PuzzleSolver/Source/functions/solve/structure.cpp

300 lines
8.8 KiB
C++
Raw Normal View History

#include "../../header.h"
void status(vector<LogEntry>& log, vector<Part*>& p_Box);
2017-12-22 22:55:55 +01:00
bool setBestOrMoreLayers(vector<LogEntry>& log);
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth);
void capLogElements(vector<LogEntry>& log);
bool next(vector<LogEntry>& log, vector<Part*>& p_Box,Puzzle& puzzleMat)
{
//last log element is set, create new log element or log not yet started
2017-12-03 20:12:32 +01:00
if(!(log.size()) || log.back().isSet())
{
if(!(p_Box.size())) return false; //puzzle solved
else createNextLogElement(log,p_Box,puzzleMat);
}
//last log element is empty, backtrack
else if(!(log.back().PieceCollector.size())) backtrack(log,p_Box,puzzleMat);
//case last log element has multiple entries
else if(log.back().PieceCollector.size() > 1)
{
2017-12-22 22:55:55 +01:00
//moreLayers is 0, setbest is 1
if(setBestOrMoreLayers(log)) setsolution(log,p_Box,puzzleMat);
else solve(log,p_Box,puzzleMat);
}
//case last log exactly one solution
else if(log.back().PieceCollector.size() == 1)
2017-12-03 20:12:32 +01:00
{
if(log.back().hasRandomed())
{
if(log.back().abstractionLevel < 2)//do 2 at least two best abstractions to check if part is okay
{
log.back().advance();
solve(log,p_Box,puzzleMat);
}
else
setsolution(log,p_Box,puzzleMat);
}
else
setsolution(log,p_Box,puzzleMat);
2017-11-21 16:05:38 +01:00
}
return true;
}
void createNextLogElement(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
log.emplace_back(LogEntry(coor(0, 0)));
log.back().myCoor = calculateNextCoor(log, p_Box,puzzleMat);
2017-12-22 22:55:55 +01:00
puzzleMat.dp->DestructionOfSurrounding(log.back().myCoor);//calculate dp from surrounding
solve(log, p_Box,puzzleMat);
}
coor calculateNextCoor(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
//level 1:
//go left to right, then increase current row
2017-12-03 20:12:32 +01:00
if (log.size() == 1)
return {0,0};
2017-12-03 20:12:32 +01:00
unsigned int m= log.rbegin()[1].myCoor.col;
unsigned int n= log.rbegin()[1].myCoor.row;
2017-12-03 20:12:32 +01:00
if(m<puzzleMat.getSizeAsCoor().col-1) m++;
else if(n<puzzleMat.getSizeAsCoor().row-1){ m=0; n++;}
return {m,n};
}
void solve(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
2017-12-22 22:55:55 +01:00
puzzleMat.dp->getNextAbstractionLayer(log.back().myCoor,log.back().abstractionLevel); //sets in abstractionLevel
//status(log,p_Box,puzzleMat);
switch(log.back().abstractionLevel)
{
case 1:
2017-12-22 22:47:14 +01:00
puzzleMat.a1.EvaluateQuality(log.back().myCoor, log.back().PieceCollector);
break;
2017-11-21 15:07:15 +01:00
default:
break;
}
//capLogElements(log);
//calculateWorth(log);
//calculateTrueDestructionPower(log,puzzleMat);
//calculateNewCombinedProbablility(log);
}
//removes from box and makes log "set"
void setsolution(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
//advance number of randomed part count
if(log.back().PieceCollector.size()>1) log.back().advanceRandomed();
//remove first element in last logelement from box
for(int i=0;i<p_Box.size();)
if(p_Box[i]==log.back().PieceCollector.begin()->first)//mach ich das richtig so?!
2017-12-03 20:12:32 +01:00
p_Box.erase(p_Box.begin()+i);
else
i++;
2017-12-03 20:12:32 +01:00
//tell log entry that it is set
log.back().Set();
2017-12-03 20:12:32 +01:00
}
bool backtrack(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
//if more pieces possible, take next piece
if((log.back().PieceCollector.size())>1)
{
p_Box.push_back(log.back().PieceCollector.begin()->first);
2017-12-03 20:12:32 +01:00
log.back().PieceCollector.erase(log.back().PieceCollector.begin());
if(log.back().PieceCollector.size()==1)
log.back().decreaseRandomed();
2017-12-03 20:12:32 +01:00
setsolution(log,p_Box,puzzleMat);
return true;
}
//else remove log element and backtrack once more
else
{
puzzleMat.removeConstrains(log.back().myCoor); //this should remove constraints from all layers
if((log.back().PieceCollector.size()))
p_Box.emplace_back(log.back().PieceCollector.begin()->first);
log.pop_back();
backtrack(log,p_Box,puzzleMat);
}
}
void status(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
cout << "----------------------------" << endl;
cout << "status:" << endl;
cout << "hasrandomed: " << log[0].hasRandomed() << endl;
for(int i=0;i<log.size();i++)
{
cout << "log #" << i << ":" << endl;
cout << "piecenr " << log[i].PieceCollector.size() << endl;
if(log[i].isSet())
cout << "isset: 1" << endl;
else
cout << "isset: 0" << endl;
cout << "col: " << log[i].myCoor.col<< " row: " << log[i].myCoor.row << endl;
}
cout << endl;
cout << "Box:" << endl;
cout << "size: " << p_Box.size() << endl;
cout << "Puzzle:" << endl;
puzzleMat.printPuzzle();
cout << "----------------------------" << endl;
}
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth)
{
//hier muss noch rein, wo die zeit der Abstractionlevels gespeichter wird
float destructionPower=sqrt(Layerworth * log.back().abstractionLevel);
//puzzleMat.setdestructionPower(log.back().myCoor,log.back().abstractionLevel,destructionPower);
2017-12-22 22:55:55 +01:00
}
// PART RAUER_WEIDINGER
/*
void sort()
{
}
void cut()
{
}
void capLogElements(vector<LogEntry>& log)
{
// Till Now only ground structure -> incorrect variable ans vector names
double limit = 0.6;
double diff = 0;
double maxdiff = 0;
int vectorsizeBefore = 0;
int vectorsizeAfter = 0;
double destroyed = 0; // destroyed parts in %
double worth = 0;
vectorsizeBefore = log.back().PieceCollector.size();
sort(); // Sort the vector after probabilities
auto idxcut;
for(idxcut:log.back().PieceCollector)
if(idxcut.second < limit)
break;
while(idxcut != log.back().PieceCollector.end())
{
diff = part[i] - part[i+1];
if(diff > maxdiff)
{
maxdiff = diff;
idxcut = i;
}
i++;
}
cut();
vectorsizeAfter = vector.size();
destroyed = (vectorsizeBefore - vectorsizeAfter) / vectorsizeBefore;
worth = sqrt(destroyed*maxdiff);
//return worth;
} */
//partdavid
bool setBestOrMoreLayers(vector<LogEntry>& log)
{
int countBest = 0;
float tempBest = 0.0;
// count how many Pieces are greater than the threshold value
for(auto it:log.back().PieceCollector)
{
// check Probability of current Puzzle Piece in this vector
if (it.second >= 0.90) // 0.90 as threshold
countBest++;
else
if (it.second > tempBest)
tempBest = it.second;
}
// return true if only one piece is left
if (1 == countBest)
{
return true;
}
//else if (countBest > 1 && countBest < 10) // TODO: add possible constraints
else
{
return false;
}
}
void calculateNewCombinedProbabilityForPuzzlePiecesArithmetic(vector<LogEntry>& log)
{
float totalValue = 0.0;
int i;
for(int i; i < log.back().PieceCollector.size(); i++)
{
// sum Probability of current Puzzle Piece in PieceCollector vector
//totalValue += *(log.back().PieceCollector.);
}
//return totalValue / i;
}
/*
//PartDavid
void calculateNewCombinedProbabilityForPuzzlePiecesTopK(vector<LogEntry>& log, int executedLayers)
{
float TopK[executedLayers][2] = {0.0}; // in Log speichern?
float sumTopK[executedLayers] = {0.0};
float HighestProbability = 0.0;
// searching for Top2 probability values in PieceCollector for each layer
for (int currentLayer = 0; currentLayer < executedLayers; currentLayer++)
{
// searching for Top2 probabilities in currentLayer
for(int i = 0; i < log.back().PieceCollector.size() && log.back().abstractionLevel == currentLayer; i++)
{
if (*(log.back().PieceCollector[i]) > TopK[currentLayer][0])
{
TopK[currentLayer][0] = *log.back().PieceCollector[i];
}
else if (*(log.back().PieceCollector[i]) > TopK[currentLayer][1])
{
TopK[currentLayer][1] = *log.back().PieceCollector[i];
}
else
{
// Spezialfall fuer 0 Ueberlegen
}
}
sumTopK[currentLayer] = TopK[currentLayer][0] + TopK[currentLayer][1];
}
// searching for highest probability for designated Position
for (int currentLayer = 0; currentLayer < executedLayers; currentLayer++)
{
if (sumTopK[currentLayer+1] > sumTopK[currentLayer])
{
HighestProbability = sumTopK[currentLayer+1];
}
}
}
*/