Compare commits

...

58 Commits

Author SHA1 Message Date
43ac48bf56 finalized README 2021-08-06 14:11:42 +02:00
e9d801bdc1 centers Image 2021-08-06 14:11:06 +02:00
4a5bdc735c adds youtube to README 2021-08-06 14:09:27 +02:00
9253fcab5f updates README 2021-08-06 14:05:19 +02:00
69d385f257 merges up-to-date stereo-photometric msckf approach into master 2021-08-06 13:51:09 +02:00
62cd89fd0d removed scaling 2019-07-19 17:27:13 +02:00
a8090ca58a added full switch 2019-07-19 17:20:10 +02:00
ed2ba61828 fixed anchor frame calcualtion 2019-07-17 10:34:28 +02:00
e94d4a06b5 added image rescaling factor 2019-07-16 09:53:30 +02:00
0ef71b9220 fixed anchor initialization and added image resizing for incomming into msckf 2019-07-12 18:02:29 +02:00
5a80f97b68 fixed visualization issue 2019-07-12 16:36:36 +02:00
876fa7617c changed patch size 2019-07-12 14:39:10 +02:00
14825c344e udpated to (barely) working 3x3 patch 2019-07-12 14:25:41 +02:00
02156bd89a changed visualization 2019-07-12 14:01:11 +02:00
1380ec426f fixed minor error when not enough samples, edited feature ammount and patch size to make irradiance msckf more stable 2019-07-09 11:24:25 +02:00
a7c296ca3d removed dx filter, corrected jacobi calculation with bigger sobel (and correct division), removed scale for mahalanobis 2019-07-05 13:51:58 +02:00
1a07ba3d3c added larger sobel filter in calculation - converges sometimes for a few seconds 2019-07-05 09:43:35 +02:00
3873c978dd added structure for stereo photometry - diverging 2019-07-03 17:48:54 +02:00
6ee756941c added stereo camera residual and jacobi to twomsckf - works 2019-07-03 16:11:23 +02:00
6bcc72f826 changed to simple irradiance calcualation with derivation of image per frame - not working 2019-07-02 16:58:03 +02:00
737c23f32a restructured calcualtion of patches in code 2019-07-02 08:32:56 +02:00
58fe991647 removed comments, reg. msckf not working currently 2019-06-28 18:21:36 +02:00
d013a1b080 added multiple couts for testing, not working 2019-06-28 17:47:47 +02:00
7b7e966217 added ground truth visualization 2019-06-28 12:13:02 +02:00
53e2a5d524 added ocvis output for multiple filter 2019-06-28 10:52:11 +02:00
3ae7bdb13a upated two calculation, still not working 2019-06-28 10:14:32 +02:00
715ca6a6b4 added two filter, not working yet - compare with htest 2019-06-27 19:22:08 +02:00
9f528c1ea1 added support for euroc dataset 2019-06-27 18:25:43 +02:00
bfb2a551a7 fixed timedelay for publishing structure when bigger time delays than queue allows for 2019-06-27 17:54:16 +02:00
af1820a238 added check if pre-undistorted, works for still distorted 2019-06-27 17:27:47 +02:00
655416a490 added image_handler undistorted image 2019-06-27 16:38:02 +02:00
010db87e4b tinytum works completely, image_handler equidistant distort/undistort work 2019-06-27 16:28:45 +02:00
5451c2d097 uncommented stuff 2019-06-27 16:04:29 +02:00
b3e86b3e64 changed structure for image undistort into image_handler 2019-06-27 15:57:24 +02:00
ebc73c0c5e not working, added stop and go to image processing, added undistorted image to image processing 2019-06-26 19:23:50 +02:00
273bbf8a94 added fov camera model 2019-06-25 19:49:04 +02:00
1d6100ed13 added live toggle for photometric 2019-06-25 19:05:53 +02:00
6f7f8b7892 added tiny tum 2019-06-25 12:03:08 +02:00
c565033d7f Add new file 2019-06-19 16:59:32 +00:00
bcf948bcc1 added bagcontrol here 2019-06-19 18:56:30 +02:00
02b9e0bc78 added scaling for images 2019-06-19 18:32:44 +02:00
c79fc173b3 minor changes in launch file and edited augmentationsize 2019-06-19 09:59:53 +02:00
ecab936c62 minor changes in launch file and edited augmentationsize 2019-06-19 09:59:22 +02:00
2d045660c2 added some debug output, added qr decomp 2019-06-19 09:13:46 +02:00
dcbc69a1c4 added fix to feature projection 2019-06-18 11:03:52 +02:00
1b29047451 sobel normalization added 2019-06-13 18:09:06 +02:00
07f4927128 added kernel calculation visualization; changed sobel filter to cv implementation, added octave export 2019-06-13 16:20:37 +02:00
acca4ab018 added kernel visualization 2019-06-12 18:39:40 +02:00
44fffa19a2 minor scale change in distance between pixels 2019-06-11 10:59:41 +02:00
9b4bf12846 removed incorrect prints 2019-06-11 09:53:43 +02:00
5f6bcd1784 added direct levenberg marqhart estimation for rho, was previously calculated from feature position 2019-06-04 17:38:11 +02:00
2a16fb2fc5 added sobel kernel for image gradient calcualtion 2019-05-31 11:38:49 +02:00
5d36a123a7 stash 2019-05-28 11:04:21 +02:00
0d544c5361 minor changes, no improvements 2019-05-24 17:22:02 +02:00
d9899227c2 added scaling changes to dI/dh for pixel size 2019-05-24 15:00:18 +02:00
e788854fe8 activated gating test 2019-05-23 09:55:37 +02:00
4842c175a5 full revert of master to original msckf. parallelization is now in cuda branch, photometic expansion in photometry branch 2019-04-17 16:52:21 +02:00
9ded72a366 reverted master to original 2019-04-17 16:23:45 +02:00
30 changed files with 2787 additions and 467 deletions

16
.vscode/c_cpp_properties.json vendored Normal file
View File

@ -0,0 +1,16 @@
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"compilerPath": "/usr/bin/gcc",
"cStandard": "c11",
"cppStandard": "c++14",
"intelliSenseMode": "clang-x64"
}
],
"version": 4
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

6
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,6 @@
{
"files.associations": {
"core": "cpp",
"sparsecore": "cpp"
}
}

BIN
GPATH Normal file

Binary file not shown.

BIN
GRTAGS Normal file

Binary file not shown.

BIN
GSYMS Normal file

Binary file not shown.

BIN
GTAGS Normal file

Binary file not shown.

View File

@ -1,12 +1,22 @@
# MSCKF\_VIO
The `MSCKF_VIO` package is a stereo version of MSCKF. The software takes in synchronized stereo images and IMU messages and generates real-time 6DOF pose estimation of the IMU frame.
The `MSCKF_VIO` package is a stereo-photometric version of MSCKF. The software takes in synchronized stereo images and IMU messages and generates real-time 6DOF pose estimation of the IMU frame.
The software is tested on Ubuntu 16.04 with ROS Kinetic.
This approach is based on the paper written by Ke Sun et al.
[https://arxiv.org/abs/1712.00036](https://arxiv.org/abs/1712.00036) and their Stereo MSCKF implementation, which tightly fuse the matched feature information of a stereo image pair into a 6DOF Pose.
The approach implemented in this repository follows the semi-dense msckf approach tightly fusing the photometric
information around the matched featues into the covariance matrix, as described and derived in the master thesis [Pose Estimation using a Stereo-Photometric Multi-State Constraint Kalman Filter](http://raphael.maenle.net/resources/sp-msckf/maenle_master_thesis.pdf).
It's positioning is comparable to the approach from Ke Sun et al. with the photometric approach, with a higher
computational load, especially with larger image patches around the feature. A video explaining the approach can be
found on [https://youtu.be/HrqQywAnenQ](https://youtu.be/HrqQywAnenQ):
<br/>
[![Stereo-Photometric MSCKF](https://img.youtube.com/vi/HrqQywAnenQ/0.jpg)](https://www.youtube.com/watch?v=HrqQywAnenQ)
<br/>
This software should be deployed using ROS Kinetic on Ubuntu 16.04 or 18.04.
Video: [https://www.youtube.com/watch?v=jxfJFgzmNSw&t](https://www.youtube.com/watch?v=jxfJFgzmNSw&t=3s)<br/>
Paper Draft: [https://arxiv.org/abs/1712.00036](https://arxiv.org/abs/1712.00036)
## License
@ -28,16 +38,6 @@ cd your_work_space
catkin_make --pkg msckf_vio --cmake-args -DCMAKE_BUILD_TYPE=Release
```
## Calibration
An accurate calibration is crucial for successfully running the software. To get the best performance of the software, the stereo cameras and IMU should be hardware synchronized. Note that for the stereo calibration, which includes the camera intrinsics, distortion, and extrinsics between the two cameras, you have to use a calibration software. **Manually setting these parameters will not be accurate enough.** [Kalibr](https://github.com/ethz-asl/kalibr) can be used for the stereo calibration and also to get the transformation between the stereo cameras and IMU. The yaml file generated by Kalibr can be directly used in this software. See calibration files in the `config` folder for details. The two calibration files in the `config` folder should work directly with the EuRoC and [fast flight](https://github.com/KumarRobotics/msckf_vio/wiki) datasets. The convention of the calibration file is as follows:
`camx/T_cam_imu`: takes a vector from the IMU frame to the camx frame.
`cam1/T_cn_cnm1`: takes a vector from the cam0 frame to the cam1 frame.
The filter uses the first 200 IMU messages to initialize the gyro bias, acc bias, and initial orientation. Therefore, the robot is required to start from a stationary state in order to initialize the VIO successfully.
## EuRoC and UPenn Fast flight dataset example usage
First obtain either the [EuRoC](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets) or the [UPenn fast flight](https://github.com/KumarRobotics/msckf_vio/wiki/Dataset) dataset.
@ -75,6 +75,8 @@ To visualize the pose and feature estimates you can use the provided rviz config
## ROS Nodes
The general structure is similar to the structure of the MSCKF implementation this repository is derived from.
### `image_processor` node
**Subscribed Topics**

View File

@ -9,7 +9,7 @@ cam0:
0, 0, 0, 1.000000000000000]
camera_model: pinhole
distortion_coeffs: [-0.28340811, 0.07395907, 0.00019359, 1.76187114e-05]
distortion_model: radtan
distortion_model: pre-radtan
intrinsics: [458.654, 457.296, 367.215, 248.375]
resolution: [752, 480]
timeshift_cam_imu: 0.0
@ -26,7 +26,7 @@ cam1:
0, 0, 0, 1.000000000000000]
camera_model: pinhole
distortion_coeffs: [-0.28368365, 0.07451284, -0.00010473, -3.55590700e-05]
distortion_model: radtan
distortion_model: pre-radtan
intrinsics: [457.587, 456.134, 379.999, 255.238]
resolution: [752, 480]
timeshift_cam_imu: 0.0

View File

@ -0,0 +1,36 @@
cam0:
T_cam_imu:
[-0.9995378259923383, 0.02917807204183088, -0.008530798463872679, 0.047094247958417004,
0.007526588843243184, -0.03435493139706542, -0.9993813532126198, -0.04788273017221637,
-0.029453096117288798, -0.9989836729399656, 0.034119442089241274, -0.0697294754693238,
0.0, 0.0, 0.0, 1.0]
camera_model: pinhole
distortion_coeffs: [0.0034823894022493434, 0.0007150348452162257, -0.0020532361418706202,
0.00020293673591811182]
distortion_model: pre-equidistant
intrinsics: [190.97847715128717, 190.9733070521226, 254.93170605935475, 256.8974428996504]
resolution: [512, 512]
rostopic: /cam0/image_raw
cam1:
T_cam_imu:
[-0.9995240747493029, 0.02986739485347808, -0.007717688852024281, -0.05374086123613335,
0.008095979457928231, 0.01256553460985914, -0.9998882749870535, -0.04648588412432889,
-0.02976708103202316, -0.9994748851595197, -0.0128013601698453, -0.07333210787623645,
0.0, 0.0, 0.0, 1.0]
T_cn_cnm1:
[0.9999994317488622, -0.0008361847221513937, -0.0006612844045898121, -0.10092123225528335,
0.0008042457277382264, 0.9988989443471681, -0.04690684567228134, -0.001964540595211977,
0.0006997790813734836, 0.04690628718225568, 0.9988990492196964, -0.0014663556043866572,
0.0, 0.0, 0.0, 1.0]
camera_model: pinhole
distortion_coeffs: [0.0034003170790442797, 0.001766278153469831, -0.00266312569781606,
0.0003299517423931039]
distortion_model: pre-equidistant
intrinsics: [190.44236969414825, 190.4344384721956, 252.59949716835982, 254.91723064636983]
resolution: [512, 512]
rostopic: /cam1/image_raw
T_imu_body:
[1.0000, 0.0000, 0.0000, 0.0000,
0.0000, 1.0000, 0.0000, 0.0000,
0.0000, 0.0000, 1.0000, 0.0000,
0.0000, 0.0000, 0.0000, 1.0000]

View File

@ -18,6 +18,8 @@ namespace msckf_vio {
struct Frame{
cv::Mat image;
cv::Mat dximage;
cv::Mat dyimage;
double exposureTime_ms;
};
@ -39,6 +41,7 @@ struct CameraCalibration{
cv::Vec4d distortion_coeffs;
movingWindow moving_window;
cv::Mat featureVisu;
int id;
};

View File

@ -70,6 +70,11 @@ struct Feature {
position(Eigen::Vector3d::Zero()),
is_initialized(false), is_anchored(false) {}
void Rhocost(const Eigen::Isometry3d& T_c0_ci,
const double x, const Eigen::Vector2d& z1, const Eigen::Vector2d& z2,
double& e) const;
/*
* @brief cost Compute the cost of the camera observations
* @param T_c0_c1 A rigid body transformation takes
@ -82,6 +87,13 @@ struct Feature {
const Eigen::Vector3d& x, const Eigen::Vector2d& z,
double& e) const;
bool initializeRho(const CamStateServer& cam_states);
inline void RhoJacobian(const Eigen::Isometry3d& T_c0_ci,
const double x, const Eigen::Vector2d& z1, const Eigen::Vector2d& z2,
Eigen::Matrix<double, 2, 1>& J, Eigen::Vector2d& r,
double& w) const;
/*
* @brief jacobian Compute the Jacobian of the camera observation
* @param T_c0_c1 A rigid body transformation takes
@ -97,6 +109,10 @@ struct Feature {
Eigen::Matrix<double, 2, 3>& J, Eigen::Vector2d& r,
double& w) const;
inline double generateInitialDepth(
const Eigen::Isometry3d& T_c1_c2, const Eigen::Vector2d& z1,
const Eigen::Vector2d& z2) const;
/*
* @brief generateInitialGuess Compute the initial guess of
* the feature's 3d position using only two views.
@ -121,6 +137,7 @@ struct Feature {
inline bool checkMotion(
const CamStateServer& cam_states) const;
/*
* @brief InitializeAnchor generates the NxN patch around the
* feature in the Anchor image
@ -148,6 +165,13 @@ struct Feature {
inline bool initializePosition(
const CamStateServer& cam_states);
cv::Point2f pixelDistanceAt(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const CameraCalibration& cam,
Eigen::Vector3d& in_p) const;
/*
* @brief project PositionToCamera Takes a 3d position in a world frame
* and projects it into the passed camera frame using pinhole projection
@ -160,6 +184,21 @@ struct Feature {
const CameraCalibration& cam,
Eigen::Vector3d& in_p) const;
double CompleteCvKernel(
const cv::Point2f pose,
const StateIDType& cam_state_id,
CameraCalibration& cam,
std::string type) const;
double cvKernel(
const cv::Point2f pose,
std::string type) const;
double Kernel(
const cv::Point2f pose,
const cv::Mat frame,
std::string type) const;
/*
* @brief IrradianceAnchorPatch_Camera returns irradiance values
* of the Anchor Patch position in a camera frame
@ -169,7 +208,7 @@ struct Feature {
bool estimate_FrameIrradiance(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
CameraCalibration& cam,
std::vector<double>& anchorPatch_estimate,
IlluminationParameter& estimatedIllumination) const;
@ -177,14 +216,17 @@ bool MarkerGeneration(
ros::Publisher& marker_pub,
const CamStateServer& cam_states) const;
bool VisualizeKernel(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0) const;
bool VisualizePatch(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
const std::vector<double> photo_r,
std::stringstream& ss,
cv::Point2f gradientVector,
cv::Point2f residualVector) const;
CameraCalibration& cam,
const Eigen::VectorXd& photo_r,
std::stringstream& ss) const;
/*
* @brief AnchorPixelToPosition uses the calcualted pixels
* of the anchor patch to generate 3D positions of all of em
@ -235,6 +277,14 @@ inline Eigen::Vector3d AnchorPixelToPosition(cv::Point2f in_p,
bool is_initialized;
bool is_anchored;
cv::Mat abs_xderImage;
cv::Mat abs_yderImage;
cv::Mat xderImage;
cv::Mat yderImage;
cv::Mat anchorImage_blurred;
cv::Point2f anchor_center_pos;
cv::Point2f undist_anchor_center_pos;
// Noise for a normalized feature measurement.
@ -250,6 +300,26 @@ typedef std::map<FeatureIDType, Feature, std::less<int>,
Eigen::aligned_allocator<
std::pair<const FeatureIDType, Feature> > > MapServer;
void Feature::Rhocost(const Eigen::Isometry3d& T_c0_ci,
const double x, const Eigen::Vector2d& z1, const Eigen::Vector2d& z2,
double& e) const
{
// Compute hi1, hi2, and hi3 as Equation (37).
const double& rho = x;
Eigen::Vector3d h = T_c0_ci.linear()*
Eigen::Vector3d(z1(0), z1(1), 1.0) + rho*T_c0_ci.translation();
double& h1 = h(0);
double& h2 = h(1);
double& h3 = h(2);
// Predict the feature observation in ci frame.
Eigen::Vector2d z_hat(h1/h3, h2/h3);
// Compute the residual.
e = (z_hat-z2).squaredNorm();
return;
}
void Feature::cost(const Eigen::Isometry3d& T_c0_ci,
const Eigen::Vector3d& x, const Eigen::Vector2d& z,
@ -262,9 +332,9 @@ void Feature::cost(const Eigen::Isometry3d& T_c0_ci,
Eigen::Vector3d h = T_c0_ci.linear()*
Eigen::Vector3d(alpha, beta, 1.0) + rho*T_c0_ci.translation();
double& h1 = h(0);
double& h2 = h(1);
double& h3 = h(2);
double h1 = h(0);
double h2 = h(1);
double h3 = h(2);
// Predict the feature observation in ci frame.
Eigen::Vector2d z_hat(h1/h3, h2/h3);
@ -274,6 +344,42 @@ void Feature::cost(const Eigen::Isometry3d& T_c0_ci,
return;
}
void Feature::RhoJacobian(const Eigen::Isometry3d& T_c0_ci,
const double x, const Eigen::Vector2d& z1, const Eigen::Vector2d& z2,
Eigen::Matrix<double, 2, 1>& J, Eigen::Vector2d& r,
double& w) const
{
const double& rho = x;
Eigen::Vector3d h = T_c0_ci.linear()*
Eigen::Vector3d(z1(0), z2(1), 1.0) + rho*T_c0_ci.translation();
double& h1 = h(0);
double& h2 = h(1);
double& h3 = h(2);
// Compute the Jacobian.
Eigen::Matrix3d W;
W.leftCols<2>() = T_c0_ci.linear().leftCols<2>();
W.rightCols<1>() = T_c0_ci.translation();
J(0,0) = -h1/(h3*h3);
J(1,0) = -h2/(h3*h3);
// Compute the residual.
Eigen::Vector2d z_hat(h1/h3, h2/h3);
r = z_hat - z2;
// Compute the weight based on the residual.
double e = r.norm();
if (e <= optimization_config.huber_epsilon)
w = 1.0;
else
w = optimization_config.huber_epsilon / (2*e);
return;
}
void Feature::jacobian(const Eigen::Isometry3d& T_c0_ci,
const Eigen::Vector3d& x, const Eigen::Vector2d& z,
Eigen::Matrix<double, 2, 3>& J, Eigen::Vector2d& r,
@ -313,9 +419,9 @@ void Feature::jacobian(const Eigen::Isometry3d& T_c0_ci,
return;
}
void Feature::generateInitialGuess(
double Feature::generateInitialDepth(
const Eigen::Isometry3d& T_c1_c2, const Eigen::Vector2d& z1,
const Eigen::Vector2d& z2, Eigen::Vector3d& p) const
const Eigen::Vector2d& z2) const
{
// Construct a least square problem to solve the depth.
Eigen::Vector3d m = T_c1_c2.linear() * Eigen::Vector3d(z1(0), z1(1), 1.0);
@ -330,6 +436,15 @@ void Feature::generateInitialGuess(
// Solve for the depth.
double depth = (A.transpose() * A).inverse() * A.transpose() * b;
return depth;
}
void Feature::generateInitialGuess(
const Eigen::Isometry3d& T_c1_c2, const Eigen::Vector2d& z1,
const Eigen::Vector2d& z2, Eigen::Vector3d& p) const
{
double depth = generateInitialDepth(T_c1_c2, z1, z2);
p(0) = z1(0) * depth;
p(1) = z1(1) * depth;
p(2) = depth;
@ -379,10 +494,62 @@ bool Feature::checkMotion(const CamStateServer& cam_states) const
else return false;
}
double Feature::CompleteCvKernel(
const cv::Point2f pose,
const StateIDType& cam_state_id,
CameraCalibration& cam,
std::string type) const
{
double delta = 0;
if(type == "Sobel_x")
delta = ((double)cam.moving_window.find(cam_state_id)->second.dximage.at<short>(pose.y, pose.x))/255.;
else if (type == "Sobel_y")
delta = ((double)cam.moving_window.find(cam_state_id)->second.dyimage.at<short>(pose.y, pose.x))/255.;
return delta;
}
double Feature::cvKernel(
const cv::Point2f pose,
std::string type) const
{
double delta = 0;
if(type == "Sobel_x")
delta = ((double)xderImage.at<short>(pose.y, pose.x))/255.;
else if (type == "Sobel_y")
delta = ((double)yderImage.at<short>(pose.y, pose.x))/255.;
return delta;
}
double Feature::Kernel(
const cv::Point2f pose,
const cv::Mat frame,
std::string type) const
{
Eigen::Matrix<double, 3, 3> kernel = Eigen::Matrix<double, 3, 3>::Zero();
if(type == "Sobel_x")
kernel << -1., 0., 1.,-2., 0., 2. , -1., 0., 1.;
else if(type == "Sobel_y")
kernel << -1., -2., -1., 0., 0., 0., 1., 2., 1.;
double delta = 0;
int offs = (int)(kernel.rows()-1)/2;
for(int i = 0; i < kernel.rows(); i++)
for(int j = 0; j < kernel.cols(); j++)
delta += ((float)frame.at<uint8_t>(pose.y+j-offs , pose.x+i-offs))/255. * (float)kernel(j,i);
return delta;
}
bool Feature::estimate_FrameIrradiance(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
CameraCalibration& cam,
std::vector<double>& anchorPatch_estimate,
IlluminationParameter& estimated_illumination) const
{
@ -391,11 +558,11 @@ bool Feature::estimate_FrameIrradiance(
// muliply by a and add b of this frame
auto anchor = observations.begin();
if(cam0.moving_window.find(anchor->first) == cam0.moving_window.end())
if(cam.moving_window.find(anchor->first) == cam.moving_window.end())
return false;
double anchorExposureTime_ms = cam0.moving_window.find(anchor->first)->second.exposureTime_ms;
double frameExposureTime_ms = cam0.moving_window.find(cam_state_id)->second.exposureTime_ms;
double anchorExposureTime_ms = cam.moving_window.find(anchor->first)->second.exposureTime_ms;
double frameExposureTime_ms = cam.moving_window.find(cam_state_id)->second.exposureTime_ms;
double a_A = anchorExposureTime_ms;
@ -530,21 +697,55 @@ bool Feature::MarkerGeneration(
marker_pub.publish(ma);
}
bool Feature::VisualizeKernel(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0) const
{
auto anchor = observations.begin();
cv::Mat anchorImage = cam0.moving_window.find(anchor->first)->second.image;
//cv::Mat xderImage;
//cv::Mat yderImage;
//cv::Sobel(anchorImage, xderImage, CV_8UC1, 1, 0, 3);
//cv::Sobel(anchorImage, yderImage, CV_8UC1, 0, 1, 3);
// cv::Mat xderImage2(anchorImage.rows, anchorImage.cols, anchorImage_blurred.type());
// cv::Mat yderImage2(anchorImage.rows, anchorImage.cols, anchorImage_blurred.type());
/*
for(int i = 1; i < anchorImage.rows-1; i++)
for(int j = 1; j < anchorImage.cols-1; j++)
xderImage2.at<uint8_t>(j,i) = 255.*fabs(Kernel(cv::Point2f(i,j), anchorImage_blurred, "Sobel_x"));
for(int i = 1; i < anchorImage.rows-1; i++)
for(int j = 1; j < anchorImage.cols-1; j++)
yderImage2.at<uint8_t>(j,i) = 255.*fabs(Kernel(cv::Point2f(i,j), anchorImage_blurred, "Sobel_y"));
*/
//cv::imshow("anchor", anchorImage);
cv::imshow("xder2", xderImage);
cv::imshow("yder2", yderImage);
cvWaitKey(0);
}
bool Feature::VisualizePatch(
const CAMState& cam_state,
const StateIDType& cam_state_id,
CameraCalibration& cam0,
const std::vector<double> photo_r,
std::stringstream& ss,
cv::Point2f gradientVector,
cv::Point2f residualVector) const
CameraCalibration& cam,
const Eigen::VectorXd& photo_r,
std::stringstream& ss) const
{
double rescale = 1;
//visu - anchor
auto anchor = observations.begin();
cv::Mat anchorImage = cam0.moving_window.find(anchor->first)->second.image;
cv::Mat anchorImage = cam.moving_window.find(anchor->first)->second.image;
cv::Mat dottedFrame(anchorImage.size(), CV_8UC3);
cv::cvtColor(anchorImage, dottedFrame, CV_GRAY2RGB);
@ -556,10 +757,10 @@ bool Feature::VisualizePatch(
cv::Point ys(point.x, point.y);
cv::rectangle(dottedFrame, xs, ys, cv::Scalar(0,255,255));
}
cam0.featureVisu = dottedFrame.clone();
cam.featureVisu = dottedFrame.clone();
// visu - feature
cv::Mat current_image = cam0.moving_window.find(cam_state_id)->second.image;
cv::Mat current_image = cam.moving_window.find(cam_state_id)->second.image;
cv::cvtColor(current_image, dottedFrame, CV_GRAY2RGB);
// set position in frame
@ -567,7 +768,7 @@ bool Feature::VisualizePatch(
std::vector<double> projectionPatch;
for(auto point : anchorPatch_3d)
{
cv::Point2f p_in_c0 = projectPositionToCamera(cam_state, cam_state_id, cam0, point);
cv::Point2f p_in_c0 = projectPositionToCamera(cam_state, cam_state_id, cam, point);
projectionPatch.push_back(PixelIrradiance(p_in_c0, current_image));
// visu - feature
cv::Point xs(p_in_c0.x, p_in_c0.y);
@ -575,7 +776,7 @@ bool Feature::VisualizePatch(
cv::rectangle(dottedFrame, xs, ys, cv::Scalar(0,255,0));
}
cv::hconcat(cam0.featureVisu, dottedFrame, cam0.featureVisu);
cv::hconcat(cam.featureVisu, dottedFrame, cam.featureVisu);
// patches visualization
@ -622,10 +823,14 @@ bool Feature::VisualizePatch(
cv::putText(irradianceFrame, namer.str() , cvPoint(30, 65+scale*2*N),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
cv::Point2f p_f(observations.find(cam_state_id)->second(0),observations.find(cam_state_id)->second(1));
cv::Point2f p_f;
if(cam.id == 0)
p_f = cv::Point2f(observations.find(cam_state_id)->second(0),observations.find(cam_state_id)->second(1));
else if(cam.id == 1)
p_f = cv::Point2f(observations.find(cam_state_id)->second(2),observations.find(cam_state_id)->second(3));
// move to real pixels
p_f = image_handler::distortPoint(p_f, cam0.intrinsics, cam0.distortion_model, cam0.distortion_coeffs);
p_f = image_handler::distortPoint(p_f, cam.intrinsics, cam.distortion_model, cam.distortion_coeffs);
for(int i = 0; i<N; i++)
{
for(int j = 0; j<N ; j++)
@ -642,22 +847,23 @@ bool Feature::VisualizePatch(
// residual grid projection, positive - red, negative - blue colored
namer.str(std::string());
namer << "residual";
std::cout << "-- photo_r -- \n" << photo_r << " -- " << std::endl;
cv::putText(irradianceFrame, namer.str() , cvPoint(30+scale*N, scale*N/2-5),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0,0,0), 1, CV_AA);
for(int i = 0; i<N; i++)
for(int j = 0; j<N; j++)
if(photo_r[i*N+j]>0)
if(photo_r(2*(i*N+j))>0)
cv::rectangle(irradianceFrame,
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Scalar(255 - photo_r[i*N+j]*255, 255 - photo_r[i*N+j]*255, 255),
cv::Scalar(255 - photo_r(2*(i*N+j)+1)*255, 255 - photo_r(2*(i*N+j)+1)*255, 255),
CV_FILLED);
else
cv::rectangle(irradianceFrame,
cv::Point(40+scale*(N+i+1), 15+scale*(N/2+j)),
cv::Point(40+scale*(N+i), 15+scale*(N/2+j+1)),
cv::Scalar(255, 255 + photo_r[i*N+j]*255, 255 + photo_r[i*N+j]*255),
cv::Scalar(255, 255 + photo_r(2*(i*N+j)+1)*255, 255 + photo_r(2*(i*N+j)+1)*255),
CV_FILLED);
// gradient arrow
@ -670,14 +876,15 @@ bool Feature::VisualizePatch(
*/
// residual gradient direction
/*
cv::arrowedLine(irradianceFrame,
cv::Point(40+scale*(N+N/2+0.5), 15+scale*((N-0.5))),
cv::Point(40+scale*(N+N/2+0.5)+scale*residualVector.x, 15+scale*(N-0.5)+scale*residualVector.y),
cv::Scalar(0, 255, 175),
3);
*/
cv::hconcat(cam0.featureVisu, irradianceFrame, cam0.featureVisu);
cv::hconcat(cam.featureVisu, irradianceFrame, cam.featureVisu);
/*
// visualize position of used observations and resulting feature position
@ -709,15 +916,15 @@ bool Feature::VisualizePatch(
// draw, x y position and arrow with direction - write z next to it
cv::resize(cam0.featureVisu, cam0.featureVisu, cv::Size(), rescale, rescale);
cv::resize(cam.featureVisu, cam.featureVisu, cv::Size(), rescale, rescale);
cv::hconcat(cam0.featureVisu, positionFrame, cam0.featureVisu);
cv::hconcat(cam.featureVisu, positionFrame, cam.featureVisu);
*/
// write feature position
std::stringstream pos_s;
pos_s << "u: " << observations.begin()->second(0) << " v: " << observations.begin()->second(1);
cv::putText(cam0.featureVisu, ss.str() , cvPoint(anchorImage.rows + 100, anchorImage.cols - 30),
cv::putText(cam.featureVisu, ss.str() , cvPoint(anchorImage.rows + 100, anchorImage.cols - 30),
cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(200,200,250), 1, CV_AA);
// create line?
@ -725,16 +932,51 @@ bool Feature::VisualizePatch(
std::stringstream loc;
// loc << "/home/raphael/dev/MSCKF_ws/img/feature_" << std::to_string(ros::Time::now().toSec()) << ".jpg";
//cv::imwrite(loc.str(), cam0.featureVisu);
//cv::imwrite(loc.str(), cam.featureVisu);
cv::imshow("patch", cam0.featureVisu);
cvWaitKey(0);
cv::imshow("patch", cam.featureVisu);
cvWaitKey(1);
}
float Feature::PixelIrradiance(cv::Point2f pose, cv::Mat image) const
{
return ((float)image.at<uint8_t>(pose.y, pose.x))/255;
return ((float)image.at<uint8_t>(pose.y, pose.x))/255.;
}
cv::Point2f Feature::pixelDistanceAt(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const CameraCalibration& cam,
Eigen::Vector3d& in_p) const
{
cv::Point2f cam_p = projectPositionToCamera(cam_state, cam_state_id, cam, in_p);
// create vector of patch in pixel plane
std::vector<cv::Point2f> surroundingPoints;
surroundingPoints.push_back(cv::Point2f(cam_p.x+1, cam_p.y));
surroundingPoints.push_back(cv::Point2f(cam_p.x-1, cam_p.y));
surroundingPoints.push_back(cv::Point2f(cam_p.x, cam_p.y+1));
surroundingPoints.push_back(cv::Point2f(cam_p.x, cam_p.y-1));
std::vector<cv::Point2f> pure;
image_handler::undistortPoints(surroundingPoints,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs,
pure);
// transfrom position to camera frame
// to get distance multiplier
Eigen::Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
const Eigen::Vector3d& t_c0_w = cam_state.position;
Eigen::Vector3d p_c0 = R_w_c0 * (in_p-t_c0_w);
// returns the distance between the pixel points in space
cv::Point2f distance(fabs(pure[0].x - pure[1].x), fabs(pure[2].y - pure[3].y));
return distance;
}
cv::Point2f Feature::projectPositionToCamera(
@ -746,26 +988,40 @@ cv::Point2f Feature::projectPositionToCamera(
Eigen::Isometry3d T_c0_w;
cv::Point2f out_p;
cv::Point2f my_p;
// transfrom position to camera frame
// cam0 position
Eigen::Matrix3d R_w_c0 = quaternionToRotation(cam_state.orientation);
const Eigen::Vector3d& t_c0_w = cam_state.position;
Eigen::Vector3d p_c0 = R_w_c0 * (in_p-t_c0_w);
out_p = cv::Point2f(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2));
// project point according to model
if(cam.id == 0)
{
Eigen::Vector3d p_c0 = R_w_c0 * (in_p-t_c0_w);
out_p = cv::Point2f(p_c0(0)/p_c0(2), p_c0(1)/p_c0(2));
// if(cam_state_id == observations.begin()->first)
//printf("undist:\n \tproj pos: %f, %f\n\ttrue pos: %f, %f\n", out_p.x, out_p.y, undist_anchor_center_pos.x, undist_anchor_center_pos.y);
cv::Point2f my_p = image_handler::distortPoint(out_p,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
}
// if camera is one, calcualte the cam1 position from cam0 position first
else if(cam.id == 1)
{
// cam1 position
Eigen::Matrix3d R_c0_c1 = CAMState::T_cam0_cam1.linear();
Eigen::Matrix3d R_w_c1 = R_c0_c1 * R_w_c0;
Eigen::Vector3d t_c1_w = t_c0_w - R_w_c1.transpose()*CAMState::T_cam0_cam1.translation();
// printf("truPosition: %f, %f, %f\n", position.x(), position.y(), position.z());
// printf("camPosition: %f, %f, %f\n", p_c0(0), p_c0(1), p_c0(2));
// printf("Photo projection: %f, %f\n", my_p[0].x, my_p[0].y);
Eigen::Vector3d p_c1 = R_w_c1 * (in_p-t_c1_w);
out_p = cv::Point2f(p_c1(0)/p_c1(2), p_c1(1)/p_c1(2));
}
// undistort point according to camera model
if (cam.distortion_model.substr(0,3) == "pre-")
my_p = cv::Point2f(out_p.x * cam.intrinsics[0] + cam.intrinsics[2], out_p.y * cam.intrinsics[1] + cam.intrinsics[3]);
else
my_p = image_handler::distortPoint(out_p,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
return my_p;
}
@ -790,61 +1046,240 @@ bool Feature::initializeAnchor(const CameraCalibration& cam, int N)
auto anchor = observations.begin();
if(cam.moving_window.find(anchor->first) == cam.moving_window.end())
{
return false;
}
cv::Mat anchorImage = cam.moving_window.find(anchor->first)->second.image;
cv::Mat anchorImage_deeper;
anchorImage.convertTo(anchorImage_deeper,CV_16S);
//TODO remove this?
cv::Sobel(anchorImage_deeper, xderImage, -1, 1, 0, 3);
cv::Sobel(anchorImage_deeper, yderImage, -1, 0, 1, 3);
xderImage/=8.;
yderImage/=8.;
cv::convertScaleAbs(xderImage, abs_xderImage);
cv::convertScaleAbs(yderImage, abs_yderImage);
cv::GaussianBlur(anchorImage, anchorImage_blurred, cv::Size(3,3), 0, 0, cv::BORDER_DEFAULT);
auto u = anchor->second(0);//*cam.intrinsics[0] + cam.intrinsics[2];
auto v = anchor->second(1);//*cam.intrinsics[1] + cam.intrinsics[3];
//testing
undist_anchor_center_pos = cv::Point2f(u,v);
//for NxN patch pixels around feature
int count = 0;
// get feature in undistorted pixel space
// this only reverts from 'pure' space into undistorted pixel space using camera matrix
cv::Point2f und_pix_p = image_handler::distortPoint(cv::Point2f(u, v),
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
// create vector of patch in pixel plane
for(double u_run = -n; u_run <= n; u_run++)
for(double v_run = -n; v_run <= n; v_run++)
anchorPatch_real.push_back(cv::Point2f(und_pix_p.x+u_run, und_pix_p.y+v_run));
// check if image has been pre-undistorted
if(cam.distortion_model.substr(0,3) == "pre")
{
//project onto pixel plane
undist_anchor_center_pos = cv::Point2f(u * cam.intrinsics[0] + cam.intrinsics[2], v * cam.intrinsics[1] + cam.intrinsics[3]);
// create vector of patch in pixel plane
for(double u_run = -n; u_run <= n; u_run++)
for(double v_run = -n; v_run <= n; v_run++)
anchorPatch_real.push_back(cv::Point2f(undist_anchor_center_pos.x+u_run, undist_anchor_center_pos.y+v_run));
//create undistorted pure points
image_handler::undistortPoints(anchorPatch_real,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs,
anchorPatch_ideal);
//project back into u,v
for(int i = 0; i < N*N; i++)
anchorPatch_ideal.push_back(cv::Point2f((anchorPatch_real[i].x-cam.intrinsics[2])/cam.intrinsics[0], (anchorPatch_real[i].y-cam.intrinsics[3])/cam.intrinsics[1]));
}
else
{
// get feature in undistorted pixel space
// this only reverts from 'pure' space into undistorted pixel space using camera matrix
cv::Point2f und_pix_p = image_handler::distortPoint(cv::Point2f(u, v),
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs);
// create vector of patch in pixel plane
for(double u_run = -n; u_run <= n; u_run++)
for(double v_run = -n; v_run <= n; v_run++)
anchorPatch_real.push_back(cv::Point2f(und_pix_p.x+u_run, und_pix_p.y+v_run));
//create undistorted pure points
image_handler::undistortPoints(anchorPatch_real,
cam.intrinsics,
cam.distortion_model,
cam.distortion_coeffs,
anchorPatch_ideal);
}
// save anchor position for later visualisaztion
anchor_center_pos = anchorPatch_real[(N*N-1)/2];
// save true pixel Patch position
for(auto point : anchorPatch_real)
if(point.x - n < 0 || point.x + n >= cam.resolution(0) || point.y - n < 0 || point.y + n >= cam.resolution(1))
if(point.x - n < 0 || point.x + n >= cam.resolution(0)-1 || point.y - n < 0 || point.y + n >= cam.resolution(1)-1)
return false;
for(auto point : anchorPatch_real)
anchorPatch.push_back(PixelIrradiance(point, anchorImage));
// project patch pixel to 3D space in camera coordinate system
for(auto point : anchorPatch_ideal)
anchorPatch_3d.push_back(AnchorPixelToPosition(point, cam));
is_anchored = true;
return true;
}
bool Feature::initializeRho(const CamStateServer& cam_states) {
// Organize camera poses and feature observations properly.
std::vector<Eigen::Isometry3d,
Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0);
std::vector<Eigen::Vector2d,
Eigen::aligned_allocator<Eigen::Vector2d> > measurements(0);
for (auto& m : observations) {
auto cam_state_iter = cam_states.find(m.first);
if (cam_state_iter == cam_states.end()) continue;
// Add the measurement.
measurements.push_back(m.second.head<2>());
measurements.push_back(m.second.tail<2>());
// This camera pose will take a vector from this camera frame
// to the world frame.
Eigen::Isometry3d cam0_pose;
cam0_pose.linear() = quaternionToRotation(
cam_state_iter->second.orientation).transpose();
cam0_pose.translation() = cam_state_iter->second.position;
Eigen::Isometry3d cam1_pose;
cam1_pose = cam0_pose * CAMState::T_cam0_cam1.inverse();
cam_poses.push_back(cam0_pose);
cam_poses.push_back(cam1_pose);
}
// All camera poses should be modified such that it takes a
// vector from the first camera frame in the buffer to this
// camera frame.
Eigen::Isometry3d T_c0_w = cam_poses[0];
T_anchor_w = T_c0_w;
for (auto& pose : cam_poses)
pose = pose.inverse() * T_c0_w;
// Generate initial guess
double initial_depth = 0;
initial_depth = generateInitialDepth(cam_poses[cam_poses.size()-1], measurements[0],
measurements[measurements.size()-1]);
double solution = 1.0/initial_depth;
// Apply Levenberg-Marquart method to solve for the 3d position.
double lambda = optimization_config.initial_damping;
int inner_loop_cntr = 0;
int outer_loop_cntr = 0;
bool is_cost_reduced = false;
double delta_norm = 0;
// Compute the initial cost.
double total_cost = 0.0;
for (int i = 0; i < cam_poses.size(); ++i) {
double this_cost = 0.0;
Rhocost(cam_poses[i], solution, measurements[0], measurements[i], this_cost);
total_cost += this_cost;
}
// Outer loop.
do {
Eigen::Matrix<double, 1, 1> A = Eigen::Matrix<double, 1, 1>::Zero();
Eigen::Matrix<double, 1, 1> b = Eigen::Matrix<double, 1, 1>::Zero();
for (int i = 0; i < cam_poses.size(); ++i) {
Eigen::Matrix<double, 2, 1> J;
Eigen::Vector2d r;
double w;
RhoJacobian(cam_poses[i], solution, measurements[0], measurements[i], J, r, w);
if (w == 1) {
A += J.transpose() * J;
b += J.transpose() * r;
} else {
double w_square = w * w;
A += w_square * J.transpose() * J;
b += w_square * J.transpose() * r;
}
}
// Inner loop.
// Solve for the delta that can reduce the total cost.
do {
Eigen::Matrix<double, 1, 1> damper = lambda*Eigen::Matrix<double, 1, 1>::Identity();
Eigen::Matrix<double, 1, 1> delta = (A+damper).ldlt().solve(b);
double new_solution = solution - delta(0,0);
delta_norm = delta.norm();
double new_cost = 0.0;
for (int i = 0; i < cam_poses.size(); ++i) {
double this_cost = 0.0;
Rhocost(cam_poses[i], new_solution, measurements[0], measurements[i], this_cost);
new_cost += this_cost;
}
if (new_cost < total_cost) {
is_cost_reduced = true;
solution = new_solution;
total_cost = new_cost;
lambda = lambda/10 > 1e-10 ? lambda/10 : 1e-10;
} else {
is_cost_reduced = false;
lambda = lambda*10 < 1e12 ? lambda*10 : 1e12;
}
} while (inner_loop_cntr++ <
optimization_config.inner_loop_max_iteration && !is_cost_reduced);
inner_loop_cntr = 0;
} while (outer_loop_cntr++ <
optimization_config.outer_loop_max_iteration &&
delta_norm > optimization_config.estimation_precision);
// Covert the feature position from inverse depth
// representation to its 3d coordinate.
Eigen::Vector3d final_position(measurements[0](0)/solution,
measurements[0](1)/solution, 1.0/solution);
// Check if the solution is valid. Make sure the feature
// is in front of every camera frame observing it.
bool is_valid_solution = true;
for (const auto& pose : cam_poses) {
Eigen::Vector3d position =
pose.linear()*final_position + pose.translation();
if (position(2) <= 0) {
is_valid_solution = false;
break;
}
}
//save inverse depth distance from camera
anchor_rho = solution;
// Convert the feature position to the world frame.
position = T_c0_w.linear()*final_position + T_c0_w.translation();
if (is_valid_solution)
is_initialized = true;
return is_valid_solution;
}
bool Feature::initializePosition(const CamStateServer& cam_states) {
// Organize camera poses and feature observations properly.
std::vector<Eigen::Isometry3d,
Eigen::aligned_allocator<Eigen::Isometry3d> > cam_poses(0);
std::vector<Eigen::Vector2d,
@ -982,6 +1417,7 @@ bool Feature::initializePosition(const CamStateServer& cam_states) {
//save inverse depth distance from camera
anchor_rho = solution(2);
std::cout << "from feature: " << anchor_rho << std::endl;
// Convert the feature position to the world frame.
position = T_c0_w.linear()*final_position + T_c0_w.translation();

View File

@ -16,6 +16,16 @@ namespace msckf_vio {
*/
namespace image_handler {
cv::Point2f pinholeDownProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics);
cv::Point2f pinholeUpProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics);
void undistortImage(
cv::InputArray src,
cv::OutputArray dst,
const std::string& distortion_model,
const cv::Vec4d& intrinsics,
const cv::Vec4d& distortion_coeffs);
void undistortPoints(
const std::vector<cv::Point2f>& pts_in,
const cv::Vec4d& intrinsics,

View File

@ -320,6 +320,8 @@ private:
return;
}
bool STREAMPAUSE;
// Indicate if this is the first image message.
bool is_first_img;

View File

@ -202,53 +202,111 @@ class MsckfVio {
Eigen::Vector4d& r);
// This function computes the Jacobian of all measurements viewed
// in the given camera states of this feature.
void featureJacobian(const FeatureIDType& feature_id,
bool featureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
void PhotometricMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::MatrixXd& H_x,
Eigen::MatrixXd& H_y,
Eigen::VectorXd& r);
void twodotMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::MatrixXd& H_x, Eigen::MatrixXd& H_y, Eigen::VectorXd& r);
void PhotometricFeatureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
bool ConstructJacobians(
Eigen::MatrixXd& H_rho,
Eigen::MatrixXd& H_pl,
Eigen::MatrixXd& H_pA,
const Feature& feature,
const StateIDType& cam_state_id,
Eigen::MatrixXd& H_xl,
Eigen::MatrixXd& H_yl);
bool PhotometricPatchPointResidual(
const StateIDType& cam_state_id,
const Feature& feature,
Eigen::VectorXd& r);
bool PhotometricPatchPointJacobian(
const CAMState& cam_state,
const StateIDType& cam_state_id,
const Feature& feature,
Eigen::Vector3d point,
int count,
Eigen::Matrix<double, 2, 1>& H_rhoj,
Eigen::Matrix<double, 2, 6>& H_plj,
Eigen::Matrix<double, 2, 6>& H_pAj,
Eigen::Matrix<double, 2, 4>& dI_dhj);
bool PhotometricMeasurementJacobian(
const StateIDType& cam_state_id,
const FeatureIDType& feature_id,
Eigen::MatrixXd& H_x,
Eigen::MatrixXd& H_y,
Eigen::VectorXd& r);
bool twodotFeatureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
bool PhotometricFeatureJacobian(
const FeatureIDType& feature_id,
const std::vector<StateIDType>& cam_state_ids,
Eigen::MatrixXd& H_x, Eigen::VectorXd& r);
void photometricMeasurementUpdate(const Eigen::MatrixXd& H, const Eigen::VectorXd& r);
void measurementUpdate(const Eigen::MatrixXd& H,
const Eigen::VectorXd& r);
void twoMeasurementUpdate(const Eigen::MatrixXd& H, const Eigen::VectorXd& r);
bool gatingTest(const Eigen::MatrixXd& H,
const Eigen::VectorXd&r, const int& dof);
const Eigen::VectorXd&r, const int& dof, int filter=0);
void removeLostFeatures();
void findRedundantCamStates(
std::vector<StateIDType>& rm_cam_state_ids);
void pruneLastCamStateBuffer();
void pruneCamStateBuffer();
// Reset the system online if the uncertainty is too large.
void onlineReset();
// Photometry flag
bool PHOTOMETRIC;
int FILTER;
// debug flag
bool STREAMPAUSE;
bool PRINTIMAGES;
bool GROUNDTRUTH;
bool nan_flag;
bool play;
double last_time_bound;
double time_offset;
// Patch size for Photometry
int N;
// Image rescale
int SCALE;
// Chi squared test table.
static std::map<int, double> chi_squared_test_table;
double eval_time;
IMUState timed_old_imu_state;
IMUState timed_old_true_state;
IMUState old_imu_state;
IMUState old_true_state;
// change in position
Eigen::Vector3d delta_position;
Eigen::Vector3d delta_orientation;
// State vector
StateServer state_server;
StateServer photometric_state_server;
// Ground truth state vector
StateServer true_state_server;
@ -311,6 +369,7 @@ class MsckfVio {
// Subscribers and publishers
ros::Subscriber imu_sub;
ros::Subscriber truth_sub;
ros::Publisher truth_odom_pub;
ros::Publisher odom_pub;
ros::Publisher marker_pub;
ros::Publisher feature_pub;

View File

@ -0,0 +1,38 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum-scaled.yaml"/>
<!-- Image Processor Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="image_processor"
args="standalone msckf_vio/ImageProcessorNodelet"
output="screen"
>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/>
<param name="grid_col" value="4"/>
<param name="grid_min_feature_num" value="3"/>
<param name="grid_max_feature_num" value="5"/>
<param name="pyramid_levels" value="3"/>
<param name="patch_size" value="15"/>
<param name="fast_threshold" value="10"/>
<param name="max_iteration" value="30"/>
<param name="track_precision" value="0.01"/>
<param name="ransac_threshold" value="3"/>
<param name="stereo_threshold" value="5"/>
<remap from="~imu" to="/imu0"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
</node>
</group>
</launch>

View File

@ -11,6 +11,9 @@
output="screen"
>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="grid_row" value="4"/>
<param name="grid_col" value="4"/>

View File

@ -22,10 +22,10 @@
<param name="PHOTOMETRIC" value="true"/>
<!-- Debugging Flaggs -->
<param name="PrintImages" value="false"/>
<param name="PrintImages" value="true"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="7"/>
<param name="patch_size_n" value="3"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>

View File

@ -17,6 +17,18 @@
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
<param name="FILTER" value="1"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="true"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="5"/>
<param name="image_scale" value ="1"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>

View File

@ -0,0 +1,77 @@
<launch>
<arg name="robot" default="firefly_sbx"/>
<arg name="fixed_frame_id" default="world"/>
<arg name="calibration_file"
default="$(find msckf_vio)/config/camchain-imucam-tum-scaled.yaml"/>
<!-- Image Processor Nodelet -->
<include file="$(find msckf_vio)/launch/image_processor_tinytum.launch">
<arg name="robot" value="$(arg robot)"/>
<arg name="calibration_file" value="$(arg calibration_file)"/>
</include>
<!-- Msckf Vio Nodelet -->
<group ns="$(arg robot)">
<node pkg="nodelet" type="nodelet" name="vio"
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<param name="FILTER" value="0"/>
<!-- Debugging Flaggs -->
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="3"/>
<param name="image_scale" value ="1"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
<param name="publish_tf" value="true"/>
<param name="frame_rate" value="20"/>
<param name="fixed_frame_id" value="$(arg fixed_frame_id)"/>
<param name="child_frame_id" value="odom"/>
<param name="max_cam_state_size" value="12"/>
<param name="position_std_threshold" value="8.0"/>
<param name="rotation_threshold" value="0.2618"/>
<param name="translation_threshold" value="0.4"/>
<param name="tracking_rate_threshold" value="0.5"/>
<!-- Feature optimization config -->
<param name="feature/config/translation_threshold" value="-1.0"/>
<!-- These values should be standard deviation -->
<param name="noise/gyro" value="0.005"/>
<param name="noise/acc" value="0.05"/>
<param name="noise/gyro_bias" value="0.001"/>
<param name="noise/acc_bias" value="0.01"/>
<param name="noise/feature" value="0.035"/>
<param name="initial_state/velocity/x" value="0.0"/>
<param name="initial_state/velocity/y" value="0.0"/>
<param name="initial_state/velocity/z" value="0.0"/>
<!-- These values should be covariance -->
<param name="initial_covariance/velocity" value="0.25"/>
<param name="initial_covariance/gyro_bias" value="0.01"/>
<param name="initial_covariance/acc_bias" value="0.01"/>
<param name="initial_covariance/extrinsic_rotation_cov" value="3.0462e-4"/>
<param name="initial_covariance/extrinsic_translation_cov" value="2.5e-5"/>
<param name="initial_covariance/irradiance_frame_bias" value="0.1"/>
<remap from="~imu" to="/imu0"/>
<remap from="~ground_truth" to="/vrpn_client/raw_transform"/>
<remap from="~cam0_image" to="/cam0/image_raw"/>
<remap from="~cam1_image" to="/cam1/image_raw"/>
<remap from="~features" to="image_processor/features"/>
</node>
</group>
</launch>

View File

@ -17,14 +17,16 @@
args='standalone msckf_vio/MsckfVioNodelet'
output="screen">
<!-- Photometry Flag-->
<param name="PHOTOMETRIC" value="true"/>
<!-- Filter Flag, 0 = msckf, 1 = photometric, 2 = two -->
<param name="FILTER" value="1"/>
<!-- Debugging Flaggs -->
<param name="PrintImages" value="true"/>
<param name="StreamPause" value="true"/>
<param name="PrintImages" value="false"/>
<param name="GroundTruth" value="false"/>
<param name="patch_size_n" value="5"/>
<param name="patch_size_n" value="3"/>
<!-- Calibration parameters -->
<rosparam command="load" file="$(arg calibration_file)"/>
@ -71,4 +73,6 @@
</node>
</group>
<!--node name="player" pkg="bagcontrol" type="control.py" /-->
</launch>

73
log Normal file
View File

@ -0,0 +1,73 @@
# Created by Octave 3.8.1, Wed Jun 12 14:36:37 2019 CEST <raphael@raphael-desktop>
# name: Hx
# type: matrix
# rows: 18
# columns: 49
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 313.795 -58.7912 139.778 -46.7616 144.055 86.9644 0 -314.123 55.6434 -140.648 46.7616 -144.055 -86.9644 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 441.06 -94.50069999999999 174.424 -53.7653 204.822 120.248 0 -441.685 90.1101 -175.657 53.7653 -204.822 -120.248 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 225.35 -54.5629 77.60599999999999 -21.1425 105.886 60.3706 0 -225.756 52.3373 -78.2406 21.1425 -105.886 -60.3706 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 175.128 20.6203 175.127 -79.63939999999999 73.245 62.1868 0 -174.573 -22.5235 -175.576 79.63939999999999 -73.245 -62.1868 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 296.962 43.5469 311.307 -143.667 123.399 108.355 0 -295.905 -46.7952 -312.063 143.667 -123.399 -108.355 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126.283 117.889 311.864 -161.264 38.8521 71.8019 0 -124.464 -119.541 -312.118 161.264 -38.8521 -71.8019 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.2502 63.7166 155.071 -80.81950000000001 12.7732 32.1826 0 -48.2934 -64.4113 -155.157 80.81950000000001 -12.7732 -32.1826 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69.59699999999999 154.579 335.384 -179.355 9.212580000000001 62.0364 0 -67.35599999999999 -155.735 -335.462 179.355 -9.212580000000001 -62.0364 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -66.6965 304.947 500.218 -285.589 -71.31010000000001 55.5058 0 70.8009 -305.077 -499.831 285.589 71.31010000000001 -55.5058 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 323.404 -62.2043 141.092 -46.6015 148.737 89.1108 0 0 0 0 0 0 0 0 -324.336 57.8552 -141.991 46.6015 -148.737 -89.1108 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 454.208 -99.3095 175.986 -53.4094 211.276 123.174 0 0 0 0 0 0 0 0 -455.779 93.0992 -177.158 53.4094 -211.276 -123.174 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 231.884 -57.0266 78.2559 -20.8926 109.118 61.8183 0 0 0 0 0 0 0 0 -232.824 53.8025 -78.80719999999999 20.8926 -109.118 -61.8183 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 181.715 18.8525 177.045 -80.08499999999999 76.3716 63.8254 0 0 0 0 0 0 0 0 -181.07 -20.839 -177.959 80.08499999999999 -76.3716 -63.8254 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 308.249 40.5812 314.711 -144.494 128.766 111.207 0 0 0 0 0 0 0 0 -306.972 -43.8825 -316.328 144.494 -128.766 -111.207 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133.309 116.865 315.474 -162.598 42.0763 73.8353 0 0 0 0 0 0 0 0 -130.603 -117.454 -316.931 162.598 -42.0763 -73.8353 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52.4426 63.3607 156.902 -81.5288 14.2139 33.1222 0 0 0 0 0 0 0 0 -50.9976 -63.4393 -157.607 81.5288 -14.2139 -33.1222 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75.5508 154.234 339.369 -180.995 11.859 63.8956 0 0 0 0 0 0 0 0 -72.1041 -153.816 -340.865 180.995 -11.859 -63.8956 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -62.0551 306.357 506.351 -288.542 -69.50409999999999 57.4562 0 0 0 0 0 0 0 0 68.6262 -303.028 -508.423 288.542 69.50409999999999 -57.4562 1 0 0 0 0 0 0 0
# name: Hy
# type: matrix
# rows: 18
# columns: 14
1.56267 0 0 0 0 0 0 0 0 0 0.252873 0 0 0.110387
0 1.56267 0 0 0 0 0 0 0 0 0.453168 0 0 0.162961
0 0 1.56267 0 0 0 0 0 0 0 0.638441 0 0 0.0873758
0 0 0 1.56267 0 0 0 0 0 0 0.21031 0 0 0.0321517
0 0 0 0 1.56267 0 0 0 0 0 0.375554 0 0 0.0505151
0 0 0 0 0 1.56267 0 0 0 0 0.638441 0 0 -0.0336034
0 0 0 0 0 0 1.56267 0 0 0 0.157733 0 0 -0.0232704
0 0 0 0 0 0 0 1.56267 0 0 0.212814 0 0 -0.0688343
0 0 0 0 0 0 0 0 1.56267 0 0.360532 0 0 -0.187745
1.56267 0 0 0 0 0 0 0 0 0 0 0.252873 0 0.322811
0 1.56267 0 0 0 0 0 0 0 0 0 0.453168 0 0.467319
0 0 1.56267 0 0 0 0 0 0 0 0 0.638441 0 0.245907
0 0 0 1.56267 0 0 0 0 0 0 0 0.21031 0 0.135725
0 0 0 0 1.56267 0 0 0 0 0 0 0.375554 0 0.225277
0 0 0 0 0 1.56267 0 0 0 0 0 0.638441 0 0.012926
0 0 0 0 0 0 1.56267 0 0 0 0 0.157733 0 -0.0108962
0 0 0 0 0 0 0 1.56267 0 0 0 0.212814 0 -0.06974909999999999
0 0 0 0 0 0 0 0 1.56267 0 0 0.360532 0 -0.318846
# name: r
# type: matrix
# rows: 18
# columns: 1
0.0354809
0.0153183
0.0570191
-0.0372801
0.0878601
0.06811780000000001
-0.00426164
5.162985999041026e-321
6.927779999999998e-310
0
2.121999999910509e-314
0
0
0
3.6073900000086e-313
4.446590812571219e-323
3.952525166729972e-323
3.952525166729972e-323

64
src/bagcontrol.py Normal file
View File

@ -0,0 +1,64 @@
#!/usr/bin/env python
import rosbag
import rospy
from sensor_msgs.msg import Imu, Image
from geometry_msgs.msg import TransformStamped
import time
import signal
import sys
def signal_handler(sig, frame):
print('gracefully exiting the program.')
bag.close()
sys.exit(0)
def main():
global bag
cam0_topic = '/cam0/image_raw'
cam1_topic = '/cam1/image_raw'
imu0_topic = '/imu0'
grnd_topic = '/vrpn_client/raw_transform'
rospy.init_node('controlbag')
rospy.set_param('play_bag', False)
cam0_pub = rospy.Publisher(cam0_topic, Image, queue_size=10)
cam1_pub = rospy.Publisher(cam1_topic, Image, queue_size=10)
imu0_pub = rospy.Publisher(imu0_topic, Imu, queue_size=10)
grnd_pub = rospy.Publisher(grnd_topic, TransformStamped, queue_size=10)
signal.signal(signal.SIGINT, signal_handler)
bag = rosbag.Bag('/home/raphael/dev/MSCKF_ws/bag/TUM/dataset-corridor1_1024_16.bag')
for topic, msg, t in bag.read_messages(topics=[cam0_topic, cam1_topic, imu0_topic, grnd_topic]):
# pause if parameter set to false
flag = False
while not rospy.get_param('/play_bag'):
time.sleep(0.01)
if not flag:
print("stopped playback")
flag = not flag
if flag:
print("resume playback")
if topic == cam0_topic:
cam0_pub.publish(msg)
elif topic == cam1_topic:
cam1_pub.publish(msg)
elif topic == imu0_topic:
imu0_pub.publish(msg)
elif topic ==grnd_topic:
grnd_pub.publish(msg)
#print msg
bag.close()
if __name__== "__main__":
main()

64
src/control.py Executable file
View File

@ -0,0 +1,64 @@
#!/usr/bin/env python
import rosbag
import rospy
from sensor_msgs.msg import Imu, Image
from geometry_msgs.msg import TransformStamped
import time
import signal
import sys
def signal_handler(sig, frame):
print('gracefully exiting the program.')
bag.close()
sys.exit(0)
def main():
global bag
cam0_topic = '/cam0/image_raw'
cam1_topic = '/cam1/image_raw'
imu0_topic = '/imu0'
grnd_topic = '/vrpn_client/raw_transform'
rospy.init_node('controlbag')
rospy.set_param('play_bag', False)
cam0_pub = rospy.Publisher(cam0_topic, Image, queue_size=10)
cam1_pub = rospy.Publisher(cam1_topic, Image, queue_size=10)
imu0_pub = rospy.Publisher(imu0_topic, Imu, queue_size=10)
grnd_pub = rospy.Publisher(grnd_topic, TransformStamped, queue_size=10)
signal.signal(signal.SIGINT, signal_handler)
bag = rosbag.Bag('/home/raphael/dev/MSCKF_ws/bag/TUM/dataset-corridor1_1024_16.bag')
for topic, msg, t in bag.read_messages(topics=[cam0_topic, cam1_topic, imu0_topic, grnd_topic]):
# pause if parameter set to false
flag = False
while not rospy.get_param('/play_bag'):
time.sleep(0.01)
if not flag:
print("stopped playback")
flag = not flag
if flag:
print("resume playback")
if topic == cam0_topic:
cam0_pub.publish(msg)
elif topic == cam1_topic:
cam1_pub.publish(msg)
elif topic == imu0_topic:
imu0_pub.publish(msg)
elif topic ==grnd_topic:
grnd_pub.publish(msg)
#print msg
bag.close()
if __name__== "__main__":
main()

View File

@ -14,6 +14,40 @@ namespace msckf_vio {
namespace image_handler {
cv::Point2f pinholeDownProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics)
{
return cv::Point2f(p_in.x * intrinsics[0] + intrinsics[2], p_in.y * intrinsics[1] + intrinsics[3]);
}
cv::Point2f pinholeUpProject(const cv::Point2f& p_in, const cv::Vec4d& intrinsics)
{
return cv::Point2f((p_in.x - intrinsics[2])/intrinsics[0], (p_in.y - intrinsics[3])/intrinsics[1]);
}
void undistortImage(
cv::InputArray src,
cv::OutputArray dst,
const std::string& distortion_model,
const cv::Vec4d& intrinsics,
const cv::Vec4d& distortion_coeffs)
{
const cv::Matx33d K(intrinsics[0], 0.0, intrinsics[2],
0.0, intrinsics[1], intrinsics[3],
0.0, 0.0, 1.0);
if (distortion_model == "pre-equidistant")
cv::fisheye::undistortImage(src, dst, K, distortion_coeffs, K);
else if (distortion_model == "equidistant")
src.copyTo(dst);
else if (distortion_model == "pre-radtan")
cv::undistort(src, dst, K, distortion_coeffs, K);
else if (distortion_model == "radtan")
src.copyTo(dst);
}
void undistortPoint(
const cv::Point2f& pt_in,
const cv::Vec4d& intrinsics,
@ -42,10 +76,37 @@ void undistortPoint(
if (distortion_model == "radtan") {
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else if (distortion_model == "equidistant") {
}
// equidistant
else if (distortion_model == "equidistant") {
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else {
}
// fov
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
float omega = distortion_coeffs[0];
float rd = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float ru = tan(rd * omega)/(2 * tan(omega / 2));
cv::Point2f newPoint(
((pts_in[i].x - intrinsics[2]) / intrinsics[0]) * (ru / rd),
((pts_in[i].y - intrinsics[3]) / intrinsics[1]) * (ru / rd));
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
temp_pts_out.push_back(pinholeUpProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
distortion_model.c_str());
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
@ -79,10 +140,35 @@ void undistortPoints(
if (distortion_model == "radtan") {
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else if (distortion_model == "equidistant") {
}
else if (distortion_model == "equidistant") {
cv::fisheye::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
rectification_matrix, K_new);
} else {
}
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
float omega = distortion_coeffs[0];
float rd = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float ru = tan(rd * omega)/(2 * tan(omega / 2));
cv::Point2f newPoint(
((pts_in[i].x - intrinsics[2]) / intrinsics[0]) * (ru / rd),
((pts_in[i].y - intrinsics[3]) / intrinsics[1]) * (ru / rd));
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
temp_pts_out.push_back(pinholeUpProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
ROS_WARN_ONCE("The model %s is unrecognized, use radtan instead...",
distortion_model.c_str());
cv::undistortPoints(pts_in, pts_out, K, distortion_coeffs,
@ -110,7 +196,31 @@ std::vector<cv::Point2f> distortPoints(
distortion_coeffs, pts_out);
} else if (distortion_model == "equidistant") {
cv::fisheye::distortPoints(pts_in, pts_out, K, distortion_coeffs);
} else {
}
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
// based on 'straight lines have to be straight'
float ru = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float omega = distortion_coeffs[0];
float rd = 1 / (omega)*atan(2*ru*tan(omega / 2));
cv::Point2f newPoint(
pts_in[i].x * (rd/ru) * intrinsics[0] + intrinsics[2],
pts_in[i].y * (rd/ru) * intrinsics[1] + intrinsics[3]);
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
temp_pts_out.push_back(pinholeDownProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
ROS_WARN_ONCE("The model %s is unrecognized, using radtan instead...",
distortion_model.c_str());
std::vector<cv::Point3f> homogenous_pts;
@ -143,7 +253,31 @@ cv::Point2f distortPoint(
distortion_coeffs, pts_out);
} else if (distortion_model == "equidistant") {
cv::fisheye::distortPoints(pts_in, pts_out, K, distortion_coeffs);
} else {
}
else if (distortion_model == "fov") {
for(int i = 0; i < pts_in.size(); i++)
{
// based on 'straight lines have to be straight'
float ru = sqrt(pts_in[i].x * pts_in[i].x + pts_in[i].y * pts_in[i].y);
float omega = distortion_coeffs[0];
float rd = 1 / (omega)*atan(2*ru*tan(omega / 2));
cv::Point2f newPoint(
pts_in[i].x * (rd/ru) * intrinsics[0] + intrinsics[2],
pts_in[i].y * (rd/ru) * intrinsics[1] + intrinsics[3]);
pts_out.push_back(newPoint);
}
}
else if (distortion_model == "pre-equidistant" or distortion_model == "pre-radtan")
{
std::vector<cv::Point2f> temp_pts_out;
for(int i = 0; i < pts_in.size(); i++)
pts_out.push_back(pinholeDownProject(pts_in[i], intrinsics));
pts_out = temp_pts_out;
}
else {
ROS_WARN_ONCE("The model %s is unrecognized, using radtan instead...",
distortion_model.c_str());
std::vector<cv::Point3f> homogenous_pts;
@ -155,5 +289,5 @@ cv::Point2f distortPoint(
return pts_out[0];
}
} // namespace image_handler
} // namespace msckf_vio
} // namespace image_handler
} // namespace msckf_vio

View File

@ -42,6 +42,9 @@ ImageProcessor::~ImageProcessor() {
}
bool ImageProcessor::loadParameters() {
// debug parameters
nh.param<bool>("StreamPause", STREAMPAUSE, false);
// Camera calibration parameters
nh.param<string>("cam0/distortion_model",
cam0.distortion_model, string("radtan"));
@ -211,7 +214,9 @@ void ImageProcessor::stereoCallback(
const sensor_msgs::ImageConstPtr& cam0_img,
const sensor_msgs::ImageConstPtr& cam1_img) {
//cout << "==================================" << endl;
// stop playing bagfile if printing images
//if(STREAMPAUSE)
// nh.setParam("/play_bag_image", false);
// Get the current image.
cam0_curr_img_ptr = cv_bridge::toCvShare(cam0_img,
@ -219,12 +224,27 @@ void ImageProcessor::stereoCallback(
cam1_curr_img_ptr = cv_bridge::toCvShare(cam1_img,
sensor_msgs::image_encodings::MONO8);
ros::Time start_time = ros::Time::now();
cv::Mat new_cam0;
cv::Mat new_cam1;
image_handler::undistortImage(cam0_curr_img_ptr->image, new_cam0, cam0.distortion_model, cam0.intrinsics, cam0.distortion_coeffs);
image_handler::undistortImage(cam1_curr_img_ptr->image, new_cam1, cam1.distortion_model, cam1.intrinsics, cam1.distortion_coeffs);
new_cam0.copyTo(cam0_curr_img_ptr->image);
new_cam1.copyTo(cam1_curr_img_ptr->image);
//ROS_INFO("Publishing: %f",
// (ros::Time::now()-start_time).toSec());
// Build the image pyramids once since they're used at multiple places
createImagePyramids();
// Detect features in the first frame.
if (is_first_img) {
ros::Time start_time = ros::Time::now();
start_time = ros::Time::now();
initializeFirstFrame();
//ROS_INFO("Detection time: %f",
// (ros::Time::now()-start_time).toSec());
@ -237,7 +257,7 @@ void ImageProcessor::stereoCallback(
// (ros::Time::now()-start_time).toSec());
} else {
// Track the feature in the previous image.
ros::Time start_time = ros::Time::now();
start_time = ros::Time::now();
trackFeatures();
//ROS_INFO("Tracking time: %f",
// (ros::Time::now()-start_time).toSec());
@ -245,6 +265,7 @@ void ImageProcessor::stereoCallback(
// Add new features into the current image.
start_time = ros::Time::now();
addNewFeatures();
//ROS_INFO("Addition time: %f",
// (ros::Time::now()-start_time).toSec());
@ -267,16 +288,18 @@ void ImageProcessor::stereoCallback(
// (ros::Time::now()-start_time).toSec());
// Publish features in the current image.
ros::Time start_time = ros::Time::now();
start_time = ros::Time::now();
publish();
//ROS_INFO("Publishing: %f",
// (ros::Time::now()-start_time).toSec());
// Update the previous image and previous features.
cam0_prev_img_ptr = cam0_curr_img_ptr;
prev_features_ptr = curr_features_ptr;
std::swap(prev_cam0_pyramid_, curr_cam0_pyramid_);
// Initialize the current features to empty vectors.
curr_features_ptr.reset(new GridFeatures());
for (int code = 0; code <
@ -284,6 +307,10 @@ void ImageProcessor::stereoCallback(
(*curr_features_ptr)[code] = vector<FeatureMetaData>(0);
}
// stop playing bagfile if printing images
//if(STREAMPAUSE)
// nh.setParam("/play_bag_image", true);
return;
}
@ -580,6 +607,7 @@ void ImageProcessor::trackFeatures() {
++after_ransac;
}
// Compute the tracking rate.
int prev_feature_num = 0;
for (const auto& item : *prev_features_ptr)
@ -619,9 +647,14 @@ void ImageProcessor::stereoMatch(
image_handler::undistortPoints(cam0_points, cam0.intrinsics, cam0.distortion_model,
cam0.distortion_coeffs, cam0_points_undistorted,
R_cam0_cam1);
<<<<<<< HEAD
cam1_points = distortPoints(cam0_points_undistorted, cam1_intrinsics,
cam1_distortion_model, cam1_distortion_coeffs);
=======
cam1_points = image_handler::distortPoints(cam0_points_undistorted, cam1.intrinsics,
cam1.distortion_model, cam1.distortion_coeffs);
>>>>>>> photometry-jakobi
}
// Track features using LK optical flow method.
@ -659,6 +692,8 @@ void ImageProcessor::stereoMatch(
// Further remove outliers based on the known
// essential matrix.
vector<cv::Point2f> cam0_points_undistorted(0);
vector<cv::Point2f> cam1_points_undistorted(0);
image_handler::undistortPoints(
@ -668,6 +703,7 @@ void ImageProcessor::stereoMatch(
cam1_points, cam1.intrinsics, cam1.distortion_model,
cam1.distortion_coeffs, cam1_points_undistorted);
double norm_pixel_unit = 4.0 / (
cam0.intrinsics[0]+cam0.intrinsics[1]+
cam1.intrinsics[0]+cam1.intrinsics[1]);

File diff suppressed because it is too large Load Diff

75
src/shrinkImage.py Executable file
View File

@ -0,0 +1,75 @@
#!/usr/bin/env python
from __future__ import print_function
import sys
import rospy
import cv2
from std_msgs.msg import String
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
class image_converter:
def __init__(self):
self.image0_pub = rospy.Publisher("/cam0/new_image_raw",Image, queue_size=10)
self.image1_pub = rospy.Publisher("/cam1/new_image_raw",Image, queue_size=10)
self.bridge = CvBridge()
self.image0_sub = rospy.Subscriber("/cam0/image_raw",Image,self.callback_cam0)
self.image1_sub = rospy.Subscriber("/cam1/image_raw",Image,self.callback_cam1)
def callback_cam0(self,data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
imgScale = 0.25
newX,newY = cv_image.shape[1]*imgScale, cv_image.shape[0]*imgScale
newimg = cv2.resize(cv_image,(int(newX),int(newY)))
newpub = self.bridge.cv2_to_imgmsg(newimg, "bgr8")
newdata = data
newdata.height = newpub.height
newdata.width = newpub.width
newdata.step = newpub.step
newdata.data = newpub.data
try:
self.image0_pub.publish(newdata)
except CvBridgeError as e:
print(e)
def callback_cam1(self,data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
imgScale = 0.25
newX,newY = cv_image.shape[1]*imgScale, cv_image.shape[0]*imgScale
newimg = cv2.resize(cv_image,(int(newX),int(newY)))
newpub = self.bridge.cv2_to_imgmsg(newimg, "bgr8")
newdata = data
newdata.height = newpub.height
newdata.width = newpub.width
newdata.step = newpub.step
newdata.data = newpub.data
try:
self.image1_pub.publish(newdata)
except CvBridgeError as e:
print(e)
def main(args):
ic = image_converter()
rospy.init_node('image_converter', anonymous=True)
try:
rospy.spin()
except KeyboardInterrupt:
print("Shutting down")
cv2.destroyAllWindows()
if __name__ == '__main__':
main(sys.argv)