Q_noise*GT*PhiT
* calculate P = Phi*P*PhiT + Q
stateAugmentation ()
_save current IMU state as camera position_

159
src/image_handler.cpp Normal file
View File

@ -0,0 +1,159 @@
#include <iostream>
#include <algorithm>
#include <set>
#include <Eigen/Dense>
#include <sensor_msgs/image_encodings.h>
#include <random_numbers/random_numbers.h>
#include <msckf_vio/CameraMeasurement.h>
#include <msckf_vio/TrackingInfo.h>
#include <msckf_vio/image_processor.h>
namespace msckf_vio {
namespace image_handler {
void undistortPoint(
const cv::Point2f& pt_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs,
cv::Point2f& pt_out,
const cv::Matx33d &rectification_matrix,
const cv::Vec4d &new_intrinsics) {
std::vector<cv::Point2f> pts_in;
std::vector<cv::Point2f> pts_out;
pts_in.push_back(pt_in);
if (pts_in.size() == 0) return;
const cv::Matx33d K(
intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
const cv::Matx33d K_new(
new_intrinsics[0], 0.0, new_intrinsics[2],
0.0, new_intrinsics[1], new_intrinsics[3],
0.0, 0.0, 1.0);
if (distortion_model == "radtan") {
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else if (distortion_model == "equidistant") {
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else {
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
distortion_model.c_str());
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
pt_out = pts_out[0];
return;
}
void undistortPoints(
const std::vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs,
std::vector<cv::Point2f>& pts_out,
const cv::Matx33d &rectification_matrix,
const cv::Vec4d &new_intrinsics) {
if (pts_in.size() == 0) return;
const cv::Matx33d K(
intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
const cv::Matx33d K_new(
new_intrinsics[0], 0.0, new_intrinsics[2],
0.0, new_intrinsics[1], new_intrinsics[3],
0.0, 0.0, 1.0);
if (distortion_model == "radtan") {
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else if (distortion_model == "equidistant") {
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else {
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
distortion_model.c_str());
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
return;
}
std::vector<cv::Point2f> distortPoints(
const std::vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs) {
const cv::Matx33d K(intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
std::vector<cv::Point2f> pts_out;
if (distortion_model == "radtan") {
std::vector<cv::Point3f> homogenous_pts;
cv::convertPointsToHomogeneous(pts_in, homogenous_pts);
cv::projectPoints(homogenous_pts, cv::Vec3d::zeros(), cv::Vec3d::zeros(), K,
distortion_coeffs, pts_out);
} else if (distortion_model == "equidistant") {
cv::fisheye::distortPoints(pts_in, pts_out, K, distortion_coeffs);
} else {
ROS_WARN_ONCE("The model %s is unrecognized, using radtan instead...",
distortion_model.c_str());
std::vector<cv::Point3f> homogenous_pts;
cv::convertPointsToHomogeneous(pts_in, homogenous_pts);
cv::projectPoints(homogenous_pts, cv::Vec3d::zeros(), cv::Vec3d::zeros(), K,
distortion_coeffs, pts_out);
}
return pts_out;
}
cv::Point2f distortPoint(
const cv::Point2f& pt_in,
const cv::Vec4d& intrinsics,
const std::string& distortion_model,
const cv::Vec4d& distortion_coeffs) {
std::vector<cv::Point2f> pts_in;
pts_in.push_back(pt_in);
const cv::Matx33d K(intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
std::vector<cv::Point2f> pts_out;
if (distortion_model == "radtan") {
std::vector<cv::Point3f> homogenous_pts;
cv::convertPointsToHomogeneous(pts_in, homogenous_pts);
cv::projectPoints(homogenous_pts, cv::Vec3d::zeros(), cv::Vec3d::zeros(), K,
distortion_coeffs, pts_out);
} else if (distortion_model == "equidistant") {
cv::fisheye::distortPoints(pts_in, pts_out, K, distortion_coeffs);
} else {
ROS_WARN_ONCE("The model %s is unrecognized, using radtan instead...",
distortion_model.c_str());
std::vector<cv::Point3f> homogenous_pts;
cv::convertPointsToHomogeneous(pts_in, homogenous_pts);
cv::projectPoints(homogenous_pts, cv::Vec3d::zeros(), cv::Vec3d::zeros(), K,
distortion_coeffs, pts_out);
}
return pts_out[0];
}
} // namespace image_handler
} // namespace msckf_vio

View File

@ -17,6 +17,7 @@
#include <msckf_vio/TrackingInfo.h> #include <msckf_vio/TrackingInfo.h>
#include <msckf_vio/image_processor.h> #include <msckf_vio/image_processor.h>
#include <msckf_vio/utils.h> #include <msckf_vio/utils.h>
#include <msckf_vio/image_handler.h>
using namespace std; using namespace std;
using namespace cv; using namespace cv;
@ -43,49 +44,49 @@ ImageProcessor::~ImageProcessor() {
bool ImageProcessor::loadParameters() { bool ImageProcessor::loadParameters() {
// Camera calibration parameters // Camera calibration parameters
nh.param<string>("cam0/distortion_model", nh.param<string>("cam0/distortion_model",
cam0_distortion_model, string("radtan")); cam0.distortion_model, string("radtan"));
nh.param<string>("cam1/distortion_model", nh.param<string>("cam1/distortion_model",
cam1_distortion_model, string("radtan")); cam1.distortion_model, string("radtan"));
vector<int> cam0_resolution_temp(2); vector<int> cam0_resolution_temp(2);
nh.getParam("cam0/resolution", cam0_resolution_temp); nh.getParam("cam0/resolution", cam0_resolution_temp);
cam0_resolution[0] = cam0_resolution_temp[0]; cam0.resolution[0] = cam0_resolution_temp[0];
cam0_resolution[1] = cam0_resolution_temp[1]; cam0.resolution[1] = cam0_resolution_temp[1];
vector<int> cam1_resolution_temp(2); vector<int> cam1_resolution_temp(2);
nh.getParam("cam1/resolution", cam1_resolution_temp); nh.getParam("cam1/resolution", cam1_resolution_temp);
cam1_resolution[0] = cam1_resolution_temp[0]; cam1.resolution[0] = cam1_resolution_temp[0];
cam1_resolution[1] = cam1_resolution_temp[1]; cam1.resolution[1] = cam1_resolution_temp[1];
vector<double> cam0_intrinsics_temp(4); vector<double> cam0_intrinsics_temp(4);
nh.getParam("cam0/intrinsics", cam0_intrinsics_temp); nh.getParam("cam0/intrinsics", cam0_intrinsics_temp);
cam0_intrinsics[0] = cam0_intrinsics_temp[0]; cam0.intrinsics[0] = cam0_intrinsics_temp[0];
cam0_intrinsics[1] = cam0_intrinsics_temp[1]; cam0.intrinsics[1] = cam0_intrinsics_temp[1];
cam0_intrinsics[2] = cam0_intrinsics_temp[2]; cam0.intrinsics[2] = cam0_intrinsics_temp[2];
cam0_intrinsics[3] = cam0_intrinsics_temp[3]; cam0.intrinsics[3] = cam0_intrinsics_temp[3];
vector<double> cam1_intrinsics_temp(4); vector<double> cam1_intrinsics_temp(4);
nh.getParam("cam1/intrinsics", cam1_intrinsics_temp); nh.getParam("cam1/intrinsics", cam1_intrinsics_temp);
cam1_intrinsics[0] = cam1_intrinsics_temp[0]; cam1.intrinsics[0] = cam1_intrinsics_temp[0];
cam1_intrinsics[1] = cam1_intrinsics_temp[1]; cam1.intrinsics[1] = cam1_intrinsics_temp[1];
cam1_intrinsics[2] = cam1_intrinsics_temp[2]; cam1.intrinsics[2] = cam1_intrinsics_temp[2];
cam1_intrinsics[3] = cam1_intrinsics_temp[3]; cam1.intrinsics[3] = cam1_intrinsics_temp[3];
vector<double> cam0_distortion_coeffs_temp(4); vector<double> cam0_distortion_coeffs_temp(4);
nh.getParam("cam0/distortion_coeffs", nh.getParam("cam0/distortion_coeffs",
cam0_distortion_coeffs_temp); cam0_distortion_coeffs_temp);
cam0_distortion_coeffs[0] = cam0_distortion_coeffs_temp[0]; cam0.distortion_coeffs[0] = cam0_distortion_coeffs_temp[0];
cam0_distortion_coeffs[1] = cam0_distortion_coeffs_temp[1]; cam0.distortion_coeffs[1] = cam0_distortion_coeffs_temp[1];
cam0_distortion_coeffs[2] = cam0_distortion_coeffs_temp[2]; cam0.distortion_coeffs[2] = cam0_distortion_coeffs_temp[2];
cam0_distortion_coeffs[3] = cam0_distortion_coeffs_temp[3]; cam0.distortion_coeffs[3] = cam0_distortion_coeffs_temp[3];
vector<double> cam1_distortion_coeffs_temp(4); vector<double> cam1_distortion_coeffs_temp(4);
nh.getParam("cam1/distortion_coeffs", nh.getParam("cam1/distortion_coeffs",
cam1_distortion_coeffs_temp); cam1_distortion_coeffs_temp);
cam1_distortion_coeffs[0] = cam1_distortion_coeffs_temp[0]; cam1.distortion_coeffs[0] = cam1_distortion_coeffs_temp[0];
cam1_distortion_coeffs[1] = cam1_distortion_coeffs_temp[1]; cam1.distortion_coeffs[1] = cam1_distortion_coeffs_temp[1];
cam1_distortion_coeffs[2] = cam1_distortion_coeffs_temp[2]; cam1.distortion_coeffs[2] = cam1_distortion_coeffs_temp[2];
cam1_distortion_coeffs[3] = cam1_distortion_coeffs_temp[3]; cam1.distortion_coeffs[3] = cam1_distortion_coeffs_temp[3];
cv::Mat T_imu_cam0 = utils::getTransformCV(nh, "cam0/T_cam_imu"); cv::Mat T_imu_cam0 = utils::getTransformCV(nh, "cam0/T_cam_imu");
cv::Matx33d R_imu_cam0(T_imu_cam0(cv::Rect(0,0,3,3))); cv::Matx33d R_imu_cam0(T_imu_cam0(cv::Rect(0,0,3,3)));
@ -123,27 +124,27 @@ bool ImageProcessor::loadParameters() {
processor_config.stereo_threshold, 3); processor_config.stereo_threshold, 3);
ROS_INFO("==========================================="); ROS_INFO("===========================================");
ROS_INFO("cam0_resolution: %d, %d", ROS_INFO("cam0.resolution: %d, %d",
cam0_resolution[0], cam0_resolution[1]); cam0.resolution[0], cam0.resolution[1]);
ROS_INFO("cam0_intrinscs: %f, %f, %f, %f", ROS_INFO("cam0_intrinscs: %f, %f, %f, %f",
cam0_intrinsics[0], cam0_intrinsics[1], cam0.intrinsics[0], cam0.intrinsics[1],
cam0_intrinsics[2], cam0_intrinsics[3]); cam0.intrinsics[2], cam0.intrinsics[3]);
ROS_INFO("cam0_distortion_model: %s", ROS_INFO("cam0.distortion_model: %s",
cam0_distortion_model.c_str()); cam0.distortion_model.c_str());
ROS_INFO("cam0_distortion_coefficients: %f, %f, %f, %f", ROS_INFO("cam0_distortion_coefficients: %f, %f, %f, %f",
cam0_distortion_coeffs[0], cam0_distortion_coeffs[1], cam0.distortion_coeffs[0], cam0.distortion_coeffs[1],
cam0_distortion_coeffs[2], cam0_distortion_coeffs[3]); cam0.distortion_coeffs[2], cam0.distortion_coeffs[3]);
ROS_INFO("cam1_resolution: %d, %d", ROS_INFO("cam1.resolution: %d, %d",
cam1_resolution[0], cam1_resolution[1]); cam1.resolution[0], cam1.resolution[1]);
ROS_INFO("cam1_intrinscs: %f, %f, %f, %f", ROS_INFO("cam1_intrinscs: %f, %f, %f, %f",
cam1_intrinsics[0], cam1_intrinsics[1], cam1.intrinsics[0], cam1.intrinsics[1],
cam1_intrinsics[2], cam1_intrinsics[3]); cam1.intrinsics[2], cam1.intrinsics[3]);
ROS_INFO("cam1_distortion_model: %s", ROS_INFO("cam1.distortion_model: %s",
cam1_distortion_model.c_str()); cam1.distortion_model.c_str());
ROS_INFO("cam1_distortion_coefficients: %f, %f, %f, %f", ROS_INFO("cam1_distortion_coefficients: %f, %f, %f, %f",
cam1_distortion_coeffs[0], cam1_distortion_coeffs[1], cam1.distortion_coeffs[0], cam1.distortion_coeffs[1],
cam1_distortion_coeffs[2], cam1_distortion_coeffs[3]); cam1.distortion_coeffs[2], cam1.distortion_coeffs[3]);
cout << R_imu_cam0 << endl; cout << R_imu_cam0 << endl;
cout << t_imu_cam0.t() << endl; cout << t_imu_cam0.t() << endl;
@ -170,10 +171,6 @@ bool ImageProcessor::loadParameters() {
processor_config.ransac_threshold); processor_config.ransac_threshold);
ROS_INFO("stereo_threshold: %f", ROS_INFO("stereo_threshold: %f",
processor_config.stereo_threshold); processor_config.stereo_threshold);
ROS_INFO("OpenCV Major Version: %d",
CV_MAJOR_VERSION);
ROS_INFO("OpenCV Minor Version: %d",
CV_MINOR_VERSION);
ROS_INFO("==========================================="); ROS_INFO("===========================================");
return true; return true;
} }
@ -223,9 +220,7 @@ void ImageProcessor::stereoCallback(
sensor_msgs::image_encodings::MONO8); sensor_msgs::image_encodings::MONO8);
// Build the image pyramids once since they're used at multiple places // Build the image pyramids once since they're used at multiple places
createImagePyramids();
// removed due to alternate cuda construct
//createImagePyramids();
// Detect features in the first frame. // Detect features in the first frame.
if (is_first_img) { if (is_first_img) {
@ -302,7 +297,6 @@ void ImageProcessor::imuCallback(
void ImageProcessor::createImagePyramids() { void ImageProcessor::createImagePyramids() {
const Mat& curr_cam0_img = cam0_curr_img_ptr->image; const Mat& curr_cam0_img = cam0_curr_img_ptr->image;
// TODO: build cuda optical flow
buildOpticalFlowPyramid( buildOpticalFlowPyramid(
curr_cam0_img, curr_cam0_pyramid_, curr_cam0_img, curr_cam0_pyramid_,
Size(processor_config.patch_size, processor_config.patch_size), Size(processor_config.patch_size, processor_config.patch_size),
@ -310,7 +304,6 @@ void ImageProcessor::createImagePyramids() {
BORDER_CONSTANT, false); BORDER_CONSTANT, false);
const Mat& curr_cam1_img = cam1_curr_img_ptr->image; const Mat& curr_cam1_img = cam1_curr_img_ptr->image;
// TODO: build cuda optical flow
buildOpticalFlowPyramid( buildOpticalFlowPyramid(
curr_cam1_img, curr_cam1_pyramid_, curr_cam1_img, curr_cam1_pyramid_,
Size(processor_config.patch_size, processor_config.patch_size), Size(processor_config.patch_size, processor_config.patch_size),
@ -397,7 +390,6 @@ void ImageProcessor::predictFeatureTracking(
const cv::Matx33f& R_p_c, const cv::Matx33f& R_p_c,
const cv::Vec4d& intrinsics, const cv::Vec4d& intrinsics,
vector<cv::Point2f>& compensated_pts) { vector<cv::Point2f>& compensated_pts) {
// Return directly if there are no input features. // Return directly if there are no input features.
if (input_pts.size() == 0) { if (input_pts.size() == 0) {
compensated_pts.clear(); compensated_pts.clear();
@ -428,7 +420,6 @@ void ImageProcessor::trackFeatures() {
cam0_curr_img_ptr->image.rows / processor_config.grid_row; cam0_curr_img_ptr->image.rows / processor_config.grid_row;
static int grid_width = static int grid_width =
cam0_curr_img_ptr->image.cols / processor_config.grid_col; cam0_curr_img_ptr->image.cols / processor_config.grid_col;
// Compute a rough relative rotation which takes a vector // Compute a rough relative rotation which takes a vector
// from the previous frame to the current frame. // from the previous frame to the current frame.
Matx33f cam0_R_p_c; Matx33f cam0_R_p_c;
@ -462,9 +453,8 @@ void ImageProcessor::trackFeatures() {
vector<unsigned char> track_inliers(0); vector<unsigned char> track_inliers(0);
predictFeatureTracking(prev_cam0_points, predictFeatureTracking(prev_cam0_points,
cam0_R_p_c, cam0_intrinsics, curr_cam0_points); cam0_R_p_c, cam0.intrinsics, curr_cam0_points);
//TODO: change to GPU
calcOpticalFlowPyrLK( calcOpticalFlowPyrLK(
prev_cam0_pyramid_, curr_cam0_pyramid_, prev_cam0_pyramid_, curr_cam0_pyramid_,
prev_cam0_points, curr_cam0_points, prev_cam0_points, curr_cam0_points,
@ -558,14 +548,14 @@ void ImageProcessor::trackFeatures() {
// Step 2 and 3: RANSAC on temporal image pairs of cam0 and cam1. // Step 2 and 3: RANSAC on temporal image pairs of cam0 and cam1.
vector<int> cam0_ransac_inliers(0); vector<int> cam0_ransac_inliers(0);
twoPointRansac(prev_matched_cam0_points, curr_matched_cam0_points, twoPointRansac(prev_matched_cam0_points, curr_matched_cam0_points,
cam0_R_p_c, cam0_intrinsics, cam0_distortion_model, cam0_R_p_c, cam0.intrinsics, cam0.distortion_model,
cam0_distortion_coeffs, processor_config.ransac_threshold, cam0.distortion_coeffs, processor_config.ransac_threshold,
0.99, cam0_ransac_inliers); 0.99, cam0_ransac_inliers);
vector<int> cam1_ransac_inliers(0); vector<int> cam1_ransac_inliers(0);
twoPointRansac(prev_matched_cam1_points, curr_matched_cam1_points, twoPointRansac(prev_matched_cam1_points, curr_matched_cam1_points,
cam1_R_p_c, cam1_intrinsics, cam1_distortion_model, cam1_R_p_c, cam1.intrinsics, cam1.distortion_model,
cam1_distortion_coeffs, processor_config.ransac_threshold, cam1.distortion_coeffs, processor_config.ransac_threshold,
0.99, cam1_ransac_inliers); 0.99, cam1_ransac_inliers);
// Number of features after ransac. // Number of features after ransac.
@ -619,7 +609,6 @@ void ImageProcessor::stereoMatch(
const vector<cv::Point2f>& cam0_points, const vector<cv::Point2f>& cam0_points,
vector<cv::Point2f>& cam1_points, vector<cv::Point2f>& cam1_points,
vector<unsigned char>& inlier_markers) { vector<unsigned char>& inlier_markers) {
if (cam0_points.size() == 0) return; if (cam0_points.size() == 0) return;
if(cam1_points.size() == 0) { if(cam1_points.size() == 0) {
@ -627,37 +616,15 @@ void ImageProcessor::stereoMatch(
// rotation from stereo extrinsics // rotation from stereo extrinsics
const cv::Matx33d R_cam0_cam1 = R_cam1_imu.t() * R_cam0_imu; const cv::Matx33d R_cam0_cam1 = R_cam1_imu.t() * R_cam0_imu;
vector<cv::Point2f> cam0_points_undistorted; vector<cv::Point2f> cam0_points_undistorted;
undistortPoints(cam0_points, cam0_intrinsics, cam0_distortion_model, image_handler::undistortPoints(cam0_points, cam0.intrinsics, cam0.distortion_model,
cam0_distortion_coeffs, cam0_points_undistorted, cam0.distortion_coeffs, cam0_points_undistorted,
R_cam0_cam1); R_cam0_cam1);
cam1_points = distortPoints(cam0_points_undistorted, cam1_intrinsics,
cam1_distortion_model, cam1_distortion_coeffs); cam1_points = image_handler::distortPoints(cam0_points_undistorted, cam1.intrinsics,
cam1.distortion_model, cam1.distortion_coeffs);
} }
auto d_pyrLK_sparse = cuda::SparsePyrLKOpticalFlow::create(
Size(processor_config.patch_size, processor_config.patch_size),
processor_config.pyramid_levels,
processor_config.max_iteration,
true);
cam0_curr_img = cv::cuda::GpuMat(cam0_curr_img_ptr->image);
cam1_curr_img = cv::cuda::GpuMat(cam1_curr_img_ptr->image);
cam0_points_gpu = cv::cuda::GpuMat(cam0_points);
cam1_points_gpu = cv::cuda::GpuMat(cam1_points);
cv::cuda::GpuMat inlier_markers_gpu;
d_pyrLK_sparse->calc(cam0_curr_img,
cam1_curr_img,
cam0_points_gpu,
cam1_points_gpu,
inlier_markers_gpu,
noArray());
utils::download(cam1_points_gpu, cam1_points);
utils::download(inlier_markers_gpu, inlier_markers);
// Track features using LK optical flow method. // Track features using LK optical flow method.
/*
calcOpticalFlowPyrLK(curr_cam0_pyramid_, curr_cam1_pyramid_, calcOpticalFlowPyrLK(curr_cam0_pyramid_, curr_cam1_pyramid_,
cam0_points, cam1_points, cam0_points, cam1_points,
inlier_markers, noArray(), inlier_markers, noArray(),
@ -667,7 +634,7 @@ void ImageProcessor::stereoMatch(
processor_config.max_iteration, processor_config.max_iteration,
processor_config.track_precision), processor_config.track_precision),
cv::OPTFLOW_USE_INITIAL_FLOW); cv::OPTFLOW_USE_INITIAL_FLOW);
*/
// Mark those tracked points out of the image region // Mark those tracked points out of the image region
// as untracked. // as untracked.
for (int i = 0; i < cam1_points.size(); ++i) { for (int i = 0; i < cam1_points.size(); ++i) {
@ -694,16 +661,16 @@ void ImageProcessor::stereoMatch(
// essential matrix. // essential matrix.
vector<cv::Point2f> cam0_points_undistorted(0); vector<cv::Point2f> cam0_points_undistorted(0);
vector<cv::Point2f> cam1_points_undistorted(0); vector<cv::Point2f> cam1_points_undistorted(0);
undistortPoints( image_handler::undistortPoints(
cam0_points, cam0_intrinsics, cam0_distortion_model, cam0_points, cam0.intrinsics, cam0.distortion_model,
cam0_distortion_coeffs, cam0_points_undistorted); cam0.distortion_coeffs, cam0_points_undistorted);
undistortPoints( image_handler::undistortPoints(
cam1_points, cam1_intrinsics, cam1_distortion_model, cam1_points, cam1.intrinsics, cam1.distortion_model,
cam1_distortion_coeffs, cam1_points_undistorted); cam1.distortion_coeffs, cam1_points_undistorted);
double norm_pixel_unit = 4.0 / ( double norm_pixel_unit = 4.0 / (
cam0_intrinsics[0]+cam0_intrinsics[1]+ cam0.intrinsics[0]+cam0.intrinsics[1]+
cam1_intrinsics[0]+cam1_intrinsics[1]); cam1.intrinsics[0]+cam1.intrinsics[1]);
for (int i = 0; i < cam0_points_undistorted.size(); ++i) { for (int i = 0; i < cam0_points_undistorted.size(); ++i) {
if (inlier_markers[i] == 0) continue; if (inlier_markers[i] == 0) continue;
@ -730,8 +697,8 @@ void ImageProcessor::addNewFeatures() {
cam0_curr_img_ptr->image.rows / processor_config.grid_row; cam0_curr_img_ptr->image.rows / processor_config.grid_row;
static int grid_width = static int grid_width =
cam0_curr_img_ptr->image.cols / processor_config.grid_col; cam0_curr_img_ptr->image.cols / processor_config.grid_col;
// Create a mask to avoid redetecting existing features. // Create a mask to avoid redetecting existing features.
Mat mask(curr_img.rows, curr_img.cols, CV_8U, Scalar(1)); Mat mask(curr_img.rows, curr_img.cols, CV_8U, Scalar(1));
for (const auto& features : *curr_features_ptr) { for (const auto& features : *curr_features_ptr) {
@ -751,7 +718,6 @@ void ImageProcessor::addNewFeatures() {
mask(row_range, col_range) = 0; mask(row_range, col_range) = 0;
} }
} }
// Detect new features. // Detect new features.
vector<KeyPoint> new_features(0); vector<KeyPoint> new_features(0);
detector_ptr->detect(curr_img, new_features, mask); detector_ptr->detect(curr_img, new_features, mask);
@ -766,7 +732,6 @@ void ImageProcessor::addNewFeatures() {
new_feature_sieve[ new_feature_sieve[
row*processor_config.grid_col+col].push_back(feature); row*processor_config.grid_col+col].push_back(feature);
} }
new_features.clear(); new_features.clear();
for (auto& item : new_feature_sieve) { for (auto& item : new_feature_sieve) {
if (item.size() > processor_config.grid_max_feature_num) { if (item.size() > processor_config.grid_max_feature_num) {
@ -779,7 +744,6 @@ void ImageProcessor::addNewFeatures() {
} }
int detected_new_features = new_features.size(); int detected_new_features = new_features.size();
// Find the stereo matched points for the newly // Find the stereo matched points for the newly
// detected features. // detected features.
vector<cv::Point2f> cam0_points(new_features.size()); vector<cv::Point2f> cam0_points(new_features.size());
@ -807,7 +771,6 @@ void ImageProcessor::addNewFeatures() {
static_cast<double>(detected_new_features) < 0.1) static_cast<double>(detected_new_features) < 0.1)
ROS_WARN("Images at [%f] seems unsynced...", ROS_WARN("Images at [%f] seems unsynced...",
cam0_curr_img_ptr->header.stamp.toSec()); cam0_curr_img_ptr->header.stamp.toSec());
// Group the features into grids // Group the features into grids
GridFeatures grid_new_features; GridFeatures grid_new_features;
for (int code = 0; code < for (int code = 0; code <
@ -829,7 +792,6 @@ void ImageProcessor::addNewFeatures() {
new_feature.cam1_point = cam1_point; new_feature.cam1_point = cam1_point;
grid_new_features[code].push_back(new_feature); grid_new_features[code].push_back(new_feature);
} }
// Sort the new features in each grid based on its response. // Sort the new features in each grid based on its response.
for (auto& item : grid_new_features) for (auto& item : grid_new_features)
std::sort(item.second.begin(), item.second.end(), std::sort(item.second.begin(), item.second.end(),
@ -879,73 +841,6 @@ void ImageProcessor::pruneGridFeatures() {
return; return;
} }
void ImageProcessor::undistortPoints(
const vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,
const string& distortion_model,
const cv::Vec4d& distortion_coeffs,
vector<cv::Point2f>& pts_out,
const cv::Matx33d &rectification_matrix,
const cv::Vec4d &new_intrinsics) {
if (pts_in.size() == 0) return;
const cv::Matx33d K(
intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
const cv::Matx33d K_new(
new_intrinsics[0], 0.0, new_intrinsics[2],
0.0, new_intrinsics[1], new_intrinsics[3],
0.0, 0.0, 1.0);
if (distortion_model == "radtan") {
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else if (distortion_model == "equidistant") {
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else {
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
distortion_model.c_str());
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
}
return;
}
vector<cv::Point2f> ImageProcessor::distortPoints(
const vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,
const string& distortion_model,
const cv::Vec4d& distortion_coeffs) {
const cv::Matx33d K(intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
vector<cv::Point2f> pts_out;
if (distortion_model == "radtan") {
vector<cv::Point3f> homogenous_pts;
cv::convertPointsToHomogeneous(pts_in, homogenous_pts);
cv::projectPoints(homogenous_pts, cv::Vec3d::zeros(), cv::Vec3d::zeros(), K,
distortion_coeffs, pts_out);
} else if (distortion_model == "equidistant") {
cv::fisheye::distortPoints(pts_in, pts_out, K, distortion_coeffs);
} else {
ROS_WARN_ONCE("The model %s is unrecognized, using radtan instead...",
distortion_model.c_str());
vector<cv::Point3f> homogenous_pts;
cv::convertPointsToHomogeneous(pts_in, homogenous_pts);
cv::projectPoints(homogenous_pts, cv::Vec3d::zeros(), cv::Vec3d::zeros(), K,
distortion_coeffs, pts_out);
}
return pts_out;
}
void ImageProcessor::integrateImuData( void ImageProcessor::integrateImuData(
Matx33f& cam0_R_p_c, Matx33f& cam1_R_p_c) { Matx33f& cam0_R_p_c, Matx33f& cam1_R_p_c) {
// Find the start and the end limit within the imu msg buffer. // Find the start and the end limit within the imu msg buffer.
@ -997,7 +892,6 @@ void ImageProcessor::integrateImuData(
void ImageProcessor::rescalePoints( void ImageProcessor::rescalePoints(
vector<Point2f>& pts1, vector<Point2f>& pts2, vector<Point2f>& pts1, vector<Point2f>& pts2,
float& scaling_factor) { float& scaling_factor) {
scaling_factor = 0.0f; scaling_factor = 0.0f;
for (int i = 0; i < pts1.size(); ++i) { for (int i = 0; i < pts1.size(); ++i) {
@ -1027,7 +921,7 @@ void ImageProcessor::twoPointRansac(
// Check the size of input point size. // Check the size of input point size.
if (pts1.size() != pts2.size()) if (pts1.size() != pts2.size())
ROS_ERROR("Sets of different size (%i and %i) are used...", ROS_ERROR("Sets of different size (%lu and %lu) are used...",
pts1.size(), pts2.size()); pts1.size(), pts2.size());
double norm_pixel_unit = 2.0 / (intrinsics[0]+intrinsics[1]); double norm_pixel_unit = 2.0 / (intrinsics[0]+intrinsics[1]);
@ -1041,10 +935,10 @@ void ImageProcessor::twoPointRansac(
// Undistort all the points. // Undistort all the points.
vector<Point2f> pts1_undistorted(pts1.size()); vector<Point2f> pts1_undistorted(pts1.size());
vector<Point2f> pts2_undistorted(pts2.size()); vector<Point2f> pts2_undistorted(pts2.size());
undistortPoints( image_handler::undistortPoints(
pts1, intrinsics, distortion_model, pts1, intrinsics, distortion_model,
distortion_coeffs, pts1_undistorted); distortion_coeffs, pts1_undistorted);
undistortPoints( image_handler::undistortPoints(
pts2, intrinsics, distortion_model, pts2, intrinsics, distortion_model,
distortion_coeffs, pts2_undistorted); distortion_coeffs, pts2_undistorted);
@ -1262,7 +1156,6 @@ void ImageProcessor::twoPointRansac(
} }
void ImageProcessor::publish() { void ImageProcessor::publish() {
// Publish features. // Publish features.
CameraMeasurementPtr feature_msg_ptr(new CameraMeasurement); CameraMeasurementPtr feature_msg_ptr(new CameraMeasurement);
feature_msg_ptr->header.stamp = cam0_curr_img_ptr->header.stamp; feature_msg_ptr->header.stamp = cam0_curr_img_ptr->header.stamp;
@ -1282,12 +1175,12 @@ void ImageProcessor::publish() {
vector<Point2f> curr_cam0_points_undistorted(0); vector<Point2f> curr_cam0_points_undistorted(0);
vector<Point2f> curr_cam1_points_undistorted(0); vector<Point2f> curr_cam1_points_undistorted(0);
undistortPoints( image_handler::undistortPoints(
curr_cam0_points, cam0_intrinsics, cam0_distortion_model, curr_cam0_points, cam0.intrinsics, cam0.distortion_model,
cam0_distortion_coeffs, curr_cam0_points_undistorted); cam0.distortion_coeffs, curr_cam0_points_undistorted);
undistortPoints( image_handler::undistortPoints(
curr_cam1_points, cam1_intrinsics, cam1_distortion_model, curr_cam1_points, cam1.intrinsics, cam1.distortion_model,
cam1_distortion_coeffs, curr_cam1_points_undistorted); cam1.distortion_coeffs, curr_cam1_points_undistorted);
for (int i = 0; i < curr_ids.size(); ++i) { for (int i = 0; i < curr_ids.size(); ++i) {
feature_msg_ptr->features.push_back(FeatureMeasurement()); feature_msg_ptr->features.push_back(FeatureMeasurement());

File diff suppressed because it is too large Load Diff

View File

@ -11,20 +11,6 @@
namespace msckf_vio { namespace msckf_vio {
namespace utils { namespace utils {
void download(const cv::cuda::GpuMat& d_mat, std::vector<cv::Point2f>& vec)
{
vec.resize(d_mat.cols);
cv::Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]);
d_mat.download(mat);
}
void download(const cv::cuda::GpuMat& d_mat, std::vector<uchar>& vec)
{
vec.resize(d_mat.cols);
cv::Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]);
d_mat.download(mat);
}
Eigen::Isometry3d getTransformEigen(const ros::NodeHandle &nh, Eigen::Isometry3d getTransformEigen(const ros::NodeHandle &nh,
const std::string &field) { const std::string &field) {
Eigen::Isometry3d T; Eigen::Isometry3d T;